We search for charm less decays of charged B mesons to the three-body final state \(\pi^0 \pi^0 K^0 \). Using a data sample of 423.7 fb\(^{-1}\) collected at the \((8S)\) resonance with the BABAR detector, corresponding to \((465 \pm 5) \times 10^6 B \bar{B} \) pairs, we find no significant signal and determine a 90\% confidence level upper limit on its branching fraction of \(5 \times 10^{-7}\).

PACS numbers: 13.25.Hw, 11.30.Er

Deceased

\(^{7}\)Now at Temple University, Philadelphia, Pennsylvania 19122,
Charmless decays of B mesons to final states with even numbers of strange quarks or antiquarks, such as \(B^+ K^0 \) and \(B^0 K^0 \), are suppressed in the standard model. Such decays proceed mainly via the \(B \to D \) (penguin) transition. Hadronic \(B \to D \) penguin transitions have been observed in the decays \(B^+ K^+ \) and \(B^0 K^0 \), and their decay amplitudes have also been seen through direct CP violation in charmless B decays, such as \(B^0 \to \pi^+ \pi^- \) and \(B^0 \to \pi^0 \pi^0 \). In contrast to \(B^0 \to \pi^+ \pi^- \) mixing, which is a \(B \to D \) process with a change of beauty–charm quantum numbers, the decay amplitude is still potentially for new physics to be uncovered in these decays.

The decay \(B^+ K^+ \) has not yet been observed. The upper limit on the branching fraction at 90% confidence level (CL) is \(3 \times 10^{-6} \) for the branching ratio \(\frac{B(B^+ K^+) + B(B^0 K^0)}{B(B^+ K^+)} \). A model based on the factorization approximation, which makes use of heavy-quark and chiral symmetries, predicts a nonresonant branching fraction for \(B^+ K^0 \) of order 10^{-6}. Decays via intermediate resonant states can also lead to the \(K^0 \to \pi^+ \pi^- \) state. This motivates an inclusive analysis incorporating both nonresonant and resonant modes. Based on the measured branching fraction \(B(B^+ K^0) = (8.2 \pm 2.5) \times 10^{-6} \), the product branching fraction for \(B^+ K^0 \) with \(f_K(1270) \) is predicted to be of order 10^{-6} or less.

Another motivation comes from the recent observation of \(B^+ K^0 \) by BABAR, with an inclusive branching fraction of \(B(B^+ K^0) = (5.0 \pm 0.5) \times 10^{-6} \). An unexpected peak seen near 1.5 GeV/c² in the \(K^0 \) mass spectrum, which we dub the \(f_0(1500) \), accounts for approximately half of the total event rate. If the decay of the \(f_0(1500) \) follows spin, then equal rates would be expected to \(K^0 \) decay to \(K^0 \). If the \(f_0(1500) \) has even spin, then \(f_0(1500) \) would result in 50% \(K^0 K^0 \) and 50% \(K^0 K^0 \) states, whereas if the \(f_0(1500) \) is odd spin, then the \(K^0 K^0 \) would be forbidden by Bose symmetry. Observation of the decay \(f_0(1500) \) to \(K^0 K^0 \) could therefore provide information on the spin of the quark content of the \(f_0(1500) \) and could help to elucidate the relationship between this state and similar unexplained structures seen in \(B^+ K^0 K^0 \) decays. Structures in the \(K^0 K^0 \) mass spectrum have also been observed in two-photon and electron-proton collisions.

We report a search for the decay \(B^+ K^0 \), which is based on data collected at the PEP-II asymmetric energy e+ e- collider at SLAC. The data sample consists of an integrated luminosity of 423.7 fb⁻¹ recorded (48%) resonance (on-peak) and 43.9 fb⁻¹ collected 40 MeV below the resonance (o–peak). The on-peak data sample contains (465 ± 5.1) × 10⁶ B̅B̅ pairs.

The BABAR detector is described in detail elsewhere. Charged particles are detected and their momenta measured with a 2-meter silicon vertex tracker (SVT) and a 40-meter drift chamber (DCH) located inside a 1.5T solenoidal magnet. Surrounding the DCH is a detector of internally reflected Cherenkov radiation (DRC), designed for charged particle identification. Energy deposited by electrons and photons is measured by a CsI(Tl) crystal, an electron magnetic calorimeter (EMC), and M ions and long-lived neutral hadrons are identified in the return of the solenoid instrument.

We reconstruct a \(B^+ K^0 \) candidate by combining a pair of \(K^0 \) mesons and a charged pion. A \(K^0 \) candidate is formed from a pair of oppositely charged tracks with an invariant mass that lies within 15 MeV/c² of the nominal \(K^0 \) mass. The vertex probability is greater than 0.999, and the \(K^0 \) mass resolution is greater than 10⁻⁶. Charged pions coming from the B decay are identified with the energy loss (dE/dx) information from the SVT and DCH, and the Cherenkov angle and the number of photons measured by the DRC. The efficiency for pion selection is approximatively 76% including geometric acceptance, while the probability for misidentification of kaons as pions is less than 15%, up to a mass of 4 GeV/c². We require pion candidates to be consistent with the electron hypothesis, based on information from the dE/dx, the shower shape in the EMC, and the ratio of the shower energy to track momentum.

Continuum \(e^+ e^- (q = u \bar{d}; s \bar{c}) \) events are the dominant background. To discriminate this type of event from signal, we use a boosted decision tree (BDT) that combines discriminating variables. The ratio of these to the ratio of \(L_2 \) to \(L_1 \) is proportional to \(\cos \theta \), where \(\theta \) is the angle with respect to the B thruster axis, of the track or neutral cluster, and \(p_1 \) is its momentum. The sum excludes the daughters of the B candidate and all quantities are calculated in the \(e^+ e^- \) center-of-mass (CM) frame. The other four variables are the absolute
value of the cosine of the angle between the B direction and the beam (z) axis, the magnitude of the cosine of the angle between the B thrust axis and the z axis, the product of the B candidate's charge and the arrow of the recoiling B as reported by a multivariate tagging algorithm [23], and the proper time di erence between the decays of the two B mesons divided by its uncertainty. The BDT is trained using o-peak data as well as simulated signal events that pass the selection criteria. We make a requirement on the BDT output (BDT_out) such that approximately 96% of the signal is retained and 60% of the continuum background is rejected.

In addition to BDT_out, we distinguish signal from background events using two kinematic variables: the beam energy-substituted mass $m_{ES} = E^2 - s$ and $E = E_B$, where s is the total CM energy and (E_B, p_B) is the four-momentum of the B candidate measured in the CM frame. We select signal candidates that satisfy $5250 < m_{ES} < 5286$ GeV and $j E < 0.1$ GeV. This region includes a su ciently large range of m_{ES} below the signal peak to allow properties of the continuum distribution to be determined in the maximum likelihood t.

A second source of background arises from $B^+ \rightarrow D^{*-}(1^+) K^0 \bar{K}^0$ decays, where the four-momentum variables are identical to the signal. We reduce this background by requiring any event containing a signal candidate with a $K^0 \bar{K}^0$ invariant mass in the range $182 < M_{K^0\bar{K}^0} < 190$ GeV.

The e ciency for signal events to pass the selection criteria is 28%, determined with a Monte Carlo (MC) simulation in which decays are generated uniformly in three-body phase space. We nd that approximately 9% of the signal B $\rightarrow K^0 \bar{K}\phi$ events contain more than one candidate, in which case we choose that with the highest B-vertex probability. We have checked that this procedure does not bias the t variables. In about 20% of the signal events, the B candidate is mireconstructed because one of its daughter tracks is replaced by a track from the rest of the event. Such events are considered to be a part of the signal component.

We study possible residual backgrounds from $B\bar{B}$ events using MC event sam ple. These backgrounds arise from decays with similar kinematic properties to the signal or because particles get lost to, or attached from, the rest of the event in the process of reconstruction. The $B\bar{B}$ background modes can be conveniently divided into two categories, based on their shapes in m_{ES} and E. The first category (BB_1) contains only B $\rightarrow K^0 \bar{K}\phi$ decays, which peak in m_{ES} around the m_B mass and in E near 0.6 GeV. The second category (BB_2) contains the remaining $B\bar{B}$ backgrounds and is mainly combinatorial.

We perform an unbinned extended maximum likelihood t to the candidate events using three input variables: m_{ES}, E, and BDT_out. For each category j (signal, continuum background, BB_1, or BB_2), we de ne a probability density function P_j (PDF), and evaluate it for each event i:

$$P_j P_j(m_{ES}^i, E^i) B_j(BDT_{out}^i); \quad (1)$$

The signal, continuum background, and $B\bar{B}_1$ background exhibit negligible correlations between m_{ES} and E, and so the PDF is further factorized:

$$P_j(m_{ES}^i, E^i) = P_j(m_{ES}^i) B_j(E^i); \quad (2)$$

The extended likelihood function is

$$L = \prod_{i=1}^{N} e^{n_i} \prod_{j} n_j P_j^{n_j}; \quad (3)$$

where $n_j(m_k)$ is the yield for event category j(k).

The signal m_{ES} distribution is param eterized with the sum of a Gaussian and a Crystal Ball function [23] while the E distribution is param eterized with a modi ed Gaussian function with di erent cuts on each side, as well as with additional tails that can be di erent on each side. We x the shape parameters to the values obtained from the B $\rightarrow K^0 \bar{K}\phi$ phase-space MC sample. The continuum background m_{ES} shape is described by an empirical threshold ARGUS function, $x \rightarrow 1 - x^{a}$, with $a = 2$, or a free parameter E_S, and a free parameter E_S, while the continuum E shape is modeled with a linear function. We describe the m_{ES} and E shapes for the $B\bar{B}_1$ sample with a two-dimen- sional t algorithm, which accounts for correlations between these variables. One-dimensional histograms are used to describe the m_{ES} and E distributions for the $B\bar{B}_2$ sample. The BDT_out distributions for all samples are described by one- dimensional histograms. These are obtained from MC events for signal and the $B\bar{B}$ background categories.

The continuum background BDT_out shape is determined from a combination of o-peak data and on-peak data in a continuum-dominated sideband of m_{ES}, independent of the signal region, from which the expected $B\bar{B}$ backgrounds have been subtracted.

The free parameters of our t are the yields of the signal, continuum, and two $B\bar{B}$ background categories, together with the parameter of the continuum m_{ES} shape and the slope of the continuum E shape.

We test the tting procedure by applying it to ensembles of simulated experiments where events are generated from the PDF shapes as described above for all four categories of events. We perform the exercise with e^\pm events generated from the PDF while signal events are randomly extracted from the MC sample. The $B\bar{B}$ background events are either generated from PDF shapes or drawn from MC sample. In all cases, the tests con rm that our t is performed as expected. No bias is found for the value of the signal yield observed in the data.
t returns yields for the continuum, $B \bar{B}$, and $B \bar{B}$ background categories of 15,500, 140, 89, 25, and 1140 events, respectively. These are somewhat larger than the expected values for the first and last categories and smaller for the second, a pattern that can be explained by the correlations between these yields.

The results of the t are shown in Fig. [1]. In these plots the continuum background contribution has been suppressed by applying a requirem ent on the ratio of the signal likelihood to the sum of the signal and continuum likelihoods, calculated without use of the plotted variable. The value of this requirement for each plot rejects about 97% of the continuum background while retaining 63 – 71% of the signal, depending on the variable.

We determine the inclusive branching fraction for $B^+ \to K^0 S^0$ by dividing the observed signal yield by the reconstruction efficiency, the number of B events in the data sample, and the square of the daughter branching fraction $B(K^{0} S^0 \to \ell^+ \ell^-) = 6.920 \pm 0.005$ [11]. We assume equal decay rates of (4S) into $B^+ B$ and $B^0 \bar{B}^0$ pairs. The value obtained is $B(B^+ \to K^0 S^0) = (2.5 \pm 2.4) \times 10^{-7}$, where the error is statistical only. The statistical significance of the signal is 1.1, which is calculated as $2 \ln(\frac{L_0}{L_{\text{max}}})$, where L_{max} denotes the likelihood with the nominal signal yield of 15 events and L_0 denotes the likelihood with the signal yield set at zero.

This is a significant improvement of the selection efficiency on the kinematics of the $K^0 S^0$ signal state. The nominal efficiency is calculated by assuming a phase-space distribution of $K^0 S^0$ events. Since we do not know the true distribution, a systematic uncertainty of 24% is evaluated from the RMS variation of the efficiency across the $K^0 S^0$ Dalitz plot. Small systematic uncertainties on the yield arise from uncertainties in the PDF shapes (4 events), including possible differences between data and MC simulations, which are studied using a control sample of $B^0 \to D \to K^0 S^0$ events. We assign an uncertainty of 2 events to account for bias. Other uncertainties on the efficiency arise from charged particle reconstruction (0.4%), particle identification (1.4%), and the $K^0 S^0$ selection (1.8%). The uncertainty on the number of $B \bar{B}$ pairs is 1%. The systematic uncertainties are added in quadrature to give a total of 3%. Hence the inclusive branching fraction is $B(B^+ \to K^0 S^0) = (2.5 \pm 2.4) \times 10^{-7}$, where the first (second) error is statistical (systematic).

Since our result is consistent with no signal, we determine a 90% CL upper limit on the branching fraction (B_{UL}). This limit is calculated by integrating the likelihood in the physical region such that $B_{UL} L(x)dx = 0.1$, where $L(x)$ is the likelihood function for the signal yield x. We have confirmed that the statistical uncertainties from the tare Gaussian, to a good approximation. We therefore assume a Gaussian behavior for the overall likelihood, with a width calculated from the sum in quadrature of the statistical and systematic uncertainties. Our result is $B(B^+ \to K^0 S^0) < 5 \times 10^{-7}$ at 90% CL.

The lack of signal in this decay mode contrasts with that observed for $B^+ \to K^0 K^+$. This result favors models in which the $f_0(1500)$ has even spin and decays into isospin symmetric states. The $f_2(1270)$ is excluded to have even spin in future measurements, this may indicate a non-QQ nature of this state.

In conclusion, with a data sample of 423.7 fb^{-1}, we have performed a search for the decay $B^+ \to K^0 S^0$. We observe no significant signals and establish a 90% CL upper limit on the branching fraction of 5×10^{-7}. This result provides useful information for the understanding of low energy spectroscopy.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSEI (Canada), CEA and CNRS-IN2P3 (France), BMF and DFG (Germany), ZFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

[1] Inclusion of the charge conjugate mode is implied.
FIG. 1: Projections of candidate events with the t results overlaid. From left to right are shown the projections onto the m_{ES}, E, and BDT_{out} variables. The points show the data and the solid (blue) curves show the total t result. The dotted (red) curves show the continuum background, the dashed (green) curves show the total background, and the dash-dotted (black) curves show the signal distributions.