Baryon Number, Strangeness and Electric Charge Fluctuations in QCD at High Temperature

Physics Department, Columbia University,
New York, NY 10027, USA

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11790, USA

Physics Department, Brookhaven National Laboratory,
Upton, NY 11973, USA

Fakultat fur Physik, Universitat Bielefeld,
D-33615 Bielefeld, Germany

REKE-BNL Research Center,
Brookhaven National Laboratory, Upton, NY 11973, USA

(Dated: May 26, 2013)

We analyze baryon number, strangeness and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4-action) at two values of the lattice cut-off with a non-physical up and down quark mass and a physical value for the strange quark mass. We compare these results with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are quite well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however show deviations from a resonance gas in the vicinity of the transition temperature.

PACS numbers: 11.15.Ha, 11.10.-x, 12.38.Gc, 12.38.Mh

I. INTRODUCTION

Fluctuations of conserved charges, like baryon number, electric charge and strangeness, are generally considered to be sensitive indicators for the structure of (subsets of) a thermodynamic produced in heavy ion collisions. In fact, if at non-vanishing baryon number a critical point exists in the QCD phase diagram, this will be signaled by divergent fluctuations of e.g. the baryon number density.

Under conditions met in current experiments at RHIC as well as in the upcoming heavy ion experiments at the LHC the net baryon number is small and QCD at vanishing chemical potential provides a good approximation. In this region the transition from the low temperature hadronic to the high temperature quark-gluon plasma regime is continuous and fluctuations are not expected to lead to any singular behavior. Nonetheless, they provide direct insight into the structure of the thermodynamic, the relevant degrees of freedom and their correlations. Furthermore, enhanced fluctuations provide hints for nearby singularities in the QCD phase diagram related to the chiral limit at vanishing net baryon number as well as for a possible critical point at physical values of the quark mass at non-vanishing net baryon number density.

Away from criticality, i.e. under conditions met at RHIC and LHC, indications for the existence of such critical points can only show up in higher order derivatives of the QCD partition function with respect to temperature or chemical potentials. Through the analysis of fluctuations of conserved charges as well as their higher order cumulants and correlations we thus gain insight into the relevant degrees of freedom of the system under consideration and at the same time gather information on possible nearby singularities in the QCD phase diagram.

From lattice calculations at vanishing chemical potential it is well known that baryon number and strangeness susceptibilities are sensitive indicators for the transition from the low temperature hadronic regime to the high temperature quark-gluon plasma. Also in the case of a continuous crossover transition, as is the case for QCD with physical quark masses, the susceptibilities rise rapidly in the transition region. This shows that on the scale of the temperature the quasiparticles carrying the quantum numbers under consideration (B; S) are heavy at low and light at high temperature.

In calculations with two light, dynamical quark degrees of freedom (2-flavor QCD) it has also been shown that baryon number and electric charge fluctuations increase and that their fourth moments start to show pro-
nounced peaks in the transition region from low to high
and s at various temperatures. In fact, higher order cumulants of e.g.
baryon number fluctuations become increasingly sensitive to the singular behavior in the vicinity of the chiral phase transition at zero mass and vanishing chemical potential. Starting from the 6th order cumulant baryon number fluctuations will diverge in the chiral limit and are expected to re ect critical behavior in accordance with the $O(4)$ symmetric universality of the chiral transition.

It also has been noted that the analysis of correlations between different quantum numbers or any channels will provide insight into the multi-particle structure and the relevant degrees of freedom in QCD at high temperature [14]. In lattice calculations this has been analyzed in quenched [14] and 2-avor QCD [1], with lattice calculations for the QCD equation of state performed with dynamical light and strange quark degrees of freedom [13-15]. Recent lattice calculations now also allow to perform a systematic analysis of these correlations among different quantum number channels including effects arising from the treatment of strange quarks as dynamical degrees of freedom [16,17].

We present here results from lattice calculations of baryon number, electric charge and strangeness fluctuations in QCD with dynamical light and strange quark degrees of freedom 1. The results are based on calculations with an improved staggered fermion action (p-action) that strongly reduces lattice cutoff effects in bulk thermodynamics at high temperature. The values of the quark mass used in this calculation are somewhat physical; the strange quark mass, m_s, is used to its physical value while the light up and down quark masses are taken to be degenerate and equal to $m_s=10$. This is about twice as large as the average up and down quark masses realized in nature. We obtained results from calculations performed with two different values of the lattice cutoff, corresponding to lattices with temporal extent $N = 4$ and 6. This allows us to judge the magnitude of systematic effects arising from discretization errors in our improved action calculations. The spatial volume V has been chosen to be $V^{1-3}=4$, which insures that nine volume elements are small.

II. FLUCTUATIONS AND CORRELATIONS; COMPUTATIONAL SETUP

At vanishing baryon number (B), electric charge (Q) and strangeness (S), fluctuations of these quantities can be obtained by starting from the QCD partition function with non-zero light and strange quark chemical potentials, $\mu_B = B$, $\mu_Q = Q$, $\mu_S = S$. The quark chemical potentials can be expressed in terms of chemical potentials for baryon number (μ_B), strangeness (μ_S) and electric charge (μ_Q),

$$u = \frac{1}{3} B + \frac{2}{3} Q;$$

$$d = \frac{1}{3} B - \frac{1}{3} Q;$$

$$s = \frac{1}{3} B + \frac{1}{3} Q.$$ (1)

Moments of charge fluctuations, $N_B N_Q N_S$, with $X = B, Q, S$ and their correlations are then obtained from derivatives of the logarithm of the QCD partition function, i.e. the pressure,

$$\frac{1}{V^3} \frac{\partial}{\partial T} \ln Z(N_B; B; S; Q) = 0,$$

(2)

evaluated at $\mu_B = 0$,

$$\frac{1}{V^3} \frac{\partial}{\partial T} \ln Z(N_B; B; S; Q)$$

(3)

with $\mu_B = 0$. While the first derivatives, i.e. baryon number, electric charge and strangeness densities, vanish for $\mu_B = 0$, their moments and correlation functions with $i + j + k$ even are non-zero. The basic quantities we will analyze here are the quadratic and quartic charge fluctuations 2,

$$x = \frac{1}{V^3} \ln N_B N_Q N_S$$

and the correlations among two conserved charges,

$$x^{ij} = \frac{1}{V^3} \ln N_B N_Q N_S$$

(4)

and the correlations among two conserved charges,

$$x^{ij} = \frac{1}{V^3} \ln N_B N_Q N_S$$

(5)

These quantities have been evaluated in the temperature interval $0.8 < T < 2.5$ on lattices of size 16^3, 24^3, respectively, on the 16^3 lattice we also calculated 6th order expansion coefficients,

$$x^{ij} = \frac{1}{V^3} \ln N_B N_Q N_S$$

(6)

The gauge configurations, that have been used to evaluate the above observables, had been generated previously in calculations of the QCD equation of state [14] and the transition temperature [15]. In these calculations the strange quark mass has been tuned close to its physical value and the light quark masses have been chosen to be one tenth of the strange quark mass. This corresponds to a slightly tunable quark mass.

1 Preliminary results of this calculation had been presented at Lattice 2007 and 2008 [13].

2 As all expectation values have been evaluated at vanishing chemical potential, we have $N_B = \mu_B$.

to a line of constant physics on which the kaon mass is close to its physical value and the lightest pseudo-scalar mass is about 220 MeV, i.e., the light quark mass considered in these calculations are about a factor 2 larger than their physical values. Further details on the improved gauge and staggered fermion actions used in these calculations are given in [14,15]. The number of gauge configurations used varies from about 300 at high to 1500 at low temperatures. Subsequent configurations are separated by 10 to 60 trajectories. The various operators contributing to \(g_{ijk}^3 \) have been calculated using unbiased random estimators [15]. While at high temperature already 50 random sources per configuration were sufficient to get reliable estimates for these observables, we used up to 480 random sources below the transition temperature. Autocorrelations of the operators contributing to the quadratic and quartic fluctuations turned out to be about 100 trajectories close to \(T_c \) and to drop quickly away from it. Errors on these fluctuations have been determined by means of the jack-knife procedure. Some details on our data sample are given in Table I. In the following we will present our results using a physical lattice temperature scale in MeV. As explained in detail in Ref. [14], this scale has been obtained through detailed studies of the zero temperature static quark potential along the line of constant physics used also for the finite temperature calculations. This implies a high sensitivity of the temperature in units of the lattice scale \(T_0 \) at which the number of gauge field configurations is separated and the number of random vectors used for the evaluation of traces.

Table I: The data samples analyzed on lattices of time extent \(N = 4 \) and 6, respectively. The columns give from left to right the time extent of the data samples, the time extent of the data samples, and the number of random vectors used for the evaluation of traces.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td>1013</td>
<td>20</td>
<td>480</td>
</tr>
<tr>
<td>186</td>
<td>1550</td>
<td>30</td>
<td>480</td>
</tr>
<tr>
<td>191</td>
<td>1550</td>
<td>30</td>
<td>480</td>
</tr>
<tr>
<td>195</td>
<td>1550</td>
<td>30</td>
<td>384</td>
</tr>
<tr>
<td>202</td>
<td>1550</td>
<td>30</td>
<td>384</td>
</tr>
<tr>
<td>205</td>
<td>475</td>
<td>60</td>
<td>384</td>
</tr>
<tr>
<td>219</td>
<td>264</td>
<td>60</td>
<td>384</td>
</tr>
<tr>
<td>218</td>
<td>950</td>
<td>30</td>
<td>384</td>
</tr>
<tr>
<td>254</td>
<td>199</td>
<td>60</td>
<td>192</td>
</tr>
<tr>
<td>305</td>
<td>302</td>
<td>60</td>
<td>96</td>
</tr>
<tr>
<td>444</td>
<td>618</td>
<td>10</td>
<td>48</td>
</tr>
</tbody>
</table>

In calculations with the improved staggered action the transition temperature has been determined on lattices with one physical extent \(N = 4 \) and 6 for the values of quark masses used here [14,15]. This gave \(T_c = 204(2) \) MeV for \(N = 4 \) and 196(3) MeV for \(N = 6 \), respectively. The temperature values given in Tables I-III have been obtained from a fit to \(T_0 \). The fit function is given in Eq. 22 of Ref. [14]. We therefore do not quote errors on individual temperature values in the table. As discussed in Ref. [14], these errors are generally below 1%.

III. FLUCTUATIONS OF LIGHT AND STRANGE QUARK NUMBERS

Before entering a discussion of fluctuations of \(B, Q \), and \(S \) it is instructive to look into fluctuations of the partonic degrees of freedom, the light and strange quarks. It has been noticed before that close to the transition temperature fluctuations of the heavier strange quarks are suppressed relative to those of the light or odd quarks [15]. At higher temperatures, however, they approach each other. In these earlier calculations, however, the strange quark sector has not been incorporated as a dynamical degree of freedom in the numerical calculations. Nonetheless, the basic observation holds true in QCD calculations with dynamical strange quarks.

The difference in the behavior of light and strange quark fluctuations is apparent from Fig. 1, where we show the quadratic fluctuations of light and strange quark numbers (upper gure) and the ratio of these fluctuations (lower gure). The quadratic fluctuations rapidly approach the Stefan-Boltzmann ann, ideal gas value, \(\frac{S_0}{T^4} = 1 \), and decrease strongly in the transition region. The calculations on lattices with one physical extent \(N = 4 \) and 6 show some cut-off dependence, which is larger for light quark fluctuations than for strange quarks. Nonetheless, it is apparent that the approach to the high temperature limit is slower for the heavier strange quarks than for the light up or down quarks. This is highlighted in the lower part of Fig. 1 where we show the ratio of strange to light quark fluctuations. This ratio shows less cut-off depend-
dence than $\frac{u}{2}$ and $\frac{s}{2}$ separately. In fact, the difference between the $N = 4$ and 6 results for $\frac{s}{2} = \frac{u}{2}$ is well understood in terms of the small shift (cut-off dependence) of the transition temperature determined for these two different lattice sizes.

We find that $\frac{s}{2} = \frac{u}{2}$ is about 0.5 at T_c and approaches unity at about $1.7T_c$. In both cases we show a band indicating the result for fluctuations in a non-interacting, massive Fermi gas. As can be seen this can explain the smaller fluctuations of strange quarks relative to light quarks only at temperatures larger than about 300 MeV, i.e. for $T > 1.5T_c$. In quenched QCD and QCD with $N_f = 3$ massless quarks favors the approach to the high temperature limit it has also been analyzed within HTL-resummed perturbation theory \cite{11} as well as in a straightforward perturbative calculation performed up to $O(g^6)$ \cite{12}. In both cases the results resemble closely properties of a Fermi gas with a temperature dependent mass term. Both approaches, however, use additional phenomenological input to either resum next-to-leading-order corrections to the HTL mass or the unknown scale for the $O(g^6)$ correction. The lattice results presented in Fig. 1 overshoot the HTL result by about 5%. This is of similar magnitude as the cut-off dependence seen in the current lattice results when comparing the $N = 4$ and 6 data in the temperature interval $15 < T/T_0 < 2$. In view of the large change between the leading and the next to leading order HTL calculations as well as the systematicatics of the cut-off dependence seen in the lattice results, this seems to be a reasonably good agreement.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
T/MeV & $\frac{u}{2}$ & $\frac{s}{2}$ & $\frac{u}{2}$ & $\frac{s}{2}$ & $\frac{s}{2}$ \\
\hline
173.8 & 0.2077(77) & 0.1167(35) & 0.803(210) & 0.244(18) & \\
179.6 & 0.2769(85) & 0.1643(32) & 0.915(225) & 0.310(36) & \\
185.6 & 0.3950(81) & 0.2341(45) & 1.248(122) & 0.563(40) & \\
195.0 & 0.6011(16) & 0.3743(93) & 1.786(196) & 0.963(112) & \\
201.3 & 0.7556(80) & 0.5027(58) & 1.001(94) & 0.243(49) & \\
204.6 & 0.8093(86) & 0.5630(53) & 0.935(80) & 0.816(48) & \\
211.1 & 0.8714(65) & 0.6483(49) & 0.809(87) & 0.879(66) & \\
224.3 & 0.9313(61) & 0.7219(62) & 0.667(75) & 0.900(63) & \\
237.7 & 0.9695(33) & 0.8319(39) & 0.571(56) & 0.731(43) & \\
278.4 & 0.9975(48) & 0.9439(21) & 0.576(36) & 0.591(32) & \\
362.9 & 1.0181(35) & 1.0309(21) & 0.543(22) & 0.549(11) & \\
415.8 & 1.0163(18) & 1.0044(30) & 0.541(12) & 0.563(25) & \\
\hline
\end{tabular}
\caption{The data on quadratic and quartic fluctuations of light (u; d) and strange (s) quarks obtained from calculations on 16^3 4 (upper table) and 24^3 6 (lower table) lattices, respectively.}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{The quadratic fluctuations of light and strange quark number versus temperature (upper curve) and the ratio of s and u quark fluctuations on lattices of size 16^3 4 and 24^3 6, respectively. The solid lines show results for an ideal Fermi gas with mass $m = 100$ MeV and 200 MeV, respectively (top to bottom). In the lower curve we also show partially quenched results obtained with an improved staggered fermion on 16^3 4 lattices \cite{12}. These results have been given in Ref. \cite{11} as a function of T/T_c. This scale is shown on the upper x-axis in the lower part of the figure. We have used the mean value of the transition temperature on the $N = 4$ and 6 lattices, i.e. $T_0 = 200$ MeV, to compare with calculations performed with the p4-action.}
\end{figure}
towards smaller temperatures, visible for the data relative to the transition temperature obtaining the location of cusps in the chiral susceptibility. The generic form of this temperature dependence, a smooth crossover for quadratic fluctuations and a peak in quartic fluctuations, is in fact expected to occur in the vicinity of the chiral phase transition of QCD. At vanishing chemical potentials and vanishing quark masses the singular behavior of fluctuation observables like, e.g., the baryon number cumulants, is expected to be controlled by the singular part of the free energy that has the same universal structure as that of a three dimensional O(4) spin model. 4

4 A chiral symmetry is explicitly broken in numerical calculations with staggered fermions, the relevant symmetry group is, in fact, expected to be O(2).

<table>
<thead>
<tr>
<th>T</th>
<th>M eV</th>
<th>T_n</th>
<th>T_C</th>
<th>2 n</th>
<th>2 n</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.0</td>
<td>0.0301(9)</td>
<td>0.1229(8)</td>
<td>0.028(12)</td>
<td>0.189(5)</td>
<td></td>
</tr>
<tr>
<td>186.4</td>
<td>0.0831(25)</td>
<td>0.2433(17)</td>
<td>0.083(16)</td>
<td>0.415(17)</td>
<td></td>
</tr>
<tr>
<td>190.8</td>
<td>0.1061(19)</td>
<td>0.2903(29)</td>
<td>0.137(18)</td>
<td>0.521(26)</td>
<td></td>
</tr>
<tr>
<td>195.4</td>
<td>0.1328(32)</td>
<td>0.3412(43)</td>
<td>0.193(15)</td>
<td>0.682(30)</td>
<td></td>
</tr>
<tr>
<td>202.4</td>
<td>0.1931(17)</td>
<td>0.4601(35)</td>
<td>0.193(36)</td>
<td>0.744(35)</td>
<td></td>
</tr>
<tr>
<td>204.8</td>
<td>0.2133(33)</td>
<td>0.4961(39)</td>
<td>0.111(25)</td>
<td>0.599(41)</td>
<td></td>
</tr>
<tr>
<td>209.6</td>
<td>0.2694(23)</td>
<td>0.6154(38)</td>
<td>0.072(14)</td>
<td>0.365(43)</td>
<td></td>
</tr>
<tr>
<td>218.2</td>
<td>0.2978(5)</td>
<td>0.6480(18)</td>
<td>0.060(5)</td>
<td>0.259(11)</td>
<td></td>
</tr>
<tr>
<td>253.7</td>
<td>0.3313(18)</td>
<td>0.6918(12)</td>
<td>0.034(6)</td>
<td>0.159(6)</td>
<td></td>
</tr>
<tr>
<td>305.2</td>
<td>0.3398(10)</td>
<td>0.6992(11)</td>
<td>0.023(5)</td>
<td>0.143(3)</td>
<td></td>
</tr>
<tr>
<td>444.4</td>
<td>0.3343(3)</td>
<td>0.6760(5)</td>
<td>0.019(2)</td>
<td>0.127(3)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE III: The data on quadratic and quartic fluctuations obtained from calculations on 16^4 (upper table) and 24^4 6 (lower table) lattices, respectively.

This singular part of the free energy, f_χ, is controlled by a reduced “temperature” that is a function of temperature as well as the quark chemical potentials $\chi = \frac{Q^2}{2}$.

The latter add in even combinations to the reduced temperature in order to respect charge symmetry at $\chi = 0$. Baryon number cumulants are thus expected to scale like,

$$B_n \rightarrow \frac{T}{T_c}^{2n} \chi$$

with $\chi = \frac{Q^2}{2}$ denoting the critical exponents characterizing the non-analytic structure of the specific heat in 3-d, O(4) [21] symmetric spin models. Starting at 6th order the baryon number cumulant thus diverges at T_c in the chiral limit. It has been argued in [13] at this singularity will also show up in cumulants of the electric charge.

On lattices with temporal extent $N = 4$ and 6 and for the values of quark masses used here the transition temperature is close to 200 M eV. From Fig. 2 we thus
conclude that at tem peratures of about \(1.5 T_c \) and larger, quadratic and quartic cumulants of the charges, for which the pressure is given by

\[
\frac{\rho^{x,B}}{T^4} = \frac{X}{f=\pm}\left(\frac{7}{60} + \frac{1}{f} + \frac{1}{2} \frac{\chi^2}{T} + \frac{1}{4} \frac{\chi^4}{T^4}\right); \tag{8}
\]

Using the relations given in Eq. (1), one easily derives the corresponding ideal gas values for quadratic and quartic fluctuations of conserved charges. These are summarized in Table IV.

The upper part of Fig. 2 shows that over a wide tem perature range quadratic fluctuations of strangeness are suppressed relative to those of baryon number and charge, which receive contributions also from fluctuations of the light \(u \) and \(d \) quarks. Only for tem peratures \(T>1.7T_c \) do the fluctuations of all three charges agree. This resembles the pattern of the relative strength of light and strange quark fluctuations seen in Fig. 1.

On the coarser \(N=4 \) lattices we also have calculated the 6th order cumulants, \(\frac{\chi}{n} \), which vanish in the infinite tem perature, ideal gas limit as well as in leading order perturbation theory [21]. For strangeness and charge cumulants we show results in Fig. 3. Note that these 6th order cumulants change sign at \(T’\approx T_c, \) below \(T_c \) they rise rapidly and reach a maximum at \(T’\approx 0.95T_c, \) they approach zero from below and almost vanish for \(T>1.7T_c. \)

V. RATIO OF CUMULANTS

At low tem peratures hadrons are the relevant degrees of freedom. The hadron resonance gas (HRG) model has been shown to provide a good description of the conditions at freeze-out [26, 27]. Also, the light mesons are successfully described in the framework of a HRG model [28]. Nonetheless, in a HRG model cumulants are nonmonotonically rising functions of the tem perature, while the 6th order cumulants change sign at \(T_c. \) This indicates that a straightforward HRG model has to break down in the vicinity of the transition tem perature.

The partition function of the hadron resonance gas can be split into meson and baryonic contributions,

\[
\ln Z_{m}^{HRG} = \frac{1}{VT^2} \int_{m} dZ \ln z_{m}^{HRG}(T; \chi^{2}; \chi^{4}; \chi^{6}) \tag{9}
\]

where

\[
\ln z_{m}^{HRG} = \frac{V}{Z_{m}} \int_{0}^{\chi_{m}} dkk^{2} \ln(1 + e^{-\chi/kT}); \tag{10}
\]
FIG. 4: The ratio of fourth and second order cumulants of baryon number (top), strangeness (middle) and electric charge (bottom) fluctuations. In the latter case we show curves for a HRG model calculated with physical pion masses (upper curve), pions of mass 220 MeV (middle) and in middle heavy pions (lower curve).

with energies \(E_i = \frac{p_i^2}{k_i^2 + m_i^2} \), degeneracy factors \(d_i \) and fugacities

\[
z_i = \exp \left(B_{iB} + Q_{iQ} + S_{iS} \right) T \right) \quad ; \quad (11)
\]

The HRG model has been compared to lattice results previously [22]. In these earlier comparisons with lattice calculations, which had to be performed with rather large quark masses and without dynamical strange quarks, the masses contributing to the HRG model were adjusted and strange contributions were suppressed. Here we no longer follow this strategy but compare directly the lattice results with an HRG model that is based on the experimentally observed spectrum. We use the same HRG model as it also is used in heavy ion phenomenology and the analysis of freeze-out conditions [23,22]. This ansatz for the HRG includes all meson and baryon masses from the particle data book with masses \(m \geq 2.5 \text{ GeV} \) that are characterized at least as '4 star states'.

Also on the lattice with ten temporal extent \(N = 6 \) calculations at low temperature are still performed on quite coarse lattices. We thus cannot expect to reproduce details of the hadron spectrum well under these conditions. Nevertheless, we feel that it is now most appropriate to compare lattice results directly with the unmoded continuum version of the HRG model that is commonly used in the phenomenological treatment of QCD thermodynamics. By improving lattice calculations systematically one will then be able to judge what extent the HRG model describes the thermodynamics of QCD in the hadronic phase. In fact, the current calculations of the QCD equation of state, e.g. the pressure and trace anomaly, \((3p) = T^4 \), show deviations from the HRG at temperatures below the transition region. This is still the case in calculations on lattices with ten temporal extent \(N = 8 \), i.e. closer to the continuum limit [23,30]. We thus concentrate here on observables which are less sensitive to details of the hadron mass spectrum and emphasize the charges of the relevant degrees of freedom contributing to the fluctuations. These are in generalizations of cumulants of \(N_B ; N_Q , \) and \(N_S \). In fact, in the framework of a HRG model it is easy to convince oneself that the ratio of fourth and second order cumulants of baryon number fluctuations is completely independent of the actual value of hadron masses; \((\frac{B}{Q} = \frac{B}{S}) \) HRG \(= 1 \) if all hadrons are heavy on the scale of the tem temperature. In that case the fugacity expansion of Eq. 10,

\[
\ln Z^B_m \left(\frac{VT^3}{m} \right)^{\frac{m^2}{2}} K_2'(m = T) \cosh \left(\frac{S^B}{T} \right) ; \quad (12)
\]

is well approximated by its leading order term, i.e. the Boltzmann approximation. In this case the baryonic contribution to the pressure of a HRG is proportional to \(\cosh \left(\frac{S}{T} \right) \) and the ratio \(\frac{B}{Q} = \frac{B}{S} \) then becomes independent of the hadron mass spectrum. This is reasonably well reproduced by the lattice results shown in Fig. 2(top). Note, however, that in the chiral limit it is expected that the cusp in \(\frac{B}{Q} \) (Fig. 2) is expected to become more pronounced and thus more prominent also in the ratio \(\frac{B}{S} \). How strong this effect will be requires more detailed studies and also a better control over the continuum limit. Model calculations yield quite a different strength for the peak in \(\frac{B}{Q} \) [33].

Even within the Boltzmann approximation the structure of a HRG is, however, more complex in the strange and/or electrically charged sectors. In these cases multiple strange hadrons or hadrons with charge \(Q = 2 \)
contribute to the HRG. This enhances quartic fluctuations relative to quadratic ones and leads to a deviation of cumulant ratios from unity. This qualitative feature is indeed seen in the results obtained for $\frac{S}{4} = \frac{5}{2}$ and $\frac{C}{4} = \frac{3}{2}$ shown in Fig. 4, respectively.

We note that the lightest hadrons, the pions, only contribute to cumulants of electric charge fluctuations. For these light states the Boltzmann approximation is not sufficient at temperatures close to T_c. We thus have used the complete bosonic fugacity sum in the pion sector. These light hadronic states are also not well taken into account in current lattice calculations which still are being performed with light quark masses that are about a factor two larger than the physical up and down quark masses. Moreover, the pion spectrum is distorted in calculations with staggered fermion due to cut-off e effects that explicitly break chiral symmetry at non-vanishing lattice spacing (see footnote 3). In the case of electric charge fluctuations we therefore have analyzed in more detail the contribution of pions to the fluctuations in a HRG. In Fig. 4(bottom) we show results for HRG model calculations with physical pion masses, with a pion mass of 220 MeV, which corresponds to the lightest pseudoscalar state formed with the up and strange quark masses currently used in our calculations, and without the pion sector, i.e. for ininitely heavy pions. Although the lightest part of the electric charge fluctuations arises from heavier hadrons, the ratio of cumulants is sensitive to the pion sector. A heavier pion mass that are 50% larger than the physical value drastically reduce the contribution of the pion sector. This effect is even more significant in higher order cumulants. In the 6th order cumulant half of the fluctuations can be attributed to the light pion sector. This is obvious from Fig. 5 where we show the ratio of 6th and 2nd order cumulants for electric charge fluctuations. In a HRG model the ratio of cumulants calculated with and without the light pion sector is a factor two smaller than that calculated with the physical pions included. In the low temperature regime the lattice calculations are consistent with the former we conclude that lighter quark masses and calculations closer to the continuum limit are needed to correctly represent in lattice calculations higher order cumulants that are sensitive to the light hadron sector. Irrespective of this we nd, however, that the occurrence of maxima in χ close but below T_c signal the breakdown of the HRG model close to T_c. The ratio $\frac{S}{4} = \frac{5}{2}$ starts dropping below T_c and is consistent with zero at T_c.

A similar behavior is found for higher order cumulants of strangeness fluctuations. We nd that for both values of the lattice cut-off the ratio $\frac{S}{4} = \frac{5}{2}$ overshoots the HRG values in the transition region and this also holds true for the ratio $\frac{S}{4} = \frac{5}{2}$ evaluated on the coarse $16^3 \times 4$ lattices. Of course, this requires commutation through calculations with lighter quark masses on lattices closer to the continuum limit. The effect suggests that the contribution of even heavier, experimentally not well-established multiple strange hadrons, which are not included in the current version of the HRG model, is of importance in the transition region. In general we nd, however, that the HRG model gives a fairly good description of cumulants of the fluctuations of conserved charges up to temperatures close to the transition temperature.

VI. CORRELATIONS AMONG CONSERVED CHARGES

The analysis of cumulant ratios presented in the previous section suggests that for temperatures above $1.5 T_c$ fluctuations of baryon number, strangeness and electric charge agree well with the corresponding fluctuations in a non-interacting gas of light and strange quarks. In order to further test whether the relevant quasi-particle degrees of freedom indeed can be assigned to quarks, the analysis of correlations between different charges is quite instructive [13, 12]. Results for correlations between N_B, N_S, and N_Q are shown in Figs. 6 and 7. For completeness we also include the HRG prediction. We note that the HRG model is not expected and, in fact, does not capture the fluctuations and correlations in the transition region correctly. However, as shown in Figs. 6 and 7 as well as in Fig. 4 it reproduces qualitatively the features of fluctuations and correlations. In particular, the drop and rise seen in our numerical results for BQ and BS correlations, respectively, is seen also in the HRG model calculations. To put these observations on a more quantitative basis will require further calculations at lower temperatures.

In Fig. 6 the correlation functions in the numerator project only on the charged baryon sector of the spectrum. The ratio $\frac{B}{1/4} = \frac{2}{2}$ therefore approaches 1 in the low temperature limit as the numerator receives contributions from protons and anti-protons only, while the

\[\text{FIG. 5: The ratio of 6th and 2nd order cumulants of electric charge fluctuations evaluated on lattices of size } 16^3 \times 4. \]

\footnote{We ignore here small mass differences of charged and neutral hadrons.}
TABLE V: The data on correlations between different quantum number fluctuations obtained from calculations on lattices with ten possible extents $N = 4$ (upper table) and 6 (lower table), respectively.

<table>
<thead>
<tr>
<th>T [MeV]</th>
<th>ρ_0</th>
<th>ρ_s</th>
<th>ρ_s</th>
<th>ρ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.0</td>
<td>0.020630(35)</td>
<td>-0.20759(9)</td>
<td>0.03744(2)</td>
<td></td>
</tr>
<tr>
<td>186.4</td>
<td>0.01332(40)</td>
<td>-0.0564(14)</td>
<td>0.0811(5)</td>
<td></td>
</tr>
<tr>
<td>190.8</td>
<td>0.01670(26)</td>
<td>-0.0727(13)</td>
<td>0.0966(9)</td>
<td></td>
</tr>
<tr>
<td>195.4</td>
<td>0.02023(43)</td>
<td>-0.0924(19)</td>
<td>0.1133(14)</td>
<td></td>
</tr>
<tr>
<td>202.4</td>
<td>0.02811(32)</td>
<td>-0.1369(14)</td>
<td>0.1548(13)</td>
<td></td>
</tr>
<tr>
<td>204.8</td>
<td>0.02959(41)</td>
<td>-0.1544(20)</td>
<td>0.1687(15)</td>
<td></td>
</tr>
<tr>
<td>209.6</td>
<td>0.03024(58)</td>
<td>-0.2089(19)</td>
<td>0.2244(19)</td>
<td></td>
</tr>
<tr>
<td>218.2</td>
<td>0.02912(17)</td>
<td>-0.2395(8)</td>
<td>0.2488(9)</td>
<td></td>
</tr>
<tr>
<td>253.7</td>
<td>0.01625(12)</td>
<td>-0.2988(16)</td>
<td>0.3045(6)</td>
<td></td>
</tr>
<tr>
<td>305.2</td>
<td>0.00765(6)</td>
<td>-0.3245(11)</td>
<td>0.3303(5)</td>
<td></td>
</tr>
<tr>
<td>444.4</td>
<td>0.00272(3)</td>
<td>-0.3289(4)</td>
<td>0.3312(3)</td>
<td></td>
</tr>
</tbody>
</table>

In Fig. 6, we show the correlations among Q and S normalized to the quadratic fluctuations of electric charge. A similar ratio, where strangeness fluctuations have been used to normalize the $Q-S$ correlations, has been discussed in [10] and has also been calculated in 2+1 flavor QCD with a quenched strange quark sector [12]. We prefer the above normalization as it emphasizes the non-trivial correlations between Q and S that persist in the high temperature phase of QCD. Unlike 2 flavor the charge fluctuations 5/2 approach the ideal gas value rapidly above T_c (see Fig. 2). The deviations from ideal gas behavior seen in Fig. 1 thus are mainly due to the deviations of 3/2 from ideal gas behavior. This is shown in the lower part of Fig. 1. Apparently, the temperature dependence of 3/2 is very similar to that of 5/2.

FIG. 6: Correlations of electric charge and strangeness with baryon number normalized to quadratic fluctuations of baryon number.

VII. CONCLUSIONS

We have analyzed the fluctuations of baryon number, electric charge and strangeness in finite temperature QCD at vanishing chemical potential. A comparison of calculations performed with $O(a^2)$ improved staggered fermions for two different values of the lattice cut-off shows that these effects are generally small; cut-off effects as well as the dependence of observables on the light quark mass become more severe for higher order cumulants.

We found that fluctuations and correlations of conserved charges are well described by an ideal, massless quark gas already for temperatures of about (15 - 17) T_c the transition temperature. Deviations from ideal gas behavior seem to be mainly induced by the strange quark sector for which the quadratic quark number fluctuations approach the ideal gas limit more slowly. This cannot only be explained by the quark mass dependence of an ideal gas but seems to require a significant quark mass dependence of the interaction at high temperature.

At low temperatures we find that fluctuations and correlations of conserved charges are reasonably well described by a hadron resonance gas up to temperatures close to the transition temperature. Higher order cumulants, however, signal that the resonance gas prescription
APPENDIX: QUARK MASS DEPENDENCE OF CUTOFF EFFECTS

Cut-off effects arising from the introduction of a finite lattice spacing and, in particular, their dependence on the discretization scheme have been extensively discussed in the ideal gas limit. However, standard as well as O(a²) improved staggered fermion formulations have usually been analyzed in the massless limit, which is appropriate for the light quark sector of QCD. For the strange quark sector non-zero mass effects may play a role, in particular close to the QCD transition temperature which is only about twice as large as the strange quark mass. We present here an analysis of the quark mass dependence of cut-off effects in the ideal gas limit.

The quark number susceptibilities are obtained as the second derivative of the pressure, \(p = T^4 \), with respect to the chemical potential normalized to the temperature, \(\mu \), an analysis of the cut-off and quark mass dependence of \(\frac{\mu^2}{T} \) thus can follow closely the corresponding analysis performed for the pressure\(^6\) in the massless limit [33]. On a lattice of size \(N^3 \) this is given by

\[
\frac{P}{T^4} = 2 \sum_{N} \frac{3X}{p_{F_i}} \ln(D^2 + m^2); \quad (A.1)
\]

with \(D^2 \) given by

\[
D^2 = \frac{P}{T^4 - D^2} \quad \text{where}
\]

\[
D_1 = c_{10} \sin(p_1) + c_{30} \sin(3p_1) + 2c_{12} \sin(p_1) \sin(2p_1) \quad (A.2)
\]

and \(D_2, D_3 \) and \(D_4 \) are obtained by cyclic permutation of the \(p_i \). For the standard (naive) discretization scheme, one has \(c_{10} = 1, c_{30} = c_{12} = 2 \); the discretization scheme used in the p4-action corresponds to \(c_{10} = 3 = 4, c_{12} = 0, c_{30} = 1 = 24 \) and for the Naik action it is \(c_{10} = 9 = 8 \) and \(c_{30} = 1 = 24 \) and \(c_{12} = 0 \).

We evaluate here quark number susceptibilities as a function of quark mass on lattices with finite temporal extent \(N \) and in finite spatial volume for the standard (naive) staggered fermion discretization and the improved (p4) discretization scheme. For vanishing quark mass results on the cut-off dependence of quark number susceptibilities have been performed on the QCDOC computer of the RIKEN-BNL research center, the DOE funded QCDOC at BNL, the apENEXT at Bielefeld University and the BlueGene/L at the New York Center for Computational Sciences (NY-CCS).

\[\text{(6) Note that at vanishing chemical potential the pressure is simply related to the free energy density, } p = \ldots\]
susceptibilities in the ideal gas limit have also been presented in Ref. [33,34]. There also some results for staggered fermions in the standard (naive), p4 and Naik discretization scheme.

Starting with the expressions for $p=T$ at non-zero chemical potential ($\mu = T$) and taking two derivatives with respect to $-T$ one ends in the standard scheme for 0,

$$
Z_2(m,N) = 2 \sum_{N_{s}}^{N} \left(A \cdot B + A \cdot B \right) ;
$$

$$
A = \frac{2 \sin^2(p_{4})}{m^2 + \sum_{i=1}^{4} \sin^2(p_{i})} ;
$$

$$
B = \frac{2 \cos^2(p_{4})}{m^2 + \sum_{i=1}^{4} \sin^2(p_{i})} ;
$$

the corresponding expressions for the p4 and Naik actions are somewhat more complicated but can be derived straightforwardly.

In the continuum limit the quark number susceptibility is given by,

$$
Z_2(m=T;1) = \frac{1}{2} \frac{d}{dk} \frac{d}{dk} \left[\frac{k^2 e^{E-T}}{1 + e^{E-T}} \right] ;
$$

with $E^2 = k^2 + m^2$. We note that for small values of the quark mass Z_2 is quadratic in the mass,

$$
Z_2(m=T;1) = 1 + \frac{3}{2} \frac{m}{T} \frac{Z_1}{Z_0} \left[m - T \right] + O \left(m^4 \right) ;
$$

where Z_1 and Z_0 are the partition functions.

We have evaluated $Z_2(m,N)$ for various values of N and mass quark mass as well as for fixed N varying the quark mass. The results for the naive and p4 actions are shown in Fig.8

As expected, the cut-o dependence of Z_2 at non-zero values of the quark mass closely follow the pattern known from the analysis of the pressure at finite N and $m=T=0$. While the standard discretization scheme shows large deviations from the continuum result even for $N=10$, the results for the p4 action come close to the continuum result already for $N=6$. This also true for the ratio $Z_2(m,N)/Z_2(0;N)$. Although in this ratio a large part of the cut-o dependence cancels, the quark mass dependent corrections remain.

We note, that for finite N the quark mass dependence of $Z_2(m,N)$ in the naive discretization scheme is weaker than in the continuum limit. This is qualitatively different from the differences seen in the lower part of Fig.8, between the standard and improved discretization schemes.