A Natural Framework for Chaotic Inflation

Nemanja Kaloper
Department of Physics, University of California, Davis, CA 95616, USA

Lorenzo Sorbo
Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

We show that in inflation with a quadratic potential occurs naturally in theories where an axion-like field mixes with a 4-form. Such an axion is massive, with mass which arises from the Higgs being protected by the axion shift symmetry. The 4-form backgrounds break this symmetry spontaneously and provide an inflation solution, where their masses can be large. In this way, inflation can begin when the 4-form dominates the energy density. Eventually this energy is reduced by dynamical interactions, and the axion can roll slowly towards its minimum, as in the simplest version of chaotic inflation.

PACS numbers: 98.80.Cq, 11.25.Mj, 14.80.Mz

Among the many scenarios of inflation, the one which stands out in terms of its simplicity, elegance and phenomenology is the chaotic inflation [1]. It has since become a prototype of slow roll inflation, arising as an effective description in many complicated models of inflation. It also turns out to be really well understood. For the scenario to work, however, one needs the inflation to initially have super-Planckian expectation values,

\[M_{\text{Pl}} \], in order for the slow roll conditions to be met for long enough, and yield at least 60 efolds of inflation. This issue has led to considerable debate, starting with [2], about how realistic it is to model the inflation potential by a quadratic term when

\[M_{\text{Pl}} \]. In this regime, higher-order corrections to the effective potential are important, and the inflation potential has a non-trivial dependence on the scale parameter. These corrections are known to be important in inflation, and it is believed that they are necessary for the inflation to be successful. Hence the task is to understand theories where dynamics which gives mass to the axion is radiatively stable. If so, the axion mass and other polynomial interactions will be small enough that further corrections may not spoil their flatness, as per the argument above. This makes various pseudo-Nambu-Goldstone bosons [3] obvious inflation candidates (we will call them 'axions'), because their mass arises from non-perturbative effects, whereas the perturbative shift symmetry prevents large radiative corrections [2].

The effective potential arises from instanton effects, and can be written in the form of a Fourier series,

\[V < M_{\text{Pl}}^4 \sin (2n \pi f \phi) + \frac{1}{2} \left(\frac{\theta}{M_{\text{Pl}}} \right)^2 \lambda \sin (2n \pi f \phi) \]

which is the axion decay constant, and

\[n \] are dynamical scales in the instanton expansion, typically related to the UV cutoff via

\[V < M_{\text{Pl}}^4 \sin (2n \pi f \phi) + \frac{1}{2} \left(\frac{\theta}{M_{\text{Pl}}} \right)^2 \lambda \sin (2n \pi f \phi) \]

where \(n \) is the scale parameter. The shift symmetry is protected by non-perturbative effects, whereas the perturbative shift symmetry prevents large radiative corrections. Hence, one needs to set the regime to where

\[M_{\text{Pl}} \], otherwise the axion potential will not dominate the evolution for long enough. These requirements beg for

\[M_{\text{Pl}} \]. On the other hand, it appears to be difficult to obtain large axion decay constants obeying

\[f < M_{\text{Pl}} \] in UV complete theories [3]. So if

\[f < M_{\text{Pl}} \] the higher order instanton effects come into play, interfering with inflation with large

\[M_{\text{Pl}} \]. To date, the proposals which were devised to address this issue rely on either decompactifications [4] or non-trivial compactifications in string theory [10,11].

In this Letter, we outline a different framework circumventing this problem. It is a higher energy variant of the dynamics of quintessence which we have discussed recently [12]. If an axion

\[f \] has mass with a 4-form in 4D by a bilinear term, it becomes massive, with the mass term which preserves the shift symmetry of the action. The shift symmetry only breaks spontaneously after picking the background 4-form solution [12]. Thus the mass is protected from axion theory radiative corrections, and the potential can only be slanted by instanton effects. Such effects are inevitable, since in order for the axion to be an axion, it must have axion couplings so that it can reheat the universe after the end of inflation.
However, if the axion does not couple to any sector which is strongly coupled at or above the scale of inflation, the instanton potential term will be negligible compared to the leading term induced by the 4-form mixing. In axion can then unravel precisely as described originally in the simple chaotic inflation scenario of Linde [1], and reheating can proceed by the production of the gauge bosons to which the axions couples directly.

As in [12] we consider an axion mixing with a 4-form, via a term \(F \). The action including \(m \)-independent coupling to gravity has two parts, describing bulk theory and terms describing the membrane dynamics. Without axion mixing, such theories have been studied in the context of cosmological constant relaxation [14] [15]. When the mixing is turned on, the bulk term is

\[
S_{\text{bulk}} = \int \frac{d^4x}{g} \left[\frac{M_p^2}{2} \left(\frac{1}{2} (\nabla^2 + 1/48 \right) \right] + \frac{1}{24} \frac{1}{g} F^2 + \cdots
\]

(1)

The ellipsis denote the matter sector contributions, is the Levi-Civita tensor density, as indicated by the metric field \(g \) and \(F \) is the antisymmetric derivative of the 3-form potential, \(F = \frac{4}{g} \left(\frac{1}{A} \right) \). The parameter \(g \) determines a mass, as required to correctly normalize the bulk action. For now we view \(g \) merely as a given parameter, noting that it can arise from either spontaneous breaking of \(Z_2 \) or discrete symmetries of \([13] \), or from dimensional reductions of higher rank \(\text{form} \), as in [12] [13], as the axion through compact dimensions. The membrane action over its worldvolume \(e \) with induced metric \(g_{ab} \) is

\[
S_{\text{brane}} = \int \frac{e}{6} \int \frac{d^4x}{g} \left[\frac{1}{2} (\nabla^2 + 1/48 \right) \right] + \frac{1}{24} \frac{1}{g} F^2 + \cdots
\]

(2)

where the membrane charge \(e \) is normalized to the membrane tension. To correctly covariantize it, we must also include the Gibbons-Hawking term for gravity, and its analogue for the 4-form \(\eta \), which are \(d^4x \sqrt{-g} \sqrt{\eta} \left(F \right) = -6 \) and \(d^4x \sqrt{-g} \eta \left(\frac{1}{A} \right) = 6 \). The membrane is charged under the 4-form, that can jump between interior and exterior of the membrane, changing according to \(F = e \frac{\sqrt{\eta}}{\sqrt{g}} \). In addition to the global dynamics controlled by \(m \)-brane emision, in the presence of nonzero axion mixing \(g \), the 4-form \(g \) is not locally constant [12] [13]. It depends on the scalar \(e \), \(m \)-induced with it and becomes massive: the 4-form background gives inertia to the scalar's propagation, which by local Lorentz invariance translates into the scalar mass term. After the background is selected the 4-form looks to , breaking the shift symmetry of spontaneously [13].

A representation which manifestly displays the above features follows if we integrate out the 4-form, bearing in mind that the membrane can change its background value [12]. So, using the first order form all by extending the action with the Lagrange multiplier term

\[
S_a = \int d^4x \left(\frac{1}{2} \nabla^2 + 1/48 \right) + \int d^4x \left(\frac{1}{2} (\nabla^2 + 1/48 \right) \right] + \frac{1}{24} \frac{1}{g} F^2 + \cdots
\]

(3)

The boundary term \(A \) depending on the membrane charge also remains, giving the global dynamics of the Lagrangian multiplier \(a \). Locally, it is an auxiliary field, since \(A \) yields \(a = 0 \). The membrane term \(A \) changes this, yielding a source for \(a \), which jumps across the membrane by \(a = e \).

Eq. (3) shows that the mixing has induced an effective potential \(V = \frac{1}{2} a^2 + \frac{1}{2} \left(q + \right)^2 \), instead of the pure cosmological constant contribution \(\frac{1}{2} a^2 \), where the scalar \(e \) has mass \(2 \) and, for a \(m \)-invariant \(a = q = 0 \). The shift symmetry of the action because the variation of \(e \) is conserved by the shift \(q = 0 \). Once \(q = 0 \) is xed as a solution of \(a \), the shift symmetry is broken spontaneously.

When considering the mass of \(a \), one has to worry about possible competing contributions from other corner of the theory. The presence of the shift symmetry in the action \(a \) protects the massive \(e \) from radiative \(e \) to its mass. It implies that the \(e \) to \(m \)-brane mixing \(a \) and, so radiative corrections induced by such couplings won't change the \(m \)-brane term. On the other hand, if the axion couples to some gauge theory with the standard model Chern-Simons term \(\frac{1}{2} \left(F \wedge G \right) \), the axion effects will break the shift symmetry down to its discrete subgroup \(+ M \). The resulting effective potential \(V = \frac{1}{2} a^2 + \frac{1}{2} \left(q + \right)^2 \), the instanton contributions will induce the axion mass, and in fact in the standard axion in inflation models, it is this potential that one uses for driving in inflation [6]. But as we have noted above, this requires \(M = \frac{1}{4} \frac{1}{4} \). To the other hand the converse, as is argued to be more natural in UV complete theories [3], this contribution to the potential may be an obstruction if it is too large. However when \(f < \frac{1}{4} \) as long as the scale of the potential obeys \(4 < \frac{1}{4} f \) the instanton corrections will remain by and large negligible, merely yielding small bump ps on top of the potential \(\frac{1}{4} (q +) \).

A another concern regarding the atness of the 4-form induced potential comes from considering corrections from higher \(m \)-dimension operators, on ited in [1]. By gauge symmetry of \(F \) and shift symmetry of they can be organized as an expansion in \(\frac{1}{4} \), where \(M \) is the UV cut, \(e \), the string scale. This means that the action \(A \) is a good description of the system as long as \(f < 1 \). Using the on-shell form \(F \), \(F = \frac{1}{g} \left(\frac{1}{A} \right) [12] \), then yields the constraint \(M = 0 \), which still allows a wide range of variation of \(a \). Hence if \(M \), the description
based on \((1) \) remain under control, keeping the potential
\(V = \frac{1}{2} (q+)^2 \) at even when \(M_{Pl} > M^2 = \). Similar
issues come up from considering gravitational effects. Perturbative
corrections remain small if one starts with a low potential, since they only give terms proportional
to \(m^2 e_{\text{R}} \) and \(V_{e_{\text{eff}}} = M_4^2 \), that are tiny as long as
\(V < M_4 \). The gravitational instanton corrections are controlled by\(\varepsilon \) clients proportional to the exponential of the instanton action \([\beta] \). When the axion decay constant is small, \(f < 0.1 M_{Pl} \), which as discussed above we can choose, since we do not need it for slow roll, the instanton action will be large enough to suppress nonperturbative gravitational corrections as well.

Let us now turn to discussing the dynamics arising from this potential. As is obvious, the 4-form charge \(q \), which determines the location of the minimum, can change by the m enbrane emission, and so the space of axionic vacua is really a mini-landscape, much like in [14]. However, as we noted in [14], the mass \(M \) may also be a landscape variable, as models given by \((1) \) with

\[0 \]

are naturally realized by dimensional reduction of various supergravities which arise as low energy limits of string theory. In this case, the parameter \(\varepsilon \) is in fact an internal \(\text{ux} \) of a magnetic form \(\text{ed} \), and so \(\varepsilon \) is quantized just like any other generic 4-form \(\text{ux} \), like \(q \). If we start from \(\text{11D SUSY} \) compacted on a 4-torus \((4) \), the expressions for the axions are \(\varepsilon = n_i e_i = Z_i \), where \(Z_i \) are the internal volumes controlled by (the stabilized) volume \(m \text{ ocul} \) and, \(e_i = 2 M_4^2 \) is the fundamental \(m \text{enbrane} \) charge, norm allowed by the \(\text{11D Planck mass} M_{11} \). The volume \(\text{ef} \)ects for electric (i.e. 4D spacetime) 4-forms are \(\varepsilon = 0 \), while for magnetic (i.e. internal space) 4-forms they are \(\varepsilon = 2M_4^2 = 2M_4^2 V_3 \) \((14) \). Since the charge of a magnetic 4-form, it is quantized according to

\[2 \pi V_{3} M_{11}^2 \left(11 + \frac{M_{Pl}}{M_{11}} \right)^2 M_{11} \]

Thus can change by emission of m enbranes in steps of

\[\varepsilon M_{11}^2 \left(11 + \frac{M_{Pl}}{M_{11}} \right)^2 M_{11} \],

which can be quite small. If we take a simple setup where the size of compact dimensions is not much different from the string length, which may still be so small that it suppresses the nonperturbative gravitational contributions to the axion potential, \(V_{3} M_{11}^2 \) \(\{0 \} \), the quantum of mass is

\[0 \]

(10), the quantum of mass is

\[0 \]

(10)

\[\{0 \} (11 + \frac{M_{Pl}}{M_{11}})^2 M_{11} \].

This leads to a very interesting global picture of an in a tunnel universe. In ation will be driven by the effective cosmological term comprised of the ‘bare’ negative cosmological constant \([\beta] \) and the sum of 4-forms which do not involve axion \(m \) ektions \(\{g\} \), and the axionic in ation term \(\frac{1}{2} \langle q+ \rangle^2 \). The ‘cosmological constant’ term will be eventually determined by the m enbrane emission, yielding \(\text{somewhere} \) in the M etaverse a net tiny cosmological constant \([\beta] \), or, if there are enough axions, possibly a quintessence \(\text{ed} \) in slow roll \([\beta] \), either one needed to dominate the universe at the present time. The effective potential driving in ation, \(V_{e_{\text{eff}}} = \langle n_i \rangle (1) + \langle q+ \rangle^2 \), would support scalar \(\text{ed} \)uctuations. If the scalar \(\text{ed} \)uctuations are small, they would feed into the density perturbations given by \([\beta] \)

\[\frac{H^2}{2} \left(\frac{1}{6} + \frac{1}{6} \langle q+ \rangle^2 \right) \]

where a formula valid as long as its num erical value rem ains below unity. On the other hand, from the inspection of this equation, at early times when the potential is dominated by the net cosmological term \(\{n_i\} \), the density perturbations can be very large. \(\text{W here} = \) exceeds unity, the quantum fluctuations of the in aton dominate over the classical ones, and the dynamics of the \(\text{ed} \) is going to be determined by random quantum fluctuations, under whose influence the \(\text{ed} \) hops around preparing the regions of the M etaverse in states where \(\text{is suspended away from its minimum} \). This epoch will term inate in some e regions after m enbrane emission reduces \(\langle n_i \rangle \) to below \(\frac{1}{2} \langle q+ \rangle^2 \). In those regions, \(q \) and \(\\

\text{then} \) selves will be random variables. \(\text{O nce this happens, the formula (3) degenerates to} = \langle q+ \rangle^2 = 4 \pi \frac{M_4^2}{M_{11}} \).

Clearly, given our bounds on the mass in value of \(\text{for which we can still use the low energy action (1)} \), and the estim ates above, this region of the universe may still be trapped in the self-reproduction region after the m enbranes have carried away \(\langle n_i \rangle \). \(\text{O nce (in any case, eventually in some e regions quantum e} \text{ects will take the in aton away from the self-reproduction region. At that point, the standard slow roll in ation will begin, creating a large in ated domain. A s the in aton background value } q = \text{ falls below } M_{Pl} \), in ation will term inate, and the in ation will begin to oscillate about the local in minimum at \(q = \), reheating this region of the universe in the process. \(\text{Reheating may occur by the production of for exam ple the gauge sector to which the in aton may couple by } \frac{1}{2} \pi \text{Tr} (G^2 \overline{G}), \text{and subsequent them alization of this gauge theory with the Standard M odel particles. The reheating temperature would be } \frac{1}{2} \pi \text{Tr} (G^2 \overline{G}) \), where \(3 = f^2 \) is the decay rate of into the gauge \(\text{eds} \). \text{Thus, } \frac{1}{2} \pi \text{Tr} (G^2 \overline{G}) \text{ is well above the temperature needed for nucleosynthesis. A n important point which needs to be stressed here is that when \(\text{is a random variable, so are the num ber of } \text{eds which unravel during slow roll phase and the value of the amplitude of the nearly scale invariant spectrum of density perturbations, changing from one slow roll region to another. Indeed, these quantitites depend on } q \text{ and } , \text{as is straightforward to calculate. A ssuming that the slow roll started with the value of at the threshold of self-reproduction, as suggested by the global picture outlined above, they are (1)} \text{N} \}

\[0 \]
lowing for jumps in during the last stages of inflation, that could yield to in ating dom -ains whose boundaries might still be visible. In such cases one could search for the variation of both residual curvature of cosmological spatial-slices and the amplitude of density perturbations, as probed in [23]. We will not delve into this interesting and in portant arena here. We will merely note that the requirement that the density perturbations are of the right scale, \(\sim 10^{-5} \), which implies \(\sim 10^{11} \text{GeV} \), can be directly related to GUT scale physics if we take the in atom to have no one or few units of the quantum of ass, \(O(10)^{1/2} \text{M}_{11} \), during the nasstage of in ation in our region of the M etavase. Indeed, it is easy to check that we need \(\text{M}_{11} \approx 10^5 \text{GeV} \).

To conclude, we have shown that the simplest scenarios of chaotic in ation can be naturally realized in theories where axionic ef fs mix with 4-forms. The resulting low energy theory yields a model with a quadratic action generated by the mixing, and protected from higher order corrections in perturbation theory by a shift symmetry, that rem ains unbroken at the level of the action. The nonperturbative contributions to the potential both from el theory and from gravity may be suppressed when \(f < M_{pl} \), if the gauge theory to which the in atom couples is not strong at too high a scale. The structure of the vacuum con quarations is a nonlandscape, and in some regions the conditions for successful chaotic in ation will occur automatically. In them, the value of density perturbations may be a random variable, as it depends on the in aton mass. This will occur in the theories where the e ective 4D picture which we adopt arises after dimensional reduction, where the in aton mass is also one of the form uxes. In that case it can change from place to place, being decreased by the m en brene emission. This can be an interesting scene for testing anthropic ideas and general features of the landscape approach to cosmology.

A cknowledgments We thank Shm i Kachru, Renata Kallosh, Andrei Linde, M arkus Luty, Alessandro Tom aselli, Akady Vainshtein and Jun’ichi Yokoyama for valuable discussions. LS thanks the UC Davis HEFTI program for hospitality during the inception of this work. The work of NK is supported in part by the DOE Grant DE-FG03-91ER40674. The work of LS is partially supported by the U.S. NSF Grant PHY-0555304.

References

[24] Q quantitatively the e- bound com es from requiring that the axion energy density does not destabilize volume moduli in the compact cations of higher-dimensional SUGRA's that yield [1].