Superintegrability with third order integrals of motion, cubic algebras and
supersymmetric quantum mechanics
I :Rational function potentials

Ian Marquette
Département de physique et Centre de recherche mathématique, Université
de Montréal.
C.P.6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
ian.marquette@umontreal.ca

We consider a superintegrable Hamiltonian system in a two-dimensional
space with a scalar potential that allows one quadratic and one cubic
integral of motion. We construct the most general cubic algebra and we
present specific realizations. We use them to calculate the energy spectrum.
All classical and quantum superintegrable potentials separable in Cartesian
coordinates with a third order integral are known. The general formalism is
applied to quantum reducible and irreducible rational potentials separable
in Cartesian coordinates in E2. We also discuss these potentials from the
point of view of supersymmetric and PT-symmetric quantum mechanics.

1 Introduction

In classical mechanics a Hamiltonian system with Hamiltonian \(H \) and
integrals of motion \(X_a \)

\[
H = \frac{1}{2} g_{ik} p_i p_k + V (x;p); \quad X_a = f_a (x;p); \quad a = 1; \ldots; n + k \quad \quad (1.1)
\]

is called completely integrable (or Liouville integrable) if it allows \(n \)
integrals of motion (including the Hamiltonian) that are well defined
functions on phase space, are in involution \(\{ f_H, \{ X_a;X_b \} \} = 0 \),
a,b=1,\ldots,n+1 and are functionally independent (\(\{ f_H, \{ X_a;X_b \} \) is a Poisson bracket).
A system is superintegrable if it is integrable and allows further integrals of
motion \(Y_b (x;p), \quad H = 0, \quad b=n,n+1,\ldots,n+k \) that are also well defined
functions on phase space and the integrals \(f_H, \{ X_1;\ldots;X_n;X_{n+1};\ldots;Y_{n+k} \} \) are
functionally independent. A system is maximally superintegrable if the set contains 2n-1 functions, quasi-maximally superintegrable if it contains 2n-2 and minimally superintegrable if it contains n+1 such integrals. The integrals γ_b are not required to be in evolution with $x_1, ..., x_{n-1}$, nor with each other. The same definitions apply in quantum mechanics but $\mathcal{H}_a, \mathcal{Y}_{ab}$ are well defined quantum mechanical operators, assumed to form an algebraically independent set.

Superintegrable systems appear in many domains of physics such quantum chemistry, condensed matter and nuclear physics. The most well known examples of (maximally) superintegrable systems are the Kepler-Coulomb [1,2] system $V(x) = \frac{1}{x}$ and the harmonic oscillator $V(x) = x^2$ [3,4]. A systematic search for superintegrable systems in two-dimensional Euclidean space \mathbb{E}_2 was started some time ago [5,6]. In 1935 J. Drach published two articles on two-dimensional Hamiltonian systems with third order integrals of motion and found 10 such integrable classical potentials in complex Euclidean space $\mathbb{E}_2(\mathbb{C})$ [7]. A systematic study of superintegrable classical and quantum system with a third order integral is more recent [8,9]. All classical and quantum potentials with a second and a third order integral of motion that separate in cartesian coordinates in the two-dimensional Euclidean space were found in Ref 9. There are 21 quantum potentials and 8 classical potentials.

The classical potentials were studied earlier [10]. In all 8 cases of superintegrable systems, separating in Cartesian coordinates and allowing a third order integral of motion, the integrals of motion generate a cubic Poisson algebra. In many cases this polynomial algebra is reducible, that is it is a consequence of the existence of a simpler algebraic structure. We have also studied trajectories and have shown that bounded trajectories are always closed for these superintegrable potentials.

The quantum case is much richer: 21 superintegrable cases of the considered type exist, 13 of them irreducible. In this context we call a potential, or a Hamiltonian "reducible" if the third order integral is the commutator (or Poisson commutator) of two second order integrals. The potentials are expressed in terms of rational functions in 6 cases, elliptic functions in 2 cases and Painlevé transcendents [11] P_{I}, P_{II} and P_{IV} in 5 cases.

The three reducible cases are

$$V = \frac{1}{2} (x^2 + y^2), \quad V = \frac{1}{2} (x^2 + y^2) + \frac{1}{x^2} + \frac{1}{y^2}, \quad V = \frac{1}{2} (4x^2 + y^2) + \frac{1}{x^2} + \alpha.$$
The irreducible potentials with rational function are:

Potential 1. \[V = \frac{2}{2} \left(\frac{x^2 + y^2}{8 a^2} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2} \right) \]
Potential 2. \[V = \frac{1}{2} \left(9x^2 + y^2 \right) \]
Potential 3. \[V = \frac{1}{2} \left(9x^2 + y^2 \right) + \frac{2}{y^2} \]
Potential 4. \[V = \frac{2}{2} \left(\frac{x^2 + y^2}{8 a^2} + \frac{1}{(y + a)^2} + \frac{1}{(y - a)^2} \right) \]
Potential 5. \[V = \frac{2}{2} \left(\frac{1}{8a^2} \left(x^2 + y^2 \right) + \frac{1}{y^2} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2} \right) \]
Potential 6. \[V = \frac{2}{2} \left(\frac{1}{8a^2} \left(x^2 + y^2 \right) + \frac{1}{(y + a)^2} + \frac{1}{(y - a)^2} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2} \right). \]

It is well known that in quantum mechanics the operators commuting with the Hamiltonian, form an \(\mathfrak{o}(4) \) algebra for the hydrogen atom [3,4] and a \(\mathfrak{u}(3) \) algebra for the harmonic oscillator. We can obtain from the algebra the energy spectrum. In many cases the algebra is no longer a Lie algebra and many examples of polynomial algebras were obtained in quantum mechanics [12,13,14,15,16,17,18,19,20,21,22]. C.Daskaloyannis studied the case of the quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic (associative) algebras of quantum superintegrable systems [17]. He shows how the quadratic algebras provide a method to obtain the energy spectrum. He uses realizations in terms of deformed oscillator algebras [18]. Potentials with a third order integral can be investigated using these techniques.

Supersymmetry was originally introduced in the context of grand unification theory in elementary particle physics in terms of quantum field theory involving a symmetry between bosons and fermions [23]. So far there is no experimental evidence of SUSY particles. At our energies we can distinguish bosons and fermions and this symmetry should appear as a broken symmetry. Supersymmetric quantum mechanics (SUSYQM) was introduced by E.Witten [24] as a toy model to study supersymmetry breaking. This method is related to earlier investigation of spectral properties of Sturm-Liouville differential operators by G.Darboux [25] and T.F.Moutard [26] in the 19th century. SUSYQM is also related to the factorization method that was used by E.Schrödinger in the context of the quantum harmonic oscillator [27]. The factorization method was investigated more systematically later by L.Infeld and T.F.Hull [28]. SUSYQM is now an independent field with applications to atomic, nuclear,
condensed matter, statistical physics and quantum mechanics [29]. The
relation with exactly solvable potentials has been discussed [30,31] and also
with superintegrable potentials and quadratic algebras [32].
This paper is organized in the following way. In Section 2 we give the
general form of the cubic algebra for two-dimensional systems with a
quadratic and a cubic operator that commute with the Hamiltonian. We
give a realization of the cubic algebra in terms of parafermionic oscillator
algebras. We study the finite dimensional representations of the cubic
algebra. In Section 3 we apply this method to the case of irreducible
potentials separable in Cartesian coordinates in E_2 with a third order
integral. In Section 4 we investigate the irreducible potentials from the
point of view of supersymmetric quantum mechanics. In Section 5 we give
the generating spectrum algebra of the irreducible Potential 1. In Section 6
we investigate the complexification of the irreducible Potential 1. (All other
cases can we obtained from Potential 1).

\section{Cubic and parafermionic algebras}

We consider a quantum superintegrable system with a quadratic
Hamiltonian and one second order and one third order integral of motion

$$H = a(q_i ; q_i) P_1^2 + 2b(q_i ; q_i) P_1 P_2 + c(q_i ; q_i) P_2^2 + V (q_i ; q_i)$$ (2.1)

\begin{align*}
A &= \alpha (q_i ; q_i) P_1^2 + 2\beta (q_i ; q_i) P_1 P_2 + \gamma (q_i ; q_i) P_2^2 + \delta (q_i ; q_i) P_2 + \epsilon (q_i ; q_i) \\
B &= \alpha (q_i ; q_i) P_1^3 + 3\beta (q_i ; q_i) P_1^2 P_2 + 3\omega (q_i ; q_i) P_1 P_2^2 + \chi (q_i ; q_i) P_2^3 + \mu (q_i ; q_i) P_2^2 \\
&\quad + 2\lambda (q_i ; q_i) P_1 P_2 + \nu (q_i ; q_i) P_2 + m (q_i ; q_i) P_1 + n (q_i ; q_i) P_2 + S (q_i ; q_i) \\
\end{align*}

with

$$P_1 = i\Theta_1 ; P_2 = i\Theta_2 ;$$

$$[H ; A] = [H ; B] = 0 ;$$

We assume that our integrals close in a cubic algebra. This is the quantum
version of the cubic Poisson algebra obtained earlier [10] and the cubic
generalization of the quadratic algebra studied by C. Daskaloyannis [17].
The most general form of such an algebra is

\[
[A ; B] = C
\]

\[
[A ; C] = A^2 + fA \cdot B \cdot g + A + B +
\]

\[
[B ; C] = A^3 + A^2 + B^2 + fA \cdot B \cdot g + A + B +
\]

(2.4)

where \(f \cdot g \) denotes an anticommutator. The coefficients \(f \) and \(g \), and are constants, but the other ones can be polynomials in the Hamiltonian \(H \).

The degrees of these polynomials are dictated by the fact that \(H \) and \(A \) are second order polynomials in the momenta and \(B \) is a third order one. Hence \(C \) can be a fourth order polynomial. The Jacobi identity

\[
[A ; [B ; C]] = [B ; [A ; C]]
\]

implies \(= 0 \), \(= 0 \) and \(= 0 \). We obtain

\[
[A ; B] = C
\]

(2.5a)

\[
[A ; C] = A^2 + fA \cdot B \cdot g + A + B +
\]

(2.5b)

\[
[B ; C] = A^3 + A^2 + B^2 + fA \cdot B \cdot g + A + B +
\]

(2.5c)

For the polynomials on the left and right sides of Eq. (2.4) and Eq. (2.5) to have the same degree we must have

\[
= 0 ; = 0 ; = 0 \quad \quad (2.6)
\]

\[
= 0 + _1H ; = 0 + _1H ; = 0 + _1H + _2H^2
\]

\[
= 0 + _1H ; = 0 + _1H + _2H^2
\]

\[
= 0 + _1H + _2H^2 + _3H^3 ;
\]

where \(_0, \ldots, _3 \) are constants.

The Casimir operator of a polynomial algebra is an operator that commutes with all elements of the algebra:

\[
[K ; A] = [K ; B] = [K ; C] = 0
\]

(2.7)

and this implies

\[
K = C^2 \quad fA^2 \cdot B \cdot g \quad fA \cdot B^2 \cdot g + \ldots \quad fA \cdot B \cdot g + (\ldots) fA \cdot B \cdot g + \ldots
\]

\[
= B^2
\]
\[(+ 2)B + 2A^4 + \frac{2}{3} (+ \frac{1}{6} + \frac{2}{3} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2})A \equiv (2.8)\]

Ultimately, the Casimir operator will be a function of the Hamiltonian alone. We construct a realization of the cubic algebra in terms of a deformed oscillator algebra \[17,18\] \(f \) which satisfies the relation

\[\[N, b^3] = b^3; \quad [N, b] = b\; b^2 [N]; \quad b^3 = (N + 1); \quad (N) \]

\((N)\) is called the "structure function". Following C. Daskaloyannis \[17\] we request \((N)\) to be a real function and impose \((0) = 0\) and \((N) > 0\) for \(N > 0\). We construct a Fock type representation for the deformed oscillator algebra with a Fock basis \(\langle n \rangle\), \(n=0,1,2\ldots\) satisfying

\[N \langle n \rangle = n \langle n \rangle; \quad b^3 \langle n \rangle = \frac{p}{(N + 1)} \langle n + 1 \rangle; \quad \langle n \rangle \]

\[b \langle 0 \rangle = 0; \quad b \langle n \rangle = \frac{p}{(N) \langle n \rangle + 1 \rangle}; \quad \]

To obtain a finite-dimensional representation we request \((p + 1) = 0\).

Let us show that there exists a realization of the form :

\[A = A(N); \quad B = b(N) + b^5 (N) + (N) b; \quad \]

The functions \(A(N)\), \(b(N)\) et \((N)\) will be determined by the cubic algebra. We have by Eq. \((2.5, a)\)

\[C = [A, b] = b^3 4 A(N) (N) (N) 4 A(N) b; \quad (2.13)\]

where \(4 A(N)\) is define to be \(4 A(N) = A(N + 1) + A(N)\). When we insert Eq. \((2.12)\) into Eq. \((2.5b)\) we obtain two equations that allow us to determine \(A(N)\) and \(b(N)\)

\[4 A(N)^2 = (A(N + 1) + A(N)) + \]

\[\]

6
\[A(N)^2 + 2 A(N)b(N) + A(N) + b(N) + = 0 \]

Two distinct possibilities occur.

Case 1: \(\epsilon \neq 0 \). We find the following solution

\[
A(N) = \frac{1}{2} ((N + u)^2 + \frac{1}{4} - 2)
\]

\[
b(N) = \frac{1}{4} ((N + u)^2 + \frac{1}{4} - 2) + \frac{2}{4} + \frac{4}{4} - \frac{1}{(N + u)^2 + \frac{1}{4}}
\]

The constant \(u \) will be determined below using the fact that we require that the deformed oscillator algebras should be nilpotent. Eq. (2.5c) gives us

\[
2(N + 1)(4A(N) + \frac{1}{2}) (N) \quad 2(N)(4A(N1) + \frac{1}{2}) (N1)
\]

\[
= A(N)^3 + A(N)^2 b(N)^2 + 2A(N)b(N) + A(N) b(N) + \quad \text{(2.16)}
\]

and the Casimir operator is now realized as

\[
K = (N + 1)(N + 1)(N + 1) \quad 2 A(N) + 4 A(N1) (N) + 2 A(N1) b(N)
\]

\[
+ (N)(N1) \quad 2 A(N) + 4 A(N1) (N1) + 2 A(N1) b(N)
\]

\[
+ (N1) \quad A(N1)^2 + (\frac{1}{6} + \frac{2}{3} + \frac{4}{2} + 2) A(N1) b(N) + (\frac{1}{6} + \frac{a}{3} + 2) A(N) + \quad \text{(2.17)}
\]

Finally the structure function is

\[
((N + 1)(4A(N1) + \frac{1}{2}) (E) + (4A(N) + \frac{1}{2})(g)
\]

\[
\quad \{(4A(N) + \frac{1}{2})(K + 2A(N1)^2 b(N)) (2 A(N)) b(N) \}
\]

\[
2(A(N) b(N) (2 A(N1) b(N) - \frac{2}{3} A(N1)^4 \quad \frac{2}{3} (1 + \frac{1}{2}) A(N1)^4
\]

\[\text{(2.18)} \]
\[\frac{1}{6} \left(\frac{1}{6} + \frac{2}{3} + \frac{2}{3} + \right) A(N \hat{y}) \left(\frac{1}{6} + \frac{2}{3} + 2 \right) A(N) \]

\[\frac{1}{2} \left(\frac{1}{2} 2 A(N) 4 A(N \hat{y}) (A(N \hat{y})^3 + A(N \hat{y})^2 b(N)^2 + A(N \hat{y}) + A(N)b(N) + A(N)b(N) +) \right) \]

with

\[f = 2 A(N) 4 A(N \hat{y}); \quad g = 2 A(N) 4 A(N) 1 \hat{y}^2; \quad \] (2.19)

Thus the structure function depends only on the function \(\hat{y} \). This function can be arbitrarily chosen and does not influence the spectrum. We choose to obtain a structure function that is a polynomial in \(N \), namely we put

\[(N) = \frac{1}{3} \frac{1}{2} \frac{8}{(N + u)(1 + N + u)(1 + 2(N + u))^2}; \quad (2.20) \]

From our expressions for \(A(N), b(N) \) and \((N) \), the third relation of the cubic associative algebra and the expression of the Casimir operator we find the structure function \((N) \). For the Case 1 the structure function is a polynomial of order 10 in \(N \). The coefficients of this polynomial are functions of \(\hat{y}, \hat{y}, \hat{y}, \hat{y}, \hat{y}, \hat{y}, \hat{y}, \) and \(\hat{y} \). We give the formula in the Appendix.

Case 2: For \(p = 0 \) and \(\epsilon = 0 \) we get the solution

\[A(N) = p - (N + u); b(N) = (N + u) \hat{y} \quad \hat{y} = (N + u) - : \quad (2.21) \]

We choose a trivial expression \((N) = 1 \). The explicit expression of the structure function for this case is

\[(N) = \left(\frac{K}{4} \frac{1}{2} \frac{1}{4} + \frac{2}{4} \frac{1}{2} + \frac{2}{4} + \frac{2}{4} \frac{1}{2} + \frac{2}{4} + \frac{2}{4} \right)(N + u) \]

\[+ \left(\frac{2}{2} \frac{2}{4} + \frac{2}{4} + \frac{2}{4} + \frac{2}{4} + \frac{2}{4} + \frac{2}{4} + \frac{1}{2} \right)(N + u) \]

\[+ \left(\frac{3}{4} \frac{3}{4} + \frac{2}{4} + \frac{8}{8} \right)(N + u)^2 \]
\[
+ \left(\frac{2}{2} + \frac{2}{\pi} + \frac{\beta}{4} \right) (N + u)^3 + \left(\frac{2}{4} + \frac{\beta}{8} \right) (N + u)^3
\]

We use a parafermionic realization in which the parafermionic number operator \(N \) and the Casimir operator \(K \) are diagonal. The basis of this representation is the Fock basis for the parafermionic oscillator. The vector \(\psi; n > = 0; 1; 2; \vdots \) satisfies the following relations:

\[
N \psi; n > = n \psi; n > ; K \psi; n > = k \psi; n >
\]

The vectors \(\psi; n > \) are also eigenvectors of the generator A.

\[
A \psi; n > = A (k; n) \psi; n > ;
\]

\[
A (k; n) = \frac{1}{\beta} (n + u)^2 \frac{1}{4} \frac{\beta}{2}; \quad \beta \neq 0;
\]

\[
A (k; n) = \frac{p^2}{\beta} (n + u); \quad \beta = 0 ; \quad \beta \neq 0
\]

We have the following constraints for the structure function

\[
(0; u; k) = 0; \quad (p + 1; u; k) = 0
\]

With these two relations we can find the energy spectrum. Many solutions for the system exist. Unitary representations of the deformed parafermionic oscillator obey the constraint \(x > 0 \) for \(x = 1, 2, \ldots, p \).

There are other conditions that should be imposed. The representations should be constrained by the differential character of the Hamiltonian and the integrals. For example the mean energy should be greater than the minimum of the potential

\[
< H > = \min \{ V \}
\]

This restriction and possibly other ones coming from the differential operator character of the integrals should be taken into consideration to exclude spurious states.
3 Irreducible rational function potentials

In the case of the three reducible superintegrable potentials the cubic algebra is a direct consequence of a simpler algebraic structure. The first potential $V = \frac{1}{2} (x^2 + y^2)$ is the well known isotropic harmonic oscillator. We can construct the quadratic or the cubic algebra from the Lie algebra as in the classical case [10]. The eigenfunctions of the harmonic oscillator are well known and are given in terms of the Hermite polynomials. The two other reducible potentials $V = \frac{1}{2} (x^2 + y^2) + \frac{k}{x^2} + \frac{2}{y^2}$ and $V = \frac{1}{2} (4x^2 + y^2) + \frac{k}{x^2} + \infty$ are two of the four types of potentials found a long time ago [6]. There is no Lie algebra in these cases but a quadratic algebra [17] and we can obtain the cubic algebra directly from this algebra. We obtain from the cubic algebra the same unitary representations that were obtained from the quadratic algebra [17].

In this section we will apply to the irreducible quantum potentials results of the Section 2 and give all unitary representations and the corresponding energy spectra. Notice that in all case we have $V = 0$ so only Case 2 of Section 2 occurs.

Potential 1 : $V = \sim^2 (\frac{x^2 + y^2}{8a^2} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2})$

This potential has the following two integrals

$$A = \mathbf{P}_x^2 \mathbf{P}_y^2 + 2\sim^2 \left(\frac{x^2}{8a^4} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2} \right) \tag{3.1}$$

$$B = \frac{1}{2} fL \mathbf{P}_x^2 g + \frac{1}{2} \sim^2 f_y \left(\frac{4a^2}{4a^4} \frac{x^2}{(x^2 + a^2)^2} \right) ; \mathbf{P}_x g \tag{3.2}$$

$$+ \frac{1}{2} \sim^2 f_x \left(\frac{4a^2}{4a^4} \frac{2}{x^2 + a^2} + \frac{4(x^2 + a^2)}{(x^2 + a^2)^2} \right) ; \mathbf{P}_y g$$

The integrals A, B and H give rise to the following cubic algebra and Casimir operator

$$[A ; B] = C ; \quad [A ; C] = \frac{4h^4}{a^4} B \quad \tag{3.3}$$

$$[B ; C] = 2\sim^2 A^3 + 6\sim^2 A^2 H + 8\sim^2 H^3 + 6\sim^4 A^2 + 8\sim^4 A H A + 8\sim^4 H^2 + 2\sim^6 A + \frac{2\sim^6}{a^4} H + \frac{6\sim^8}{a^8}$$
\[K = 16 \frac{\sim^4}{a^4} H^4 + 32 \frac{\sim^4}{a^4} H^3 + 16 \frac{\sim^6}{a^6} H^2 + 40 \frac{\sim^8}{a^8} H^2 + 3 \frac{\sim^{10}}{a^8} : \quad (3.4) \]

The structure function is given by the expression

\[(x) = \left(\frac{\sim^8}{a^4} \right) (x + u) \left(\frac{a^2E}{\sim^2} \right) (x + u) \left(\frac{a^2E}{\sim^2} + \frac{1}{2} \right) (x + u) \left(\frac{a^2E}{\sim^2} + \frac{3}{2} \right) (x + u) \left(\frac{a^2E}{\sim^2} + \frac{5}{2} \right) : \quad (3.5) \]

There are three unitary representations. The first unitary solution is for
\[a = i a_0 ; \quad a_0 \in \mathbb{R} . \]
From the condition \((0; u; k) = 0 \) we find \(u = \frac{a_0^2 E}{\sim^2} + \frac{1}{2} \).
The second constraint \((p + 1; u; k) = 0 \) implies

\[E = \frac{\sim^2 (p + 2)}{2a_0^2} ; \quad (x) = \left(\frac{\sim^8}{a_0^4} \right) x (p + 1) x (p + 3) x (p + 4) x ; \quad (3.6) \]

where \(p \in \mathbb{N} \). We have \((p + 1) = 0 \) which means that the unitary representations have dimension \(p+1 \). This is also the degeneracy of the energy levels.
The second unitary solution for \(a = i a_0 ; a_0 \in \mathbb{R} \). We have \(u = \frac{a_0^2 E}{\sim^2} + \frac{1}{2} \) and

\[E = \frac{\sim^2 (p)}{2a_0^2} ; \quad (x) = \left(\frac{\sim^8}{a_0^4} \right) x (p + 1) x (3) x (2) x ; \quad (3.7) \]

valid only for \(p=0,1 \).
We have

\[E \; \text{min} V = V (0; 0) = \frac{2\sim^2}{a_0^2} ; \quad (3.8) \]

so this is a physically meaningful solution. A third unitary solution exists this time for \(a \in \mathbb{R} \). We have \(u = \frac{a_0^2 E}{\sim^2} + \frac{3}{2} \) and

\[E = \frac{\sim^2 (p + 3)}{2a^2} ; \quad (x) = \left(\frac{\sim^8}{a^4} \right) x (p + 1) x (x + 1) x (x + 3) \quad : \quad (3.9) \]

Potential 2:
\[V = \frac{1}{2} (9x^2 + y^2) \]

This potential has the two integrals

\[A = P_x^2 + P_y^2 + \frac{1}{2} (9x^2 - y^2) \quad (3.10) \]
\[
B = \frac{1}{2} f L; P_y^2 g + \frac{t^2}{6} f y^3 ; P_x g \quad \frac{3!^2}{2} f x y^2 ; P_y g
\]

The cubic algebra and Casimir operator of this system are

\[
[A;B] = C, \quad [A;C] = 144!^2 A
\]

\[
[B;C] = 2^2 A^3 + 6^2 H A^2 + 8^2 H^3 + 56!^2 A + 72!^2 H
\]

\[
K = 16^2 H^4 + 64!^2 H^2 + 720!^2 H^6
\]

The structure function is

\[
(x) = \left(36!^2 h^4\right) (x + u) \left(\frac{E}{6!} + \frac{1}{2}\right) (x + u) \left(\frac{E}{6!} + \frac{1}{6}\right) (x + u) \left(\frac{E}{6!} + \frac{1}{2}\right)
\]

\[
(x + u) \left(\frac{E}{6!} + \frac{5}{6}\right)
\]

We use the two constraints given by the Eq.(2.25). We obtain
\[
u = \frac{E}{6!} + \frac{1}{2}
\]

and three unitary representations with the corresponding energy spectra

\[
E = 3! \sim \left(p^2 \frac{2}{3}\right); \quad (x) = \left(36!^2 h^4\right) x (x + 1) x (x + 2) \quad \left(x + \frac{1}{3}\right) (x + \frac{1}{3}) (x)
\]

\[
E = 3! \sim \left(p^2 + 1\right); \quad (x) = \left(36!^2 h^4\right) x (x + 1) x (x + 2) \quad \left(x + \frac{1}{3}\right) (x + \frac{1}{3}) (x)
\]

\[
E = 3! \sim \left(p^2 + \frac{4}{3}\right); \quad (x) = \left(36!^2 h^4\right) x (x + 1) x (x + \frac{5}{3}) (x) + \frac{4}{3} (x)
\]

These results coincide with those obtained by solving the Schrödinger equation using separation of variable. The eigenfunctions are well known and given by

\[
k_1(x) = \frac{1}{2^{k_1}} \left(\frac{3!}{\sim}\right)^{\frac{1}{r}} \xi \frac{3!}{\sim} \xi \xi^2 H_{k_1} \left(\frac{3!}{\sim} \xi\right)
\]

\[
k_2(y) = \frac{1}{2^{k_2}} \left(\frac{1}{\sim}\right)^{\frac{1}{r}} \xi \frac{1}{\sim} \xi \xi^2 H_{k_2} \left(\frac{1}{\sim} \xi\right)
\]
where \(H_k \) are Hermite polynomials. The corresponding energy spectrum is

\[
E = \lambda \sim (3k_1 + k_2 + 2) \quad (3.19)
\]

Potential 3: \(V = \frac{1}{2} (9x^2 + y^2) \nabla^2 \)

The two integrals of this potential are

\[
A = \frac{2}{3} f L \partial_y \frac{1}{f} + \frac{1}{2} f \left(\frac{1}{3} \right) \frac{y^2}{y^2}; \partial_x g + \frac{1}{2} f 3x \left(\frac{2y^2}{y^2} \right); \partial_y g; \quad (3.20)
\]

The cubic algebra and the Casimir operator are

\[
[A ; B] = C \quad [A ; C] = 144!^2 2 \quad (3.21)
\]

\[
[B ; C] = 2^2 H^2 + 6^2 H A^2 + 8^2 H^3 + 8^2 H A^3 \quad 72!^2 4 H^3
\]

\[
K = 16^2 H^4 + 256!^2 4 H^2 + 1008!^2 6
\]

The structure function is

\[
(x) = (36!^2 h^4)(x + u \quad \left(\frac{E}{6!^2} + \frac{1}{2} \right))(x + u \quad \left(\frac{E}{6!^2} \right))(x + u \quad \left(\frac{E}{6!^2} + \frac{1}{2} \right))
\]

\[
(x + u \quad \left(\frac{E}{6!^2} + \frac{1}{2} \right))
\]

Using Eq.(2.25) we obtain \(u = \frac{E}{6!^2} + \frac{1}{2} \) and two unitary representations

\[
(x) = (36!^2 4)(p \quad \frac{5}{3} \quad x)(p+ 1 \quad x)(p+ \frac{7}{3} \quad x); \quad E = 3! \sim (p \quad \frac{5}{3}); \quad (3.24)
\]

\[
(x) = (36!^2 4)(p \quad \frac{1}{3} \quad x)(p+ \frac{5}{3} \quad x)(p+ 1 \quad x); \quad E = 3! \sim (p+ 1) \quad (3.25)
\]

These results are corroborated by those obtained when we use separation of
variable and solve the Schrödinger equation. The eigenfunctions are well
know are given by
\[
k_1(x) = \frac{1}{2} k_1 \left(\frac{3!}{r} \right) x^r e^{-x^2/2} H_{k_1} \left(\frac{3!}{r} x \right); \quad (3.26)
\]
\[
k_2(y) = \frac{1}{2} \frac{k_2 \left(\frac{r}{2} \right)}{(k_2 + \frac{r}{2})} y^{r+1} e^{-y^2/2} L_{k_2} \left(\frac{r}{2} y^2 \right); \quad (3.27)
\]
where \(L_n \) is a Laguerre polynomial. The corresponding energy spectrum is
\[
E = \frac{1}{2} (3k_1 + 2k_2 + 4) \quad (3.28)
\]

Potential 4: \(V = \frac{\left(2x^2 + y^2\right)}{8a^4} + \frac{1}{y} + \frac{1}{y+a} + \frac{1}{y+a} \)

The two integrals are given by the formulas
\[
A = P_x^2 P_y^2 + 2^{-2} \frac{9x^2}{8a^4} \frac{y^2}{a^2} + \frac{1}{(y+a)^2} + \frac{1}{y^2} \quad (3.29)
\]
\[
B = \frac{1}{2} fL \cdot P_y^2 g + \frac{1}{2} f \frac{1}{y} \frac{y^2}{a^2} \frac{8a^2}{y^2} \frac{2}{a^2} \frac{y^2}{a^2} \frac{g}{y^2} \; P_y g \quad (3.30)
\]
\[
+ \frac{1}{2} f \left[\frac{8(y^2 + a^2)}{(y^2 + a^2)^2} \right] \frac{y^2}{a^2} \frac{g}{y^2} \; P_y g
\]

The cubic algebra and the Casimir operator are
\[
[A;B] = C; \quad [A;C] = \frac{36h^4}{a^4} B \quad (3.31)
\]
\[
[B;C] = 2^{-2} A^3 \quad 6^{-2} A^2 H \quad 8^{-2} H^3 + 10^{-6} A + 18^{-6} H \quad 24^{-8} H \quad (3.32)
\]
\[
K = 16^{-2} H^4 + 112^{-6} A^2 H^2 + 96^{-8} H^8 + 171^{-10} \quad (3.33)
\]

The structure function is
\[
(x) = \frac{9^{-6}}{a^4} (x + u + a^2E) (x + u + \frac{a^2E}{3^{-2}}) \left(\frac{1}{2}\right)(x + u + \frac{a^2E}{3^{-2}} + \frac{1}{2})(x + u + \frac{a^2E}{3^{-2}} + \frac{5}{6})(x + u + \frac{a^2E}{3^{-2}} + \frac{7}{6}) \quad (3.33)
\]
For the case \(a = \alpha a_0 \); \(a_0 \in \mathbb{R} \) we get the three following unitary representations

\[
(x) = \frac{9^{-6}}{a_0^4} x (p + 1) x (p + \frac{7}{3}) x (p + \frac{8}{3}) x; \quad E = \frac{3^{-2} (p + 2)}{2a^2} \quad (3.34)
\]

\[
(x) = \frac{36^{-6}}{a_0^4} x (p + 1) x (x + \frac{4}{3}) x (x + \frac{1}{3}); \quad E = \frac{3^{-2} (p + \frac{4}{3})}{2a^2} \quad (3.35)
\]

\[
(x) = \frac{36^{-6}}{a_0^4} x (p + 1) x (x + \frac{2}{3}) x (x + \frac{1}{3}); \quad E = \frac{3^{-2} (p + \frac{5}{3})}{2a^2} \quad (3.36)
\]

For the case \(a \in \mathbb{R} \) we get the three unitary representations

\[
(x) = \frac{9^{-6}}{a^4} x (p + 1) x (p + \frac{7}{3}) x (p + \frac{8}{3}) x; \quad E = \frac{3^{-2} (p + 2)}{2a^2} \quad (3.37)
\]

\[
(x) = \frac{9^{-6}}{a^4} x (p + 1) x (p + \frac{4}{3}) x (p + \frac{1}{3}) x; \quad E = \frac{3^{-2} (p + \frac{2}{3})}{2a^2} \quad (3.38)
\]

\[
(x) = \frac{9^{-6}}{a^4} x (p + 1) x (p + \frac{2}{3}) x (p + \frac{2}{3}) x; \quad E = \frac{3^{-2} (p + \frac{5}{3})}{2a^2} \quad (3.39)
\]

The Potential 5 \(V = \sim^{-2} \left(\frac{1}{a^2} [x^2 + y^2] + \frac{1}{y^2} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2} \right) \) and Potential 6 \(V = \sim^{-2} \left(\frac{1}{a^2} [x^2 + y^2] + \frac{1}{y^2} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2} \right) \) are particular. Their integrals of motion A, B and C do not close in a finite cubic algebra. Closure at a higher order remains to be investigated. In these cases, we have the separation of variables and the unidimensional parts are related to the Potential 1 and Potential 4 and their spectra. We will see also in the next section that we can obtain information using supersymmetric quantum mechanics.

4 Supersymmetric quantum mechanics

In this section we will investigate a relation between SUSYQM [24] and superintegrable systems with a third order integral of motion. Let us recall some aspects of supersymmetric quantum mechanics. We define two first
order operators
\[A = \frac{\sim}{2} \frac{d^2}{dx^2} + W(x); \quad A^y = \frac{\sim}{2} \frac{d^2}{dx^2} + W(x) \quad : \quad (4.1) \]

We consider the following two Hamiltonians which are called "superpartners"
\[H_1 = A^y A = \frac{\sim}{2} \frac{d^2}{dx^2} + W(x); \quad H_2 = A A^y = \frac{\sim}{2} \frac{d^2}{dx^2} + W(x) \quad : \quad (4.2) \]

There are two cases. The first is \(A^{(1)}_0 \neq 0 \), \(E^{(1)}_0 \neq 0 \), \(A^y^{(2)} \neq 0 \) and \(E^{(2)}_0 \neq 0 \). We have
\[E^{(2)}_n = E^{(1)}_n > 0; \quad (2)_n = \left(\frac{1}{E^{(1)}_n} \right) \left(\frac{1}{A^{(1)}_n} \right); \quad (1)_n = \left(\frac{1}{E^{(2)}_n} \right) \left(\frac{1}{A^y^{(2)}_n} \right) \quad : \quad (4.3) \]

and the two Hamiltonians are isospectral. This case corresponds to broken supersymmetry.

For the second case the supersymmetry is unbroken and we have \(A^{(1)}_0 = 0 \), \(E^{(1)}_0 = 0 \), \(A^y^{(2)} \neq 0 \) and \(E^{(2)}_0 \neq 0 \). Without lost of generality we take \(H_1 \) as the potential having the zero energy ground state. We have
\[E^{(2)}_n = E^{(1)}_{n+1}; \quad E^{(1)}_0 = 0; \quad (2)_n = \left(\frac{1}{E^{(1)}_{n+1}} \right) \left(\frac{1}{A^{(1)}_{n+1}} \right); \quad (1)_{n+1} = \left(\frac{1}{E^{(2)}_n} \right) \left(\frac{1}{A^y^{(2)}_n} \right) \quad : \quad (4.4) \]

We can define the matrices
\[H = \begin{pmatrix} H_1 & 0 \\ 0 & H_2 \end{pmatrix} \quad Q = \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} \quad Q^y = \begin{pmatrix} 0 & A^y \\ 0 & 0 \end{pmatrix} \quad : \quad (4.5) \]

We get the relations
\[[H, Q] = [H, Q^y] = 0; \quad fQ \rho Q g = fQ^y \rho Q^y g = 0; \quad fQ \rho Q^y g = H \quad : \quad (4.6) \]

We have a \(sl(1|1) \) superalgebra and \(H_1 \) and \(H_2 \) are superpartners. By construction, all our potentials can be viewed as the sum of two one dimensional potentials \(H = H_x + H_y \). The unidimensional parts of the three reducible potentials and the irreducible Potential 2 and Potential 3 are.

16
known in SUSYQM. These potentials have the shape invariance property [29,31]. We will show that Potentials 1,4,5 and 6 can be also discussed from the point of view of supersymmetry.

4.1 Potential 1

The Hamiltonian is

\[H = H_x + H_y = \frac{p_x^2}{2} + \frac{p_y^2}{2} + \frac{1}{8a^4} + \frac{1}{8a^2(x - a)^2} + \frac{1}{8a^2(x + a)^2} \] \hspace{1cm} (4.7)

Let us define the two operators

\[b_y = \frac{1}{2} (\frac{d}{dx} \frac{x}{2a^2}) + \frac{1}{2a^2} x \frac{d}{dx} \frac{2}{x - a} \left(\frac{1}{x} + \frac{1}{x + a} \right) \] \hspace{1cm} (4.8)

\[b = \frac{1}{2} (\frac{d}{dx} \frac{x}{2a^2}) + \frac{1}{2a^2} x \frac{d}{dx} \frac{2}{x - a} \left(\frac{1}{x} + \frac{1}{x + a} \right) \] \hspace{1cm} (4.9)

For \(a = ia_0; \ a_0 2 \mathbb{R} \) we have

\[H_1 = b^\dagger b = \frac{p_x^2}{2} + \frac{\sim^2 x^2}{8a_0^4} + \frac{\sim^2}{8a_0^4 (x - ia_0)^2} + \frac{\sim^2}{8a_0^4 (x + ia_0)^2} + \frac{3\sim^2}{4a_0^4} \] \hspace{1cm} (4.10)

\[H_2 = b b^\dagger = \frac{p_x^2}{2} + \frac{\sim^2 x^2}{8a_0^4} + \frac{5\sim^2}{4a_0^4} \] \hspace{1cm} (4.11)

These two unidimensional Hamiltonians are almost isospectral. \(H_1 \) has a zero energy ground state. The supersymmetry is unbroken. This potential was discussed in Ref. 33. Non singular superpartners of the harmonic oscillator were discussed in Ref. 34 and 35. Coherent states of superpartners of the harmonic oscillator have also been studied [36]. We see that \(H_1 = H_x + \frac{3\sim^2}{4a_0^4} \) is the Hamiltonian that we are interested in and its superpartner \(H_2 \) corresponds to a harmonic oscillator.

We apply results for the unbroken supersymmetry. The zero energy ground state satisfies \(b \phi_0 = 0 \) and is

\[\phi_0 (x) = a_0^2 \frac{2}{\Gamma(\frac{3}{2})} \frac{e^{-\frac{x^2}{a_0^2}}}{a_0^2 + x^2} \] \hspace{1cm} (4.12)
The other eigenfunctions of \mathcal{H}_1 are obtained by the equation
\[n+1 \overset{(1)}{=} \frac{1}{E_n} \overset{(2)}{=} \frac{1}{E_n} \overset{(3)}{=} \frac{1}{E_n} \cdot \] In this case \(n \) are only the eigenfunctions of the harmonic oscillator
\((H_2) \) that are written in terms of Hermite polynomials. We get directly for \mathcal{H}_1

\[k_{n+1}(x) = \frac{1}{2^{k_1} k_1!} \left(\frac{1}{2a_0^2} \right)^{1/2} e^{\frac{1}{4a_0^2} x^2} H_{k_1} \left(\frac{1}{2a_0^2} x \right) \quad (4.13) \]

\[= \frac{p}{2} \frac{a_0}{(k_1 + 3)^{1/2}} \left(\frac{1}{2a_0^2} \right)^{1/2} e^{\frac{x^2}{4a_0^2}} \left(\frac{x^3 + 3xa_0^2}{a_0^2 (x^2 + a_0^2)} H_{k_1} \left(\frac{2k_1^2}{2a_0^2} \right) H_{k_1,1} \right); \]

\[= \text{1 for } k_1 = 1, \quad = 0 \text{ for } k_1 = 0. \] With this expression we get for $k_1 = 0$

\[E_0^{(1)} = 0; \quad E_{n+1}^{(1)} = \frac{\alpha_0^2}{2a_0^2} (k_1 + 3) \quad : \quad \]

We have the following energy spectrum for \mathcal{H}_1

\[E_0^{(1)} = 0; \quad E_{n+1}^{(1)} = \frac{\alpha_0^2}{2a_0^2} (k_1 + 3) \quad : \quad \]

We thus obtain the spectrum of \mathcal{H}_x (the x part of the irreducible Potential 1):

\[E_0^x = \frac{3\alpha_0^2}{4a_0^2}; \quad E_{n+1}^x = \frac{\alpha_0^2}{2a_0^2} (k_1 + 3/2) \quad : \quad \]

If we add \mathcal{H}_y to these results we get the energy spectrum and the eigenfunctions of the Potential 1. There are two families of solutions. The first corresponds to the energies

\[E = \frac{(k_1 + k_2 + 2)\alpha_0^2}{2a_0^2} = \frac{(p + 2)\alpha_0^2}{2a_0^2} \quad : \quad \]

18
with eigenfunctions

\[
k_{1+1}(x) = \sqrt{\frac{a_0}{2a_0^2(k_1 + 3)}} \left(\frac{1}{2a_0^2} \right)^{\frac{1}{2}} \left(\frac{1}{2^{k_1} k_1!} e^{\frac{x^2}{4a_0^2}} \left(\frac{x^3 + 3x a_0^2}{a_0^2(x^2 + a_0^2)} \right) H_{k_1} \right) \frac{2k_1}{2a_0} H_{k_1, 1}
\]

(4.18)

\[
k_2(y) = \frac{1}{2^{k_2} k_2!} \left(\frac{1}{2a_0^2} \right)^{\frac{1}{2}} e^{\frac{y^2}{4a_0^2}} \left(\frac{1}{2^{k_2} y} \right) H_{k_2} \frac{1}{2a_0^2} y)
\]

(4.19)

and is also obtained from the cubic algebra. The second corresponds to the energies

\[
E = \frac{n^2 (k_2)}{2a_0^2}
\]

(4.20)

with the corresponding eigenfunctions

\[
(x; y) = \psi (x) \ k_3(y); \quad \psi (x) = a_0^2 \left(\frac{3}{2} \right) \frac{e^{\frac{x^2}{4a_0^2}}}{a_0^2 + x^2}
\]

(4.21)

and \(k_2(y) \) as in Eq. (4.19).

The two states obtained from Eq. (3.8) are given by Eq. (4.20) for \(k_2 = 0, 1 \).

For \(k_3 = 3 \) there are common eigenvalues given by Eq. (4.17) and Eq. (4.20)

and therefore the degeneracy is \(p + 2 \).

Let us consider the case a 2 R. We have the following Hamiltonians

\[
H_1 = b^* b = \frac{P_x^2}{2} + \frac{\sim^2 x^2}{8a^4} + \frac{\sim^2}{(x + a)^2} + \frac{\sim^2}{(x + a)^2} + \frac{3\sim^2}{4a^2}
\]

(4.22)

\[
H_2 = b b^* = \frac{P_x^2}{2} + \frac{\sim^2 x^2}{8a^4} + \frac{5\sim^2}{4a^2}
\]

(4.23)

This case is more complicated because of the singularities on the x-axis for

the Hamiltonian \(H_1 \). We have a regular Hamiltonian connected to a singular one and we have also for \(H_2 \) negative energy states. Such situations have attracted a lot of attention and many articles were devoted to such singular potentials. An important case is the one of Jevicki and Rodrigues [37,38]. The corresponding Hamiltonians are

\[
H = \frac{d^2}{dx^2} + x^2; \quad H_+ = \frac{d^2}{dx^2} + x^2 + \frac{2}{x^2} 1
\]

(4.24)
Factorization of Hamiltonians H_1 and H_2 given by Eq.(4.22) and (4.23) give us an algebraic relation that does not take into account the presence of singularities or boundary conditions. The wavefunctions given in Eq.(4.3) and (4.4) do not necessarily belong to the Hilbert space of square integrable functions. The potential in Eq.(4.22) has impenetrable barriers coming from the singularities. We can consider the superpartner to be the harmonic oscillator with two infinite barriers (at $x = a$) to recover the supersymmetry [39]. In the Ref. 39 a superpartner of the harmonic oscillator with one singularity was considered but the method can be extended to more singularities. The only case that was solved analytically and where the energy levels are equidistant is when the singularity was at the origin. In our case we were not able to solve analytically and we leave for future investigations these numerical calculations that appear interesting from a phenomenological point of view. Singular potentials were also investigated by A.Das and S.A.Pernice [40] by means of the regularization method. M.Znojil [41] has discussed another method that consist in the complexification of the potential. In Section 6 we will discuss the complexification of the irreducible quantum superintegrable Potential 1.

4.2 Potential 4

We apply these results to the next irreducible potential

$$V = \sim^2 \left(\frac{9x^2 + y^2}{8a^4} + \frac{1}{(y - a)^2} + \frac{1}{(y + a)^2} \right)$$

(4.25)

We can also use SUSYQM because the y part is the same as the x part of Potential 1. For the case $a = \imath a_0$; $a_0 \in \mathbb{R}$ we find with energy

$$E = \frac{\sim^2}{2a_0^2} (3k_1 + k_2 + 3)$$

(4.26)

with the corresponding eigenfunctions

$$k_1(x) = \frac{1}{2^{k_1}k_1!} \left(\frac{3}{2a_0^2} \right)^{\frac{1}{2}k_1} x^{\frac{1}{2}k_1} e^{-\imath\frac{3}{2}a_0^2 x} H_{k_1} \left(\frac{3}{2a_0^2} x \right)$$

(4.27)
\[k_{2+1}(y) = \frac{a_0}{(k_2 + 3)} \left(\frac{1}{2a_0^2} \right)^{\frac{1}{2}} e^{\frac{y^2}{2a_0^2}} \left(\frac{y^3 + 3ya_0^2}{a_0^2(y^2 + a_0^2)} \right) \frac{H_{k_2}}{2a_0} H_{k_2 + 1} \]
(4.28)

and we get from the singlet state the energies

\[E = \frac{\omega^2}{2a_0^2} (3k_1) \]
(4.29)

and eigenfunctions

\[(x,y) = \phi(y) k_1(x); \quad \phi(y) = \frac{1}{\sqrt{a_0^2 + y^2}} \quad e^{\frac{y^2}{2a_0^2}} \]
(4.30)

and \(k_1(x) \) as in Eq.(4.27).

4.3 Potential 5

The potential is

\[V = \frac{\omega^2}{2a_0^2} \left[(x^2 + y^2) + \frac{1}{y^2} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2} \right] \]
(4.31)

For the case \(a = \pm a_0; \quad a_0, 2 \in \mathbb{R} \) we have

\[E = \frac{(k_1 + 2k_2 + 5)}{2a_0^2} \omega^2 \]
(4.32)

with the eigenfunctions given by

\[k_1(x) = \frac{a_0}{(k_1 + 3)} \left(\frac{1}{2a_0^2} \right)^{\frac{1}{2}} e^{\frac{x^2}{2a_0^2}} \left(\frac{x^3 + 3xa_0^2}{a_0^2(x^2 + a_0^2)} \right) \frac{H_{k_1}}{2a_0} H_{k_1 + 1} \]
(4.33)

\[k_2(y) = \frac{1}{2a_0^2} \left(\frac{k_2!(\frac{1}{2a_0^2})^2}{(k_2 + \frac{1}{2})^2} \right)^{\frac{1}{2}} e^{\frac{y^2}{2a_0^2}} L_k^1 \left(\frac{y^2}{2a_0^2} \right) \]
(4.34)

where \(L_k(z) \) are Laguerre polynomials

We have also the energies

\[E = \frac{\omega^2 (2k_2 + 2)}{2a_0^2} \]
(4.35)
with the corresponding eigenfunctions

\[(x;y) = k_2(y) \phi(x); \quad \phi(x) = a_0^{\frac{1}{2}} \frac{2}{\bar{\alpha}^2} e^{\frac{x^2}{\bar{\alpha}^2}} \] (4.36)

and \(k_2(y) \) as Eq.(4.34).

4.4 Potential 6

We consider the potential

\[V = \sim^2 \left(\frac{1}{8a_0^2} (x^2 + y^2) + \frac{1}{(y + a)^2} + \frac{1}{(y - a)^2} + \frac{1}{(x + a)^2} + \frac{1}{(x - a)^2} \right) \] (4.37)

For the case \(a = \imath a_0; \quad a_0, 2 \in \mathbb{R} \) we have the energies

\[E = \frac{(k_1 + k_2 + 3)}{2a_0^2} \] (4.38)

with the eigenfunctions given by

\[k_{1+1}(x) = \frac{a_0}{(k_1 + 3)} \left(\frac{1}{2a_0^2} \right)^{\frac{1}{2}} \left(\frac{1}{2k_1 k_1!} \right) e^{\frac{x^2}{4a_0^2}} \left(\frac{x^3 + 3xa_0^2}{a_0^3(x^2 + a_0^2)} \right) H_{k_1} \left(\frac{2k_1}{2a_0} \right) H_{k_1} \] (4.39)

\[k_{2+1}(y) = \frac{a_0}{(k_2 + 3)} \left(\frac{1}{2a_0^2} \right)^{\frac{1}{2}} \left(\frac{1}{2k_2 k_2!} \right) e^{\frac{y^2}{4a_0^2}} \left(\frac{y^3 + 3ya_0^2}{a_0^3(y^2 + a_0^2)} \right) H_{k_2} \left(\frac{2k_2}{2a_0} \right) H_{k_2} \] (4.40)

The singlet state in the \(x \) part of the Hamiltonian gives the energies

\[E = \sim^2 \frac{(k_2)}{2a_0^2} \] (4.41)

with eigenfunctions

\[(x;y) = k_2(y) \phi(x); \quad \phi(x) = a_0^{\frac{1}{2}} \frac{2}{\bar{\alpha}^2} e^{\frac{x^2}{\bar{\alpha}^2}} \] (4.42)
and $k_2(y)$ as Eq. (4.40). We also obtain another kind of solution from the singlet state in the y part. The energies are

$$E = \frac{\sim^2(k_1)}{2a_0^2}$$

(4.43)

with the corresponding eigenfunctions

$$(x; y) = k_1 (x) \phi(y); \quad \phi(y) = \frac{1}{a_0^3} \frac{2}{\sim} \frac{e^{x^2/2a_0^2}}{a_0 + y^2}$$

(4.44)

and $k_1(x)$ as Eq. (4.39).

and a state coming from the singlet state in the two parts with energies

$$E = \frac{3\sim^2}{2a_0^2}$$

(4.45)

with the following expression for the eigenfunctions

$$\phi(x) = \frac{1}{a_0^3} \frac{2}{\sim} \frac{e^{x^2/2a_0^2}}{a_0 + x^2}; \quad \phi(y) = \frac{1}{a_0^3} \frac{2}{\sim} \frac{e^{y^2/2a_0^2}}{a_0 + y^2};$$

(4.46)

5 Generating spectrum algebra

The supersymmetry allows us to find the creation and annihilation operators of the x part of the irreducible Potential 1. They are given by

$$M = b' \gamma b; \quad M' = b' \gamma' b$$

(5.1)

where c and c' are annihilation and creation operators of the superpartner H_2 that is a harmonic oscillator. We have

$$c = \frac{\sim}{2a^2} (x + 2a^2 \frac{d}{dx}); \quad c' = \frac{\sim}{2a^2} (x + 2a^2 \frac{d}{dx})$$

(5.2)

and

$$M = \frac{1}{2} \left(-\frac{d}{dx} x + \sim \left(\frac{1}{x} + \frac{1}{x + a} \right) \right)$$

(5.3)
\(M^y = \frac{1}{2a^2} \left(\frac{d}{dx} x^+ (\frac{1}{x} + \frac{1}{x+a}) \right) \frac{d}{dx} - \frac{1}{2a^2} \left(\frac{d}{dx} x^+ (\frac{1}{x} + \frac{1}{x+a}) \right) \) :

(5.4)

The zero energy ground state given by the Eq.(4.12) is annihilated by the annihilation operator but also by the creation operator.

\(M_0(x) = M^y_0 = 0 \)

(5.5)

The creation and annihilation operator for the \(y \) part \((\mathcal{H}_y)\) of the Potential 1 are

\(L = \frac{\sim d}{2a^2} (y + 2a^2 \frac{d}{dy}) \); \(L^y = \frac{\sim d}{2a^2} (y + 2a^2 \frac{d}{dy}) \) :

(5.6)

We have the commutators

\[[M ; M^y] = \frac{3}{4} \left(\mathcal{H} + \frac{1}{2A} \right)^2 \frac{\sim^2 a^2}{a^2} \left(\mathcal{H} + \frac{1}{2A} \right) \frac{3A^6}{16a^4} ; \; [L ; L^y] = 1 \ : \]

(5.7)

We consider the following operators [16]

\(E_+ = M^y L^y ; \; E = M L ; \; F_+ = (M^y)^2 ; \; F = M^2 ; \; G_+ = (L^y)^2 ; \; G = L^2 ; \)

(5.8)

We add to these operators the Hamiltonian, the integrals of motion \(A, B \) and \(C \) (Eq.(3.1) (3.2) and (3.3)). We have the following quintic algebra that contains 45 relations where the cubic algebra appears as a subalgebra :

\[[H ; A] = 0 ; \; [H ; B] = 0 ; \; [H ; C] = 0 ; \; [H ; E] = \frac{\sim^2 a^2}{a^2} E ; \]

\[[H ; F] = \frac{\sim^2 a^2}{a^2} F ; \; [H ; G] = \frac{\sim^2 a^2}{a^2} G ; \]

\[[A ; B] = C ; \; [A ; C] = \frac{4h^4}{a^4} B ; \; [A ; E] = 0 ; \; [A ; F] = \frac{2\sim^2 a^2}{a^2} F ; \]

\[[A ; G] = \frac{2\sim^2 a^2}{a^2} G ; \; [B ; C] = 2\sim^2 A^3 + 6\sim^2 A^2 H \]

\[+ 8\sim^2 H^2 + 6\sim^4 A^2 + 8\sim^4 A^2 H^2 + 8\sim^4 A^2 + 8\sim^4 A^2 H^2 + 8\sim^4 A^2 + 8\sim^4 A^2 H^2 + 8\sim^4 A^2 ; \]

\[[B ; E] = 2i\sim F + \frac{3i\sim}{2} \left(\mathcal{H} + \frac{1}{2A} \right)^2 G \; \frac{2i\sim^3}{a^2} (\mathcal{H} + \frac{1}{2A}) G \; \frac{3i\sim^5}{8a^5} G ; \]
\[B;E_+ = 2i^{-5}F_+ + \frac{3i^{-5}}{2} (H + \frac{1}{2} A)^2 G_+ + \frac{2i^{-5}}{a^2} (H + \frac{1}{2} A) E_+ + \frac{3i^{-5}}{8a^4} G_+; \]
\[B;F_+ = 3i^{-5} (H + \frac{1}{2} A)^2 E + \frac{7i^{-5}}{a^2} (H + \frac{1}{2} A) E + \frac{11i^{-5}}{4a^4} E; \]
\[B;F_+ = 3i^{-5} (H + \frac{1}{2} A)^2 E_+ + \frac{i^{-5}}{a^2} (H + \frac{1}{2} A) E_+ + \frac{5i^{-5}}{4a^4} E_+; \]
\[B;G_+ = 4i^{-5} E_+; \]
\[B;G_+ = 4i^{-5} E; \]
\[C;E_+ = \frac{4i^{-5}}{a^3} F + \frac{3i^{-5}}{a^2} (H + \frac{1}{2} A)^2 G + \frac{4i^{-5}}{a^4} (H + \frac{1}{2} A) G + \frac{3i^{-5}}{4a^6} G; \]
\[C;E_+ = \frac{4i^{-5}}{a^3} F_+ + \frac{3i^{-5}}{a^2} (H + \frac{1}{2} A)^2 G_+ + \frac{4i^{-5}}{a^4} (H + \frac{1}{2} A) G_+ + \frac{3i^{-5}}{4a^6} G_+; \]
\[C;F_+ = \frac{6i^{-5}}{a^2} (H + \frac{1}{2} A)^2 E + \frac{14i^{-5}}{a^4} (H + \frac{1}{2} A) E + \frac{11i^{-5}}{2a^6} E; \]
\[C;F_+ = \frac{6i^{-5}}{a^2} (H + \frac{1}{2} A)^2 E_+ + \frac{2i^{-5}}{a^4} (H + \frac{1}{2} A) E_+ + \frac{5i^{-5}}{2a^6} E_+; \]
\[C;G_+ = \frac{8i^{-5}}{a^2} E; \]
\[E;F_+ = 0; \]
\[E;G_+ = 0; \]
\[E;E_+ = \frac{a^{2-2}}{16} A^3 + \frac{3a^{2-2}}{4} A H^2 + a^{2-2} H^3 + \frac{a^4}{8} A^2; \]
\[E;F_+ = \frac{a^{-4}}{2} A H^2 + \frac{a^4}{8a^2} H^2 + \frac{a^{-6}}{16a^2} A^2 + \frac{a^6}{4a^4} H^2 + \frac{a^{-6}}{8a^4}; \]
\[E_+;F_+ = \frac{3i^{2-2}}{16} C (H + \frac{1}{2} A)^2 + \frac{3i^{-3}}{8} B (H + \frac{1}{2} A)^2 + \frac{7i^{-3}}{16} C (H + \frac{1}{2} A) \]
\[\frac{7i^{-5}}{8a^2} B (H + \frac{1}{2} A^2) + \frac{11i^{-5}}{64a^2} C + \frac{11i^{-7}}{32a^4} B; \]
\[E_+;F_+ = \frac{3i^{2-2}}{16} C (H + \frac{1}{2} A)^2 + \frac{3i^{-3}}{8} B (H + \frac{1}{2} A^2) + \frac{i^{-3}}{16} C (H + \frac{1}{2} A) \]
\[\frac{i^{-5}}{8a^2} B (H + \frac{1}{2} A^2) + \frac{5i^{-5}}{64a^2} C + \frac{5i^{-7}}{32a^4} B; \]
\[E_+;G_+ = \frac{i^{2-2}}{4} C + \frac{i^{-3}}{2} B; \]
\[E_+;G_+ = \frac{i^{2-2}}{4} C + \frac{i^{-3}}{2} B; \]
\[F;F_+ = \frac{3a^{2-2}}{4} (H + \frac{1}{2} A)^5 + \frac{5a^4}{2} (H + \frac{1}{2} A^4) + \frac{25a^6}{8a^2} (H + \frac{1}{2} A)^3 \]
\[25 \]

\[\frac{5\gamma^8}{4a^4} (H + \frac{1}{2a})^2 + \frac{53\gamma^{10}}{64a^6} (H + \frac{1}{2a}) + \frac{15\gamma^{12}}{32a^8}; \]

This polynomial algebra is the spectrum-generating algebra.

6 Complexification of superintegrable potentials

In quantum mechanics textbooks the Hermiticity of the Hamiltonian is often presented as a condition for the energy spectrum to be real. There exist other requirements that can be chosen without losing essential features of quantum mechanics. One requirement that appears more physical is the space-time reflection symmetry i.e., the Hamiltonian is invariant under the PT transformation [42], i.e. the simultaneous reflections \(P : x! -x, p! -p \) and \(i! -i \). For potentials invariant under such transformations the energy spectrum can also consist of complex-conjugate pairs of eigenvalues. The PT-symmetry is thus said to be broken. The notion of Pseudo-Hermiticity was introduced by A.Mostafazadeh [43]. He shows also that every Hamiltonian with a real spectrum is pseudo-Hermitian and that all PT-symmetric Hamiltonians studied belong to the class of pseudo-Hermitian Hamiltonian. The replacement of the condition that the Hamiltonian is Hermitian by a weaker condition allows us to study many new kinds of Hamiltonians that would have been excluded and from a phenomenological point of view may describe physical phenomena. The case \(H = p^2 + x^2 (ix) \) was studied in detail by C.Bender in 1998 [42].

Complexification has been proposed as a natural way to regularize singular potentials [41]. It consists in a transformation of the type \(x！ -x \), \(i！ -i \) applied to a potential. The harmonic oscillator and the Smorodinsky-Winternitz potential are PT-symmetric Hamiltonian after a complexification [41].

We will consider the complexification of the Hamiltonian

\[H = H_x + H_y = \frac{p_x^2}{2} + \frac{p_y^2}{2} + \gamma^2 \left(\frac{x i \hat{j} + (y i \hat{j})}{8a^3} + \frac{1}{(x i a \hat{j})} + \frac{1}{(x i + a \hat{j})} \right); \]

(6.1)
The complex harmonic oscillator Hamiltonian H_y is known to be PT-symmetric. It’s energy spectrum is real, namely:

$$E = \frac{\omega^2}{2a^2} (m + \frac{1}{2}) :$$ (6.2)

The eigenfunctions are

$$m \langle y \rangle = N_m e^{\frac{(y - i)^2}{4a^2}} H_m (\frac{y - i}{2a})$$ (6.3)

(here and below N_m is a normalization constant).

To get the energy spectrum and the eigenfunctions of H_x we complexify the operators given by the Eq.(4.8) and (4.9). We get two PT-symmetric Hamiltonians. This transformation allows to regularize H_x when $a \geq R$. The (real) energy levels and eigenfunctions of the Hamiltonian H_2 are known.

$$H_1 = b^0 b = \frac{p_x^2}{2} + \frac{\omega^2 (x - i \dot{y})}{8a^4} + \frac{\omega^2 (x i \dot{y})}{(x i - a \dot{y})} + \frac{\omega^2 (y i - a \dot{y})}{x i + a \dot{y}}$$ (6.4)

$$H_2 = b^0 b = \frac{p_x^2}{2} + \frac{\omega^2 (x i \dot{y})}{8a^4} + \frac{5\omega^2}{4a^2}$$ (6.5)

The Darboux transformation is still valid for non-Hermitian Hamiltonians but supersymmetry is replaced by pseudo-supersymmetry [44]. We have $b^0 g_r = 0$ that correspond to the zero energy state of H_2

$$g_r = N g_r e^{\frac{(-ix - i\dot{y})}{2a^2}} (a^2 (x i \dot{y}))$$ (6.6)

We can obtain the eigenfunction of H_1 by applying b^0 on other state of H_2 given in terms of Hermite polynomials. We get

$$n = N n e^{\frac{(-ix - i\dot{y})^2}{4a^2}} (x i \dot{y}) H_{n+3} (\frac{x i \dot{y}}{2a})$$ (6.7)

$$\frac{2(n + 3)}{2a} H_{n+2} (\frac{x i \dot{y}}{2a})$$

Let us give the explicit expression for the ground state and the first excited
The probabilistic interpretation of the wave function of non-Hermitian quantum systems [45] is given by a pseudo-norm that is not positive definite.

\[
Z_1 = \int_{1} \psi^\dagger \psi \, dx = 1
\]

(6.10)

The corresponding energy spectrum is given by

\[
E_n = \frac{(n + 1)^2}{2a^2}
\]

(6.11)

We obtain for the complexified superintegrable potential the energy spectrum

\[
E = \frac{(n + m + 3)^2}{2a^2} = \frac{(p + 3)^2}{2a^2}
\]

(6.12)

with eigenfunction given by Eq.(6.3) and (6.7).

7 Conclusion

The main result of this article is that we have constructed a Fock type representation for the most general cubic algebra generated by a second order and a third order order integral of motion by the means of parafermionic algebras. We present in detail the cubic algebra for all irreducible quantum superintegrable potentials, the unitary representations and the corresponding energy spectra. All cases with finite cubic algebras belong to Case 2 of Section 2. Thus they correspond to \(\beta = 0 \) in Eq.(2.5) and the structure function is given by Eq. (2.22). In two cases of irreducible potentials the integrals of motion do not close in a finite dimensional cubic
algebra. It could be interesting to see what kind algebraic structure is
involved in these cases. Comparing with a earlier article [10] we can see
from this article how the cubic Poisson algebra is deformed into a cubic
algebra in quantum mechanics.
The method that we use to find energy spectra with the cubic algebra is
independant of the choice of coordinate systems. We could apply these
results in the future to systems with a third order integral that are
separable in polar, elliptic or parabolic coordinates. The method is also
independant of the metric and could be applied to superintegrable systems
in other spaces. The methods developed in this article could be applied to
other physical systems. One such system is a Schrödinger equation with a
position dependent mass [32], others arise in the context of supersymmetric
quantum mechanics.
The Potential 3 is also a special case of the following potential [46,47]
\[
V = \frac{1}{2} (k^2 x^2 + m^2 y^2) + \frac{1}{x^2} + \frac{2}{y^2} \tag{7.1}
\]
In general this system has integrals of motion of order greater than 3 and
the more complicated polynomial algebra should be studied.
All the potentials considered in this article can also be viewed as the sum of
two one-dimensional potentials \(H = H_x + H_y \). We have investigated each of
these unidimensional potentials in terms of supersymmetric quantum
mechanics. The superintegrability of these two-dimensional potentials seems
to be related to the supersymmetry property. Using the supersymmetry we
have obtained the energy spectra and the eigenfunctions. We have
compared the results with those obtained using the cubic algebras. One
particular feature is the appearance of singlet states. For the Potential 1
there is an additional degeneracy that is not obtained by the algebraic
method using the cubic algebra.
It was shown that many well known potentials such Dirac delta and
Poschl-Teller display a hidden SUSY where the reflection (parity) operator
play the role of the grading operator [48]. Potentials with elliptic functions
can also be discussed from this point of view [49]. Potentials with elliptic
functions appear in Ref. 9. These cases are not truly superintegrable since
there exists a syzygy between the Hamiltonian, second order integral and
the third order integral of motion but it has been shown that the third
order integral can be used to obtain the eigenfunctions and the spectrum
We leave quantum potentials involving Painlevé transcendents for a future article.

Superintegrable potentials and their integrals of motion can be complexified and investigated from the point of view of PT-symmetric quantum mechanics. The complexification appears also as a natural way to regularize the singular potentials.

It’s would be interesting to investigate the relation of pseudo-Hermitian Hamiltonians and supersymmetry with superintegrable systems.

Acknowledgments The research of I.M. is supported by a doctoral research scholarship from FQRNT of Quebec. The author thanks P.Winternitz for very helpful comments and discussions. This article was written in part while he was attending the conference Superintegrable Systems in Classical and Quantum Mechanics-Prague 2008 at the Czech Technical University of Prague. He thanks the Doppler Institute and the Department of Physics of the Faculty of Nuclear Sciences and Physical Engineering for hospitality and the research plan MSM6840770039 of the Ministry of Education of the Czech Republic for financial support during the conference.

8 Appendix

Structure function for the case \(\epsilon = 0 \)

\[
(A1) \quad (N) = 384^{10}N^{10} + 1920^{10}N^{9} + \left(1536^{8} + 1024^{9} + 3040^{10} \right)N^{8} + (6144^{8} + 4096^{9} + 640^{10} + 6144^{8})N^{7} + (2304^{2}6 + 3072^{7})N^{6} + (6912^{2}6 + 9216^{7} + 9216^{8} + 1536^{8} + 1024^{9} + 1712^{10} + 9216^{6})N^{5} + (1536^{3}4 + 3072^{2}5 + 6144^{6} + 6336^{2}6)N^{4} + (8448^{7} + 8448^{8} + 3264^{8} + 2176^{9} + 428^{10})N^{3} + (4608^{2}4 + 4608^{2}6 + 672^{8} + 9216^{5} + 8448^{7})N^{2} + (3072^{6}2 + 6144^{6} + 12288^{7})N^{4} + (3072^{3}4 + 6144^{2}5)N^{3} + (12288^{6}2 + 1152^{2}6 + 1536^{7} + 1536^{8} + 1920^{8} + 1280^{9} + 616^{10} + 12288^{2}4 + 2)}
\]
\[+ \frac{1536}{2} + 2688 + 24576 + 3072^2 + 6144 + 24576 + 6 + 24576 + 7 \binom{N}{3}
\]
\[+ \binom{384}{2} + \frac{1024}{3} + \frac{3}{3} + 3072 + 4 + 1792 + 5 + 3584 + 2 + 5 + 9216 + 6 + 784 + 2 + 6 + 1728 + 8\]
\[+ \frac{1728}{7} + \frac{96}{8} + \frac{64}{9} + \frac{119}{9} \cdot \frac{10}{2} + 12288 + \frac{3072}{3} + 2 + 6 + 9612 + 2 + 4 + 2 + 1728
\]
\[+ \frac{624}{2} + 9216 + 13824 + 5 + 1728 + 7 + 6144 + 4 + 2 + 1536 + 6 + 2 \]
\[12288 + 4 + 9216 + 6 + 12288 + 5 + 18432 + 7 \binom{N}{2} + \binom{384}{2}
\]
\[+ 1024 + \frac{3}{3} + 3072 + 2 + 4 + 256 + 3 + 4 + 512 + 2 + 5 + 3072 + 6 + 208 + 2 + 6
\]
\[960 + \frac{7}{7} \cdot 960 + \frac{8}{8} + 288 + 8 + \frac{192}{9} + \frac{129}{2} \cdot \frac{10}{2} + 12288 + \frac{6}{K} + 3072 + 3 + 2 + 960 + 6 + 2
\]
\[288 + 2 + 9216 + 2 + 3 + 960 + 7 + 6144 + 4 + 2 + 1536 + 6 + 2 + 12288 + 4
\]
\[+ 6144 + 6 + 12288 + 5 + 12288 + 5 + 6144 + 7 \binom{N}{1} + \binom{96}{4} = 256 + 3 + 3 + 768 + 2 + 4
\]
\[+ 32 + \frac{3}{4} + 64 + 2 + 5 + 384 + 6 + 20 + 2 + 6 + 144 + 7 + 144 + 8 + 54 + 8 + 36 + 9
\]
\[\frac{117}{8} \cdot \frac{10}{10} \cdot 3072 + 6 \cdot K + 768 + 4 + 2 + 768 + 3 + 2 + 2 + 480 + 2 + 4 + 2 + 144 + 6 + 87 + 8 + 2
\]
\[3072 + \frac{3}{3} + 2304 + 2 + 3 + 960 + 5 + 144 + 7 + 3072 + 2 + 2 + 2
\]
\[1536 + \frac{4}{4} + 576 + 6 + 2 + 6144 + 2 + 2 + 3072 + 4 + 2688 + 6
\]
\[12288 + 3 + 3072 + 5 + 12288 + 4 + 2 + 3072 + 5 + 768 + 7
\]

9 References