Implications of primordial black holes on the first stars and the origin of the supermassive black holes

Cosimo Bambi, Douglas Spolyar, Alexander D. Dolgov, Katherine Freese, and Marta Volonteri

May 25, 2013

1 IPMU, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan
2 Department of Physics, University of California, Santa Cruz, CA 95060, USA
3 Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, I-44100 Ferrara, Italy
4 Dipartimento di Fisica, Università degli Studi di Ferrara, I-44100 Ferrara, Italy
5 Institute of Theoretical and Experimental Physics, 113259 Moscow, Russia
6 MCTP, University of Michigan, Ann Arbor, MI 48109, USA
7 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

If the cosmological dark matter has a component made of small primordial black holes, they may have a significant impact on the physics of the first stars and on the subsequent formation of massive black holes. Primordial black holes would be adiabatically contracted into these stars and then would sink to the stellar center by dynamical friction, creating a larger black hole which may quickly swallow the whole star. If these primordial black holes are heavier than 10^{15} g, the first stars would likely live only for a very short time and would not contribute much to the reionization of the universe. They would instead become $10^6 - 10^9$ M$_\odot$ black holes which (depending on subsequent accretion) could serve as seeds for the supermassive black holes seen at high redshifts as well as those inside galaxies today.
1 Introduction

The first stars in the Universe mark the end of the cosmic dark ages, reionize the Universe, and provide the enriched gas required for later stellar generations. They may also be important as precursors to black holes (BHs) that coalesce and power bright early quasars. The first stars are thought to form inside dark matter (DM) halos of mass $10^5 M\odot$ at redshifts $z = 10$ \cite{abel2002, bromm2002, yoshida2003}. These halos consist of 85\% DM and 15\% baryons in the form of metal-free gas made of H and He. Theoretical calculations indicate that the baryonic matter cools and collapses via H_2 cooling \cite{peebles1968, matsuda1971, hollenbach1979, tegmark1997}; these halos may be the seeds which produced the supermassive BHs seen at high redshifts; the intergalactic mediumBHs; as well as the black holes at the center of every normal galaxy today and whose origin is as yet uncertain. Possible mechanisms of production of superheavy BHs are reviewed in \cite{dokuchaev2007}. In addition, although the BHs can be formed in the very early Universe and what current constraints on their cosmological abundance are. In Section III, we discuss the behavior of individual BHs: how many

\[L = 6.5 \times 10^9 \text{ erg s} (100\odot); \]
\[L = 4.2 \times 10^7 \text{ erg s} (10\odot); \]
of them are expected inside a single star (via adiabatic contraction), what is the luminosity due to accretion onto the PBHs, and what is the time scale for their size to double. We also investigate alternative mechanisms for generating luminosity by these small PBHs. Then in Section IV and V we turn to the most important part of the paper. We study the dynamical friction that pulls all the BHs into a single larger BH at the center of the star, and then watch this single large BH accrete the entire star surrounding it on a fairly rapid time scale. We conclude with a discussion in Section VI. Throughout the paper, we use units with $c = 1$.

2 Physics of Primordial Black Holes

2.1 Production mechanisms

PBHs may be formed in the early universe by many processes (Zeldovich & Novikov (1966), Hawking (1971), Carr & Hawking (1974), Crawford & Schramm (1982), Hawking (1989), Polnarev & Zembowicz (1991), Dolgov & Silk (1993), Jedamzik (1997), Rubin et al. (2000), Dolgov et al. (2008)). For a general review, see e.g. Carr (2003). The earliest mechanism for BH production can be understood in the space-time metric at the Planck epoch. Large number of PBHs can also be produced by nonlinear density fluctuations due to inhomogeneous baryogenesis at all scales (Dolgov & Silk (1991), Dolgov et al. (2008)). If within some region of space density fluctuations are large, so that the gravitational force overcomes the pressure, we can expect the whole region to collapse and form a BH. In the early Universe, generally, BHs of the horizon size are formed, although it is also possible to form much smaller BHs (Polnarev & Zembowicz (1991), Hawking (1989)). BHs can also be produced in first and second order phase transitions in the early Universe (Crawford & Schramm (1982), Jedamzik (1997)). Gravitational collapse of cosmological string loops (Polnarev & Zembowicz (1991), Hawking (1989)) and closed domain walls (Rubin et al. (2000)) can also yield BHs. The masses of PBHs formed in the above mentioned processes range roughly from $M_{PBH} \sim (BHs$ formed at the Planck epoch) to $M_{PBH} \sim (BHs$ formed at the QCD phase transition).

The basic picture is that energy perturbations of order one stopped expanding and re-collapsed as soon as they crossed into the horizon (Zeldovich & Novikov (1966), Hawking (1971), Carr & Hawking (1974)). The maximal mass of PBHs is set by the total mass within the cosmological horizon, i.e. $M_{hor} = M_{pl} \sim 2^9 \exp \left(\frac{1}{6} \frac{2}{T}\right)$ at any given energy scale at which the BH forms. This is also the expected mass scale of a BH in most early Universe scenarios for the production of PBHs (it can be at most a factor of 10^4 smaller (Hawke & Stewart (2002))). Thus

$$M_{PBH} \sim \frac{T}{G_N} 5 \times 10^{-3} \frac{g^{1.2}}{T_{f}} \left(\frac{1}{T}\right) g;$$

where we assume a radiation dominated universe, with g the effective number of relativistic degrees of freedom and T_f the temperature of the universe at time t_f.

2.2 Observational constraints

PBHs in the mass range $M_{PBH} \sim 10^7 - 10^8 g$ can be good DM candidates. A number of constraints restrict the mass of this range. PBHs with an initial mass smaller than about $10^6 g$ are expected to be already evaporated due to Hawking radiation; moreover their presence in the early Universe can be constrained by observations $M_{BH} \sim 10^9 g$ (lifetime $\sim 1 s$) (Novikov et al. (1979)). For $M_{PBH} \sim 10^8 g$, there are strong bounds as well, at the level of $PBH \sim 10^8$, from the observed intensity of the diffuse gamma ray background (Page & Hawking (1976)), so they may be at most a tiny fraction of the non-relativistic matter in the Universe. For larger masses, constraints can be deduced from microlensing techniques (Alcock et al. (2000); Tisserand et al. (2007)) and dynamical arguments (Carr & Sakellariadou (1999)), which exclude the possibility that the whole cosmological DM is made of BHs heavier than $10^{26} g$, even if they still may be an important component. For example, the PBH to DM mass ratio in the Galactic Halo would be smaller than 0.04 for PBHs in the mass range $10^{10} - 10^{20} g$ and than 0.1 for the mass range $10^{20} - 10^{22} g$ (Tisserand et al. (2007)).
On the other hand, for the mass range 10^{17} to 10^6 g, there are currently no clear observational methods of detection. For $M_{\text{PBH}} = 10^3$ to 10^5 g, the presence of PBHs can be inferred from the film processing of gamma ray bursts (Gould (1992), Nemiro & Gould (1995), M. aran et al. (1999)), but the constraint is weak, roughly $M_{\text{PBH}} = 0.2$; in addition it holds only for uniformly distributed DM and is not easy to extend to the more realistic case of clumped DM. The same mass range might be covered by future gravitational wave space antennas, from the gravitational interaction of PBHs with test masses of the laser interferometer (Seto & Coray (2004)), but the expected detection rate for LISA is too low and only a further generation of space detectors might put non-trivial constraints. According to recent work Abramowicz et al. (2008), the PBH mass range 10^{15} to 10^6 g remains unexplored and thus an LISA could possibly detect PBHs. However, further constraints raise the lower bound to roughly 10^{15} to 10^6 g (Bambi et al. 2008a).

We present results for PBHs with mass $M_{\text{PBH}} = 10^4$ g but show the scaling for other PBH masses in the 10^{17} to 10^6 range. Our results are qualitatively the same for PBHs of any mass in the allowed range. For heavier PBHs up to, e.g., 1 M, the results will be somewhat different and discussed in the discussion section.

3 Primordial Black Holes inside the Star

In this section we study the behavior of the PBHs inside the star. We estimate the total mass in these objects, as well as the luminosity and time scale for accretion onto individual PBHs.

3.1 Total Mass in PBHs inside the Star

The first stars form at the centers of $10^6 M_{\odot}$ DM halos. As a starting point we assume an initial NFW profile (Navarro, Frenk, & White (1997)) for both DM (85% of the mass) and baryons (15% of the mass). As the gas collapses to form a star, it gravitationally pulls the DM (in this case PBHs) with it. We use adiabatic contraction (Sellwood & McGaugh (2005)) to find the resultant dark matter profile inside the star (Spolyar et al. 2008)

$$D_{\text{DM}} = 5 \left(n_b \text{ cm}^{-3} \right) 10^4 \text{ g GeV} = \text{cm}^3;$$

which is independent of the nature of DM. Here, n_b is the mean baryon density inside the star. It should be noted that adiabatic contraction is not a relaxation process. Instead as the baryons collapse to form a star, they gravitationally pull the DM with them, so that the DM density inside the star increases. Hence, the DM evolves on the time scale of the baryons. Ideally, instead of using the adiabatic approximation, it would be desirable to run an N-body simulation. At present this is technically not possible. Regardless, adiabatic contraction should give a reasonable approximation and is widely used for other systems. In addition, the form of the equation to apply the adiabatic approximation hold during most of the evolution of the baryons. For a mean baryon number density $n_b = 10^4 \text{ cm}^{-3}$, the DM to baryon mass ratio of a typical Pop. III star is at the level of 10^{-4}. The number of PBHs inside the star is roughly

$$N_{\text{PBH}} \sim 10^6 \left(\frac{\text{PBH}}{M_{\odot}} \right) \frac{M}{100 M_{\odot}};$$

where M_{PBH} is the mass of the Pop. III star, M is the mass of the N-body simulation, and n_b is the mean baryon density inside the star. Where n_b is the mean baryon density in the N-body simulation, and n_b is the mean baryon density in the N-body simulation. Where n_b is the mean baryon density in the N-body simulation. Where n_b is the mean baryon density in the N-body simulation.

1 This is the result of a calculation for dark matter density in the first stars that we perform with N-body dark matter simulations. However, in follow-up work, two of us participated in a paper (Freese et al. 2009) in which we performed an exact calculation including radiative cooling. The results changed by less than a factor of two, so that we feel comfortable using Eq. (4). In that same paper we also considered a core alternative to an NFW profile as our starting point for the adiabatic contraction and, again, obtained essentially the same result. Our results for DM densities in the first stars appear to be quite robust.

2
\[M_{\text{tot, BH}} = 4 \pi \times 10^9 \text{ g} (10 M) \]

3.2 Accretion onto the PBHs from stellar material

In this paper we study the effects of PBHs on the stars on the main sequence, once they have fusion proceeding in their cores. The PBHs are much more important during this stage than during the protostellar collapse phase. Since they are surrounded by a high density stellar environment, they accrete and emit radiation. As a maximum possible value, the accretion luminosity for a single PBH cannot exceed the Eddington limit:

\[L_E = \frac{4}{3 \pi} \frac{G M_{\text{BH}} M_p}{r_h} = \frac{10^8}{10^{24}} \frac{M_{\text{BH}}}{g} \text{ erg/s} \]

where \(r_h \) is the Thomson cross section, \(L_E \) is the luminosity at which the outward radiation pressure compensates the gravitational attraction and stops the accretion process. Clearly, the Eddington luminosity is proportional to mass. In this case, the mass has been conservatively set to the mass of the BH (\(M_{\text{BH}} \)). In fact, the mass should include the optically thick gas surrounding the BH. Under this restriction, the maximum stellar luminosity from PBHs inside one star is realized when the accretion luminosity of every BH is at the Eddington limit, i.e.,

\[L_{E, \text{tot}} = N_{\text{BH}} L_E \times 10^6 \frac{M}{100 M} \text{ erg/s} \]

Since \(L_{E, \text{tot}} / M_{\text{PBH, tot}} \), the upper bound on the power emitted by PBHs is independent of the BH mass. This accretion powered luminosity is at least a few orders of magnitude smaller than the expected stellar luminosity for Pop. III stars. 4 \(\times 10^4 \) erg/s (6 \(\times 10^4 \) erg/s) for 10 and 100 M \(\text{PBHs} \) (Freese et al. 2008) stars respectively. The extra heat produced by accretion onto the PBHs inside the star has thus a negligible impact on the physics of the star.

As the PBHs accrete more matter and become more massive, the Eddington limit increases and the BH accretion luminosity becomes more and more important in the energy balance of the star. The Bondi accretion rate is (Bondi 1952)

\[M_{\text{BH}} = 4 \pi R_B^2 v_B = 1.4 \times 10^8 \frac{M_{\text{BH}}}{10^{24}} g^2 \frac{1 \text{ keV}}{T} \frac{10^{32} b}{1 \text{ g/cm}^3} \text{ g/s} \]

Here \(R_B = 2G M_{\text{BH}} v_B^2 \) is the Bondi radius. The quantity \(v_B \) is the typical velocity of the particles of the accreting gas with respect to the BH, and should account for both the thermal velocity of the particles \(v_T = \sqrt{3T/m} \), where \(T \) is the local temperature of the star, as well as the BH orbital velocity \(v_{\text{orb}} = G M_{\text{BH}}/(r-r_0) \), where \(M_{\text{BH}} \) is the stellar mass within a distance \(r \) from the center. Close to the center \(v_T \) is much larger, but for large \(r \) this relation is no longer true; instead, the BH orbital velocity may reduce the accretion rate, even by an order of magnitude. We here take \(v = v_r \) and use the Bondi formula to find an upper limit on the accretion rate, recognizing that this value may overestimate the true accretion rate. The differential equation \(M_{\text{BH}} = M_{\text{BH}}^2 \) has solution

\[M_{\text{BH}}(t) = \frac{M_0}{1 + M_0 t} \]

where \(M_0 \) is the BH mass at \(t = 0 \) and

\[M_0 = 1 \times 10^3 \frac{M_{\text{BH}}}{10^{24}} g \times \frac{1 \text{ keV}}{T} \frac{10^{32} b}{1 \text{ g/cm}^3} \text{ s} \]

3 Moreover, the Bondi formula holds in the ideal case of perfect spherical symmetry. In realistic situations, the non-zero angular momentum of the accreting gas and the presence of other effects (magnetic fields, turbulence, etc.) may diminish the accretion rate, since \(L_E \) must be smaller than \(L_{E, \text{tot}} \). The case of accretion onto BHs is however a complex phenomenon, because BHs have an event horizon and in principle may be capable of allowing an arbitrary amount of matter without exceeding the Eddington luminosity (Regelin an 1978, Bregelman et al. 2008). We will take the Bondi accretion as an upper limit (Regelin an 1978).
is the inverse of the characteristic accretion time of the BH. The accretion time scale is thus not shorter than
\[a \sim \frac{10^6}{M_{BH}} \frac{10^{24} g}{M_{BH}} \frac{T}{1 \text{ keV}} \frac{1 \text{ g/cm}^3}{b} \text{ yr} : \tag{13} \]

It is possible for even a single PBH with \(M_{BH} > 10^{24} \) g inside the star to eat the entire star. Such a case was discussed in Begelman (1978) in the context of a supermassive star capturing a BH in a bound orbit. The current scenario differs due to the fact that we are interested in the role of PBHs on Pop. III stars and their e vents on cosmology (e.g., reionization); here the PBHs are thought to com prise at least some measurable fraction of the DM in the universe and are therefore present in the halos containing the Pop. III stars before these even form. If the PBHs do not com prise the entire DM, then the PBH mass could be larger than we have discussed heretofore, though contributing only a small fraction of the critical density.

As we will show below, the maximum accretion rate computed here is somewhat slower than the rate for the formation of a larger BH at the center of the star; all the events combined thus lead to a big BH at the center.

3.3 Other mechanisms for energy release by PBHs

One may be also concerned about two other mechanisms in which PBHs can release energy: Hawking radiation (Hawking (1975, 1976)) and positron emission (Bambi et al. (2008b)).

3.3.1 Hawking radiation

The luminosity due to Hawking radiation is maximal for the smallest mass BHs. We thus consider the (unrealistic) possibility that all the cosmological DM is made of PBHs with mass \(M_{BH} = 10^{14} \) g. The Hawking luminosity per BH from the emission of a BH with mass \(M_{BH} = 10^{14} \) g is \(10^{25} \) erg/s (Page (1976)) and their total contribution to the power of a 10 M_\odot star would be at the level of \(10^{35} \) erg/s, roughly 2 or 3 orders of magnitude smaller than the ordinary stellar luminosity. If the mass of the star were 100 M_\odot, the relative contribution would be smaller, because the stellar luminosity increases by a factor 100, while the BH luminosity increases by a factor 10. Higher Hawking luminosity would demand smaller PBHs. However, if the PBHs had an initial mass \(M_{BH} = 10^{13} \) g, their lifetime would be \(< 10^5 \) yr, that is much shorter than the age of the Universe when first stars formed. Thus fusion luminosity always dominates over the Hawking radiation.

3.3.2 Schwinger effect

The second mechanism, positron production due to Schwinger effect at the BH horizon, has been recently discussed in Bambi et al. (2008b). Because protons are much more massive than electrons, it is much easier for BH to capture protons. Whereas the protons fall right into the BH, the electrons interact frequently via Compton scattering on their way into the BH and are prevented from falling in as easily. Hence the BH builds up a positive electric charge. For a BH mass \(M_{BH} < 10^{20} \) g, the electric field at the BH horizon can exceed the critical value for vacuum stability, i.e., \(E_c = m_e^2/c^2 \), so that electron (positron) pairs can be efficiently produced (Schwinger effect). Then, electrons are back captured while positrons escape. The net result is to convert protons of the surrounding plasma into 150 MeV positrons. The accretion rate of protons is (Bambi et al. (2008b))

\[N_p = 10^{30} \frac{M_{BH}}{10^{29} \text{ g}} \frac{1 \text{ keV}}{T} \frac{1 \text{ g/cm}^3}{b} \text{ s}^{-1} : \tag{14} \]

We note that mechanism is not the same as Bondi accretion, and that the expression above is not obtained from eq. (13). By contrast, Bondi accretion is the accretion of gas where particles collide with one another other, losing their tangential velocity but gaining radial velocity towards the star. This hydrodynam ic approximation is applicable if the characteristic length scale is larger than the
mean free path of particles. Here, the size of the BH is smaller than the proton mean free path, \(p \), and we consider protons at distances \(r < p \) with all velocities, so they are gravitationally bound to the BH. These protons lose energy by bremsstrahlung or synchrotron radiation near the BH and in this sense they are not non-interacting. The picture is very much different from the hydrodynamical one and the calculations of the proton accretion rate can be found in Bambie et al. (2008b). Nonequilibrium is reached between the accretion rate and the Schwinger discharge rate, the luminosity per BH is roughly (Bambie et al. 2008b))

\[
L_{\text{e}} = 3 \times 10^6 \frac{M_{\text{BH}}}{10^{30} \text{ g}} \left(\frac{1 \text{ keV}}{T} \right)^{3/2} \left(\frac{b}{1 \text{ g cm}^{-3}} \right) \text{ erg s}^{-1}
\]

For \(M_{\text{BH}} = 10^{20} \text{ g} \), this equation would then imply that the total Schwinger luminosity is roughly \(10^{38} \text{ erg s}^{-1} \) for a star of mass 10 (100 M\(_\odot \)) which is comparable to the fusion luminosity for 10 M\(_\odot \) stars given in Eq. (12) but far below the fusion luminosity for 100 M\(_\odot \) stars given in Eq. (11). However, this value of the Schwinger luminosity is never reached, because the rate for proton capture is

\[
10^9 \text{ s}^{-1} (6 \times 10^{10} \text{ s}^{-1}) \text{ for a } 10^2 \text{ (10 M\(_\odot \)) star, while the rate to create the } e^+ - e^- \text{ pairs is the product of the production rate per unit volume } \frac{m_e}{10^8} \text{ g} \text{ and the volume } e \text{ of the region around the BH in which the electric field exceeds the critical value } E_0. \]

The latter is a spherical shell of thickness about \(10^8 \) m, so the volume turns out to be \(\frac{4}{3} \pi \left(\frac{m_e}{10^8} \right)^2 \) where \(m_e = 2G_N M_{\text{BH}} \) is the BH gravitational radius. The pair production rate is \(\frac{m_e}{10^8} \) s\(^{-1}\) for a \(10^{10} \) g BH (the Schwinger discharge is fastest for this BH mass). Hence the equilibrium between the capture and the Schwinger mechanism is reached for a Schwinger luminosity that is several orders of magnitude lower than given above for the stellar mass \(M = \left(10 - 100 \right) M\(_\odot \) \). Thus fusion always dominates over the Schwinger effect as a heat source.

4 Formation of a larger black hole at the center of the star via Dynamical Friction

4.1 Main Sequence Star

The most important phenomenon associated with the PBHs inside the host stars is the formation of a larger BH at the center. It is well known that gravitational interactions cause everyday heavy body m owing into a gas of lighter particles to lose energy by dynamical friction (Binney & Tremaine 1987). Thus, PBHs inside a star are expected to sink to the center of the star, eventually forming one single large BH.

We will use Chandrasekhar’s dynamical friction formula to compute the time scale for the PBHs to sink to the center of the star. If we assume that the gas of light particles has a Maxwellian velocity distribution with dispersion \(\sigma \), then the deceleration of a BH moving at a velocity \(v_{\text{BH}} \) with respect to the rest frame of the unit is

\[
\frac{dv_{\text{BH}}}{dt} = -4G_N M_{\text{BH}} b \ln \left(\frac{v_{\text{BH}}}{v_{\text{BH}}^0} \right) \text{ erf}(X) \frac{2X \exp(-X^2)}{X^2}
\]

(16)

where \(v_{\text{BH}} = \left(\frac{2}{\sigma^2} \right) \), erf is the error function, \(b \) is the density of the background particles and \(\ln \left(\frac{M_{\text{BH}}}{m} \right) \) is the Coulomb logarithm \(\ln \). There are two possible regimes, depending on whether \(v_{\text{BH}} \) is larger or smaller than the velocity dispersion inside the star, \(v_{\text{BH}} < \sqrt{m} \) (Binney &

\[
\ln = \ln \frac{b_{\text{max}}^2}{G_N (M_{\text{BH}} + m)}
\]

where \(b_{\text{max}} \) is the maximum impact parameter, \(\sigma^2 \) is the mean square velocity of the gas and \(m \) the molecular weight. Numerical simulations show that \(b_{\text{max}} \) can be assumed of order the orbital radius of the object, say \(R \). Since

\[
G_N M(R) = R, \quad \text{a reasonable estimate of } m \text{ is } M(R) = M_{\text{BH}}.
\]
where r is the distance of BH from the star center, $J = r^2$ is the BH angular momentum per unit mass, is the azimuth angle, $v_{BH} = \sqrt{\frac{r}{M} + J^2/r^2}$,
\[M(r) = \int_0^r d^3 r_B(r) \]
is the stellar mass inside radius r, and
\[(v_{BH}) = 4 \frac{G^2}{N} M_{BH} \frac{b}{d} \frac{\text{erf}(x)}{v_{BH}^2} \left(\frac{2X}{e} \exp(-X^2) \right) \]

Since the characteristic gravitational time scale
\[s = \frac{r^3}{4 \frac{G^2}{M_{BH}} b \ln 1900 \frac{1 \text{g/cm}^3}{b} \frac{1}{s}} \]
is much shorter than the lower limit on the characteristic dynamical friction time scale
\[D_F = \frac{3}{4 \frac{G^2}{M_{BH}} b \ln 10^{24} \frac{g}{M_{BH}} \frac{1}{s} \frac{1}{s}} \frac{3}{10 \text{cm/s}} \frac{1}{b} \frac{10}{\text{yr}} \]
we can approximately solve eqs. (18) and (19) as follows. We may neglect the last term in the r.h.s. of eq. (19) and assume approximate equality $J^2 = G M (r) r$. Using this result we can integrate eq. (19), which now takes the form:
\[v_{BH} = \frac{3F(v_{BH})}{V_{BH} D_F} v_{BH} \]

and calculate the time of capture of all BHs at the stellar center. The result depends upon the initial velocity of the BH which we may estimate assuming that the BH is on a circular orbit of radius r determined by the stellar mass $M (r)$ interior to radius r, i.e., $v_{BH} = \frac{G N M (r)}{r}$. We end that, in the outer regions of the star, $v_{BH} \approx$ in which case eq. (24) scales as $v_{BH} = \frac{3}{D_F V_{BH}^2}$.
In the inner regions of the star, near the stellar center, we end the opposite limit of $v_{BH} = r$, in which case eq. (24) scales as $v_{BH} = \frac{v_{BH}}{2} (2 \frac{D_F}{v_{BH}})$ instead. Thus, in the latter case, the time of BH formation is about
\[t = 10 \frac{10^{24} g}{M_{BH}} \frac{3}{3 \frac{10 \text{cm/s}}{b} \frac{10}{\text{yr}}} \]

The reader might also be concerned whether we can neglect the third term in eq. (18) when considering the opposite limit as v_{BH} goes to zero. In this case, goes to v_{BH} in eq. (23). Again, the third term in eq. (18) is completely negligible and even more so than when eq. (24) depended upon.
where \(v_{BH}^i \) is the initial PBH velocity, so \(v_{BH}^i \) as well as \(R \) implies \(R \rightarrow 10^0 \) cm, while \(v_{BH}^f \) is the final PBH velocity, when \(R_c = 2 \times 10^4 \) cm, that is, when the orbit of the PBH is equal to the Schwarzschild radius of the final BH. In the case \(v_{BH}^i & \), the time scale becomes

\[
\tau = \frac{DF}{3} \left(\frac{1}{v_{BH}^i} - \frac{1}{v_{BH}^f} \right) \quad (26)
\]

which can be quite a bit longer than the one for the case \(v_{BH}^i \) is moderately larger than \(v_{BH}^f \). As shown later, this is not a problem, because we always have a sufficient number of PBHs at small radii, where \(v_{BH}^i \).

The case of very eccentric orbits does not significantly change the picture. A simple estimate can be obtained assuming radial motion and constant matter density \(\rho \). In the absence of dynamical friction, the motion of the BHs can be treated as a harmonic oscillator with period \(T \) and velocity \((R_0 = \frac{g}{v}) \) \(\cos (t g) \), where \(R_0 \) is the maximum distance from the center of the star and \(t \) is the time.

Since the maximum velocity exceeds \(3 \times 10^5 \) cm/s for \(R_0 > R \), the equation of motion of \(\rho \) is basically

\[
r = \frac{DF}{g} \left(\frac{r}{g} \right) \quad (27)
\]

The differential equation is that of an underdamped harmonic oscillator:

\[
r(t) = e^{-2t/\tau} \cos (\tau t) \quad (28)
\]

where \(\tau = \frac{DF}{g} \). The resulting time scale can easily be scaled to other BH masses since it is inversely proportional to \(\rho \).

To obtain more accurate quantitative estimates of the dynamical friction time scale on which the PBHs sink to the center of the star, we did numerical calculations assuming that the star can be modeled as an \(n = 3 \) polytrope, which is known to roughly reproduce the stellar properties of a star dominated by radiation pressure. We can then obtain density and temperature profiles for an 100 M_\odot star which are plotted in Fig. 1. If one does the full stellar structure of a star of a Pop. III star, the answer is different from that assuming a polytrope. The difference is on the order of at most tens of a percent.

Subsequently, we can now compute the time scale for the case of \(M_{BH} = 10^{24} \) solar mass. The resulting time scale can easily be scaled to other BH masses since it is inversely proportional to \(M_{BH} \).

To be specific, we investigated the case of a 100 M_\odot star. We found that the transition from fast to slow BH velocity (relative to gas particle velocity) takes place at \(R_c = 2 \times 10^4 \) cm. As explained above, the dynamical friction for BH outside of this radius is proportional to \(v_{BH}^2 \), while, for smaller radii it is proportional to \(v_{BH}^i \). Roughly 50% of the BHs are initially inside the radius \(R_c = 1.4 \times 10^4 \) cm; these BHs take 1 to 2 yr or less to sink to \(R_c \). We have also computed the time scale for infall BHs coming in from different initial radii \(R_i \) to the same value of \(R_c \); our results are shown in Table 1. Subsequently, each BH takes another 5 to 10 yr to sink from \(R_c \) to \(R_c = 4 \times 10^5 \) cm. The latter is the Schwarzschild radius of the final BH at the center of the star. Thus the time scale for half of the PBHs to form a single large BH at the center of the 100 M_\odot star is roughly

\[
\tau = 6 \times 10^{24} \frac{g}{M_{BH}} \quad (29)
\]

Thus for \(M_{BH} > 10^{22} \) solar mass, in a 100 M_\odot star, the time scale for the formation of a large central BH is less than a million years, which can have a significant impact on the evolution of the star. We note that, once the central BH mass is \(10^{25} \) solar mass, the (fastest possible) accretion time scale in Eq. (1) becomes comparable to the dynamical friction time scale Eq. (29); the result of both effects is a single large BH inside the star.

If the mass of the star is 10 M_\odot , the sinking time is not significantly different.
<table>
<thead>
<tr>
<th>R_i (cm)</th>
<th>M (R_i)</th>
<th>M (R_i)</th>
<th>(r_i) (g/cm3)</th>
<th>Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>10</td>
<td>10</td>
<td>0.5</td>
<td>205,000</td>
</tr>
<tr>
<td>2.4</td>
<td>10</td>
<td>0.9</td>
<td>3.1</td>
<td>30,000</td>
</tr>
<tr>
<td>1.4</td>
<td>10</td>
<td>0.5</td>
<td>8.7</td>
<td>11,000</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
<td>0.1</td>
<td>17.3</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Table 1: Numerical results of the time scale for BHs to move from a variety of initial radii R_i to a smaller radius $R_c = 10^6$ cm. $M(R_i) = M(R_i)$ is the fraction of the mass of the star inside the radius R_i, which is equal to the initial fraction of PBHs inside the radius R_i. (r_i) is the stellar density at R_i. The mass of the BH has been fixed to 10^{24} g.

Additional PBHs from outside the star may also fall onto the central BH via dynamical friction. For a baryon density profile that scales as $\rho_b(r) = \rho^{2/3}$ outside the star, we find that the dynamical friction time scale is

$$D_F = 2 \times 10^6 \text{yr} \left(\frac{r_i}{10 \text{lpc}} \right)^{1/5} \left(\frac{M_{BH}}{10^{24} \text{g}} \right)^{1/5}. \quad (30)$$

where r_i is the initial radius of the infalling PBH and this equation has been computed in the fast BH regime with $v_{BH} / v_{PBH} \ll 1$. Thus it takes a very long time for dynamical friction to be effective at pulling in BH from typical radii in the main halo. From closer in, the time scale can be significantly shorter, e.g., it takes 150,000 years for a 10^{24} g PBH to go from 3×10^2 cm (10 times the radius of the star) to the center. However, the amount of mass in PBHs inside this radius is 2×10^{24} g, more than an order of magnitude less than the amount already in the star from Eq. (30), and is therefore negligible. Thus dynamical friction does not pull in significant mass in PBHs from outside the star.

4.2 Protostellar Phase

One may ask whether dynamical friction is already effective during the protostellar phase, long before the Pop III star comes to exist on the main sequence. Early on, there is a collapsing molecular cloud which is very dense and becomes more dense as it cools via molecular hydrogen cooling. The protostellar clouds stop collapsing once they become protostar nuggets with 10^6 M$_\odot$ in mass, hydrogen densities of 10^{21} cm$^{-3}$, and radii 5×10^3 cm (Yoshida et al. 2008)). In the standard picture of Pop III star formation, there is then accretion onto these nuggets until the stars reach 100 M$_\odot$ and go onto the main sequence.

Can the BHs already sink to the center during this earlier phase and cause the protostar to go directly to a BH, avoiding the main sequence phase altogether? Inside the protostar, the appropriate regime for dynamical friction is that of slow BHs, with $v_{BH} / v_{PBH} \ll 1$. Such protostellar clouds have much lower densities than the subsequent Pop III stars on the main sequence, and consequently are ineffective at causing the PBHs to slow down via dynamical friction. We have checked that the time scales are too long for PBHs to play any role in the collapse of the protostellar cloud, unless the PBHs are much more massive than have been considered in this paper. However, once the nugget forms, the baryon density is high enough to trap PBHs of mass $> 10^{26}$ g with dynamical friction. At this point, the Kelvin-Helmholtz time scale is $D_F = 10$ yr. The amount of DM (PBHs) inside the nugget is 10^8 g, so that the initial central BH is only this big. However, it quickly eats the rest of the 10^2 M$_\odot$ protostar, and presumably can grow to at least the value of the original 1000 M$_\odot$ Jeans mass of unstable material.

5 Eating Pop. III stars

We have shown that the PBHs can sink to the center of the star and form a single larger BH in a reasonable time scale (for $M_{PBH} > 10^{22}$ g) to change the evolution of the star. We now need to address the subsequent fate of the star: can the BH really accrete at the Bondi rate and swallow the
whole star quickly? Alternatively, does the radiation pressure from the accretion luminosity slow down the accretion rate and make the star have a normal evolution? In general, the accretion of matter onto an object with a solid surface (e.g., a neutron star) is limited by the radiation produced by the accreting gas,

\[L_a = \frac{M_a}{\tau} \]

where \(L_a \) is basically the gravitational potential per unit mass on the surface of the object. Nevertheless, in the case of accretion onto BH, the picture is more complex and the phenomena richer. If the cooling mechanism is efficient, the gravitational energy of the accreting gas is radiated away and the gas temperature is much smaller than the local virial temperature. This case is similar to the one involving objects with a solid surface: is equal to the binding energy per unit mass at the Innermost Stable Circular Orbit (ISCO), since we presume that the gas inside the ISCO falls quickly into the BH and is unable to emit further radiation. So, for Schwarzschild BHs \(\text{Sch} = 0.057 \), while for Kerr BHs the efficiency parameter can be as high as 0.42 (Shapiro & Teukolsky (1983)). On the other hand, if the cooling is not efficient, the gravitational energy is stored as thermal energy into the gas rather than being radiated. That can occur if the gas density is very low and particles do not scatter each other very much, or in the opposite case, when the medium is optically thick and radiation is trapped, as happens for high accretion rate. Here, unlike neutron stars, BHs have an event horizon and the energy can be lost into the BH.

We will argue that the BHs at the center of the first stars may accrete at the Bondi rate, with the star adjusting to keep the luminosity equal to the Eddington value, corresponding to a small value of in Eq. (31). With Bondi accretion, the BHs can swallow the star in a short time, becoming 10(1000) M BHs. There is considerable discussion of BHs accreting material inside stars in the literature. We present here some of the possibilities for the evolution of these objects. In all cases, the end result is a 10(1000) M BH. In the case of radiative stars, we may follow Begelman (1978), where the author discusses the steady accretion onto a Schwarzschild BH of a non-relativistic gas where the radiation pressure at infinity is much larger than the particle pressure and the radiation (particle coupling is provided by the Thomson scattering. The medium is optically thick at all the relevant scales and radiation is transported by diffusion and conduction. Here one ends a trapping surface at the radius

\[R_t = \frac{M_{BH}}{4 \pi P} \]

inside which the radiation is convected inward and swallowed by the BH faster than it can escape to infinity. If \(R_t \) is much larger than the Bondi radius \(R_B = \frac{2GM}{v^2} \), then the radiation is effectively trapped, that is it is convected inward faster than it can diffuse outwards. In our case, using Eq. (10),

\[\frac{R_t}{R_B} = 6 \times 10^6 \frac{M_{BH}}{10^{10} g} \frac{b}{1 \text{ g cm}^3} \frac{V}{3 \times 10^3 \text{ cm s}^{-1}} \]

Given the typical densities and temperatures inside Pop. III stars, this condition is verified, the process is essentially adiabatic and in principle the BH is capable of accreting at an arbitrary high rate. Since radiation is trapped, the luminosity produced by the accretion process can not exceed the Eddington value, and the radiative efficiency effectively adjusts in order to keep \(L_{\text{Edd}} \) (Begelman (1978)). As long as accretion is spherical, with zero angular momentum, the central PBH can accrete ad libitum, and eventually swallow the whole star. In the presence of limited angular momentum we can argue that as long as the accretion disk that forms is all contained within the trapping radius, then radiation remains trapped and the growth of the BH can continue (Volonteri & Rees (2005)). We can take as a safe limit the condition that the disk is allowed in the trapping radius; this provides a lower limit to when accretion stops. The outer edge of the accretion disk, \(R_B \), is roughly where the angular momentum of the gas equals the angular momentum of a gas element in a Keplerian

6 Clearly \(R_t \) cannot be larger than the radius of the star, \(R_\odot \). In this case, we take \(R_t = R_\odot \).
circular orbit, therefore:

$$\frac{R_p}{R_B} = \frac{P}{2} \left(\frac{V(R_B)}{c_s} \right)^2$$

where c_s is the sound speed and $V(R_B)$ is the rotational component of the velocity at the Bondi radius. In this case it still seems possible that the radiative efficiency drops so that the BH can accept the matter without greatly exceeding the Eddington luminosity. Relating the assumptions of zero angular momentum and absence of mechanical turbulence and/or magnetic fields, the actual accretion rate decreases, but the evolution of the star is slowed down as well. On the other hand, for very high angular momentum, it sounds reasonable that the system looks like a collapsar (McFadyen & Woosley (1999)).

Convective stars: 100 M$_\odot$ Pop. III stars are primarily convective (Heger et al. (2007)). One can compute the Eddington luminosity in the case of a BH inside a mostly convective star with a radiative outer envelope as follows (Begeleg et al. (2008)). There is no radiation pressure inside the convective zone, so the luminosity from the BH can easily get to the outer envelope. Outside there radiation pressure does exist. Then the Eddington luminosity at this outer region (which basically contains the entire star) is the relevant quantity. In short, one should use the Eddington luminosity of the star rather than Eddington luminosity of the BH, which means substituting M_{BH} for M_{BH} in Eq. (3). Doing this, one finds

$$L_{BH} = L_{Edd} = 10^{40} \text{ erg/sec (M = 100 M}_\odot)$$

This value is significantly larger than the numbers obtained in Eq. (8) because it is the Eddington luminosity of the star rather than that of the BH. Here the accretion luminosity is bigger than the fusion luminosity. The consequence for the star will be that it must expand, it will cool, and fusion will shut off. At that point the star looks like the quasistars in Begeleg an et al. (2008). These authors worked out the stellar structure for a BH of arbitrary mass inside a star of arbitrary mass, where the only heat source is accretion luminosity. These authors were studying a different problem: they were not looking at Pop. III stars in 105 M$_\odot$ haloes; instead they were looking at cooler regions of similar content in 107 M$_\odot$ haloes. Although the context was different, the resultant objects should be very similar.

There are 2 possibilities for the accretion: 1) The accretion may be spherical. In that case it can be very small, as discussed in Binney:ogan & Lovelace (2002). There is no problem having $M_{BH} = 10^5 M_\odot$ so that the Eddington luminosity in Eq. (5) is compatible with Bondi accretion at $M_{BH} = 10^{40}$ erg/sec. Then it takes a thousand years to swallow the 100 M$_\odot$ star (see Eq. (5)) in Begeleg an et al. (2008)). Even more interesting is to contemplate the possibility that the star is accreting further mass from the outside, i.e., at a rate 0.01 M$_\odot$/yr (McKee & Tan (2007)). Then the BH can end up very large as seen in Eq. (5) of Begeleg an et al. (2008), possibly eating all 105 M$_\odot$ of baryons in the DM halo.

2) The accretion may be in a disk. If the disk is thin and radiatively efficient, then 0.1 M$_{BH}$ and M_{BH} (the accretion rate is much slower than Bondi). However, in different geometries, the accretion stops once you hit the opacity crisis. This happens when the photospheric temperature at the edge of the star goes down to a critical value, so that the radiation pressure in the outer envelope vanishes, nothing prevents the star from going super-Eddington and blowing off all its gas. This leaves behind an exposed BH that no longer accretes anything. They find that for a fixed stellar mass of 100 M$_\odot$, the resultant object is a 10 solar mass BH in 107 years, but nothing bigger, due to this opacity crisis. On the other hand, if the star is accepting further accretion from the outside, then you can end up with a 400 M$_\odot$ BH if the accretion rate of material onto the star is 10$^{-2}$ M$_\odot$/yr (McKee & Tan (2007)) or 4000 M$_\odot$ if the accretion rate onto the star is 10$^{-1}$ M$_\odot$/yr. Again, it takes 107 years to reach this. In the latter case, during this 107 years, you have a "PBH Dark (matter
powered) Star", i.e. a Pop. III star powered by accretion luminosity rather than by fusion. The exact accretion rate is not the less quite uncertain. Convective energy transport is itself limited and bounds the accretion rate (Begeleman et al. 2008))

\[M_{\text{BH}} \leq \frac{M_\odot c^2}{10^5} \]

Since \(c \approx 10^3 \), the actual accretion rate might be much smaller than the Bondi rate \(M_{\text{BH}} \), unless \(c \) is quite small, say \(c < 10^4 \). This is not a problem for spherical accretion, but might affect results for disk accretion. Regardless, this will require more study. Even accretion onto the first stars without the additional effects from primordial black holes is currently still an unsolved problem.

We have argued that the BHs at the center of the first stars may accrete at the Bondi rate, so that the BHs can swallow the star in a short time, becoming 10(1000 M\(_\odot\) BHs. This mechanism may produce the seeds to generate the supermassive BHs which have been observed even at high redshifts and at the centers of galaxies.

6 Summary and Conclusions

Primordial black holes in the mass range \(10^7 \) \(10^6 \) g are viable dark matter candidates. They may be produced in the early Universe by any mechanism and so far there are no constraints on their possible abundance. A summing that they make part of the cosmological dark matter, we expect that due to dynamical friction primordial black holes will make up a small but significant fraction of the first stars. Primordial black holes with masses smaller than about \(10^{22} \) g do not have a significant effect on the evolution of primordial stars, because their time scales for Bondi accretion and for dynamical friction are larger than the lifetime of a Main Sequence star of 10^10 M. On the contrary, primordial black holes heavier than \(10^{22} \) g might sink quickly to the center of the star by dynamical friction and from a larger black hole, which could swallow the whole star in a short time. So, Pop. III stars would likely have lived for a short time, with implications for the reionization of the Universe after the cosmic dark ages and the nature of dark supernovae; in fact they may preclude any supernovae from the first stars. Although the BH swallowing the star shortens the star's lifetime and its contribution to reionization, the newly formed hole can become a new, alternative source of ionizing photons. The 10(1000 M\(_\odot\) BHs that form by swallowing the Pop. III stars may grow even larger; they reside in 1000 M\(_\odot\) of gas that are in excess of the Jeans mass and may fall into the BHB. Black holes of mass 1-1000 M\(_\odot\) may result.

Depending on the accretion mechanism at this point, the black hole may accrete more matter and grow larger. The 10^6 M\(_\odot\) in small clusters may contain 10^7 M\(_\odot\) of baryonic matter. This accretion from the medium, as well as from other halos merging with the one containing the black hole, would be from low density gaseous material (\(10^{-24} \) g/cm^3), which is considerably different from the accretion we considered earlier from within the star (\(10^{-21} \) g/cm^3). In the case of accretion from the low density gas outside the star, feedback may become important. As we have shown, the time scale for the Pop. III stars to become black hole can be much shorter than the lifetime of the Pop. III stars (3 Myr for a 100 M\(_\odot\) star), so that the feedback due to stellar heating and ionization of the medium surrounding the black hole may be significant. However, the accretion may well be in a disk, with the accompanying radiation pressure as well as radiative feedback due to the accretion (Silk & Rees 1998; Springel et al. 2005; Ciotti & Ostriker 2001; Li et al. 2007; Pelupessy et al. 2007; Alvarez et al. 2008) limiting the accretion rate. A recent study (Alvarez et al. 2008)) of the radiative feedback from the black hole accretion has been done for the case of = 0.1 and a Pop. III star that has undergone Nussl lifespan, and has reduced accretion onto the BH; the story may be different here. We have not studied these later stages. Since the end products are 10^10 M\(_\odot\) black holes, these objects may serve as seeds for intermediate mass black holes; the supermassive black holes which have been seen already at high redshifts (Halton & Loeb 2001; Volonteri & Rees 2006) and may be the progenitors of the supermassive black holes which are in the center of every normal galaxy today.
Even if the primordial black holes do not explain the entirety of the dark matter in the Universe, they may still play a role in the first stars. Heavier primordial black holes than the ones studied here, i.e., primordial black holes with $M_{BH} > 10^{26} \text{ g}$, are observationally constrained to be only a fraction of the total dark matter in the Universe, and yet could be important in the first stars. It would only take one such black hole to be pulled into the star via dynamical friction (time scale 10^7 yr for a 1 M_{\odot} black hole to get from 1 pc out into the center of the star) and to quickly eat up the whole star. In fact, a single massive primordial black hole would already have a major effect during the protostellar phase while the molecular cloud is collapsing down into a protostar: the molecular cloud would already collapse into a black hole. In this case the fusion phase of a Pop. III star would be completely avoided. Another possibility would be to have the dark matter consist primarily of Weakly Interacting Massive Particles (WIMPs) but with a small component of primordial black holes. In that case there would be dark stars powered by WIMP annihilation (Spolyar et al. (2008)), which would become black holes once the primordial black holes sink to the center of the dark star.

In principle, if the effects described in this paper do not take place, one could place bounds on the black hole abundances of various masses. For example, if primordial black holes swallowed primordial stars too quickly, the cosmological metal enrichment would be problematic and in absence of viable alternatives, the current allowed mass range $M_{PBH} \sim 10^7$ - 10^6 g could be further reduced to 10^3 - 10^2 g.

Acknowledgments

C.B., A.D., and D.S. thank the Michigan Center for Theoretical Physics (MCTP) for hospitality during their visits in July 2008, when this work was started. C.B. was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. K.F. was supported in part by the DOE under grant DOE-FG02-95ER40899. D.S. was supported by a GAANN fellowship.

References

A. Lazarev et al., 2008, arXiv:0811.0820
Bambi C., Dolgov A.D. & Petrov A.A., 2008a, PLB, 670, 174
| |, 2008b, arXiv:0806.3440
Dolgov A. & Silk J., PRD, 1993, 47, 4244
Freese K., Spolyar D. & Aguine A., 2008, JCAP 0811:014
Hawke I. & Stewart J. M., 2002, CQG, 19, 3687
|, 1989, PLB, 231, 237
Heger A. & Woosley S., private communication
Jedamzik K., PRD, 1997, 55, 5871
Page D. N., 1976, PRD, 13, 198
Rubin S. G., Khlopov M. Y. & Sakharov A. S., 2000, Grav. & Cosmol., 6, 51
Seto N. & Cooray A., 2004, PRD, 70, 063512
Spolyar D., Freese K. & Gondolo P., 2008, PRL, 100, 051101
Figure 1: Density (top panel) and temperature (bottom panel) profile for the $n = 3$ polytrope star of mass 100 M used in our simulations.