Con nement in Polyakov Gauge

Florian M arhauser and Jan M . Paw low ski

1Instut fur Theoretische Physik, Universitat Heidelberg,
Philosophenweg 16, D-69120 Heidelberg, Germany

We approach the non-perturbative regime in 149 temperature QCD within a formulation in Polyakov gauge. The construction is based on a complete gauge xing. Correlation functions are then computed from W isconian renom alisation group ows. First results for the con nent decon nent phase transition for SU (2) are presented. Within a simple approximation we obtain a second order phase transition within the Ising universality class. The critical tem perature is computed as $T_c = 305$ MeV.

PACS numbers: 05.10.Lc, 12.38.Aw, 11.10.Wx

I. INTRODUCTION

One of the remaining problems in low energy QCD is the quantiative exl theorectical description of the con nent decon nent phase transition. A part from its genuine importance in porent for a first principle understanding of the con nent physics in QCD, it is also a key input for the evaluation of the QCD phase diagram.

In the past decade much progress has been achieved both in continuum studies as well as with lattice computatons for our understanding of the low energy sector of QCD, for reviews see e.g. [1,2,3,4,5]. For an analytcal description of the low energy sector, topological degrees of freedom are likely to play an important role for the con nent decon nent phase transition, as well as for chiral symmetry breaking, see e.g. [6]. The latter has been very successfully described within instanton models, whereas the con nent properties of the theory are harder to incorporate within semi-classical descriptions. Indeed, tracking down those topological degrees of freedom relevant for con nent in the physical vacuum has its intricacies as the physical vacuum is more likely to contain a rather dense packing of topological configurations, making their detection difficult. Moreover, models of con nent are rather based on topological defects instead of stable topological objects, the construction of which out of these defects is plagued by non-localities.

Still, these defects are manifest in the Polyakov loop, the order parameter in pure Yang-Mills theory [7], and can be extracted by an appropriate gauge xing, see e.g. [8,9]. Gauge xing is also mandatory in most continuum formulations of QCD for removing the redundant gauge degrees of freedom. This is mostly seen as a liability of such an approach, as a formulation of QCD in gauge-variant variables complicates the access to gauge invariant observables. However, gauge xing is nothing but a reparametrisation of the path integral and can be used for even facilitating the computation of at least a subset of observables. Indeed, this point of view has been exploited much in the discussion of con nent mechanisms based on topological defects. Moreover it also has become clear that these are not competing physics mechanisms but rather different facets of the same global physics picture which still awaits a fully gauge invariant description, see e.g. [10]. Despite this final step we have learned much from the combined investigations which together built a nearly complete mosaic.

The effective potential of the Polyakov loop has also been used as an input for effective field theories that give some access to the QCD phase diagram [11]. At finite temperature and vanishing density, these models have led to impressive results in particular for them dynamical quantities. At finite chemical potential, the back-reaction of the matter sector to the gauge sector is difficult to quantify in these models, and the chiral and con nent decon nent phase transitions are sensitive to the details of this back-reaction. This also holds true for the question of a quarkyonic phase with con nent and chiral symmetry at finite density [12]. For an extension of these models one has to resort to a field-theoretical description of the gauge sector which allows to systematically study the impact of a finite chemical potential on the dynamical stability of the gauge field [13].

In summary, the evaluation of Green functions of the Polyakov loop allows for a direct access to the physics in the strongly coupled sector of QCD, and in particular the con nent decon nent phase transition. In the present work we initiate a non-perturbative study of QCD in Polyakov gauge. In this gauge the Polyakov loop takes a particularly simple form and is directly related to the temporal component of the gauge field. A first integrating-out the spatial components of the gauge field, and from the Polyakov loop variables, the gauge field sector of QCD resembles a scalar field. The dynamics of low energy Yang-Mills theory is then incorporated by evaluating W isconion ows for the effective action [14,15,16,17]. We derive the ow equation for QCD in Polyakov gauge, and solve it for the full effective potential of the Polyakov loop. Due to the formulation in Polyakov gauge a simple truncation already su ces to encode the physics of the con nent decon nent phase transition. The results include the temperature dependence of the Polyakov loop, and the critical temperature. We also compare the present approach to lattice studies [18], and to a recent continuum computation in Landau gauge [19].
II. QCD IN POLYAKOV GAUGE

In QCD with static quarks the expectation value of a static quark \(h_q(x) \) serves as an order parameter for con nement. It is proportional to the free energy \(F_q \) of such a state, \(h_q(x) \exp\left(-\frac{E_q}{T}\right) \), where \(T = 1/T \) is the inverse temperature. Hence in the con nement phase at low temperature, the expectation value vanishes, whereas at high temperatures in the decon nement phase, it is non-zero. The Polyakov loop variable, \(L(x) \), is the creation operator for a static quark,

\[
L(x) = \frac{1}{N_c} \text{tr} P(x) ;
\]

where the trace in \([1] \) is done in the fmdinant representation, and the Polyakov loop operator is a W gner-W ison loop in time direction,

\[
P(x) = P_0 \exp \int_0^1 dx A_0(x_0 ; x) ;
\]

Here \(P_0 \) stands for path ordering. We conclude that \(h_q(x) L(x) \), and thus the negative logarithm of the Polyakov loop expectation value relates to the free energy of a static fmdinant color source. Moreover, \(h_q \) measures whether center symmetry is realized by the ensemble under consideration, see eg. \([1,6,7,8,9,10]\).

More specifically we consider gauge transformations \(U(x_0 ; x) \) with \(U(0;x)U^{-1}(x) = Z \), where \(Z \) is a center element. In SU(2) the center is \(Z_2 \), whereas in physical QCD with SU(3) it is \(Z_3 \). Under such center transformations the Polyakov loop operator \(P(x) \) in \([2]\) is multiplied with a center element \(Z \),

\[
P(x) = Z P(x) ;
\]

and so does the Polyakov loop, \(L(x) = Z L(x) \). Hence, a center-symmetric con nement (disordered) ground state ensures \(h_L = 0 \), whereas decon nement \(h_L \neq 0 \) signals the ordered phase and center-symmetric breaking,

\[
\begin{align*}
T < T_c : & \quad h_L(x) = 0 ; \quad F_q = 1 ; \\
T > T_c : & \quad h_L(x) \neq 0 ; \quad F_q < 1 ;
\end{align*}
\]

The expectation value of the Polyakov loop can be deduced from the equations of motion of its effective potential \(L_1, L_2 \). We shall argue, that the con nution of the latter greatly simplifies with an appropriate choice of gauge. Indeed, gauge xing is nothing but the choice of a specific parametrization of the path integral, and a conveniently chosen parametrization can substantially reduce the task of computing physical observables.

In the present case our choice of gauge is guided by the den and of a particularly simple representation of the Polyakov loop variable \(L \). A gauge ensuring time-independent \(A_0 \) leads to both, a trivial integration in \([2]\) and renders the path ordering irrelevant. Having done this one can still rotate the Polyakov loop operator \(P(x) \), \([2]\), into the Cartan subgroup. The above properties are achieved for time-independent gauge conf quations in the Cartan subalgebra, i.e. \(A_0(t_0 ; x) = A_0^x(x) \). For SU(2) this reads

\[
A_0(t_0 ; x) = A_0^x(x) \frac{3}{2}
\]

and entails a particularly simple relation between \(A_0 \) and \(L \),

\[
L(x) = \cos \frac{1}{2} g A_0(x) ;
\]

Note that this simple relation is not valid on the level of expectation values of \(L \) and \(A_0 \) in SU(2) we have \(h_L \neq L \). However, in the present work we consider an approach that gives direct access to the effective potential \(V_\text{eff} \) for the gauge field, as distinguished to those for the Polyakov loop, \(U_\text{eff} \).

Here we argue that \(L \) also serves as an order parameter: to that end we show that the order parameter \(L \) \(h_L \) is bounded from above by \(L \).

Further more we show that in the center-symmetric phase with vanishing order parameter \(h_L \), \(L \) and \(h_L \) also the observable \(L \) vanishes. For the sake of simplicity we restrict the explicit argument to SU(2), but straightforwardly extends to general SU(N).

First we note that we can use \([5]\) for expressing the expectation value of \(A_0 \) in terms of \(L \),

\[
\frac{1}{2} g h_L = \frac{\hbar \cos L / i}{2} \cos i = \frac{\hbar \cos L / i}{2} \cos i ;
\]

We emphasize that the rhs of \([2]\) defines an observable as it is the expectation value of an gauge invariant object. This observable happens to agree with \(h_L \) in Polyakov gauge.

It follows from the Jensen inequality that the expectation value of the Polyakov loop, the order parameter for con nement, is bounded from above by \(L \).

\[
L = \left[L_1, L_2 \right] ;
\]

for gauge fields \(g h_L = 2, 2 \). Note that it is sufficient to consider the above interval due to periodicity and center symmetry of the potential. This means we restrict the Polyakov loop expectation value to \(h_L = 0 \). Negative values for \(h_L \) are then obtained by center transformations, \(L \). Eq. \([3]\) is easily proven for SU(2) from \([9]\) as \(\cos(x) \) is concave for \(x \leq 2 \). Thus, for \(h_L > 0 \) it necessarily also follows that \(g h_L = 2 < 2 \).

In turn we can show that \(g h_L = 2 = \frac{1}{2} \), if the Polyakov loop variable \(h_L \) vanishes. This then entails that \(L \) vanishes. To that end we expand \(L \) about

\[1\] A reformulation in terms of the Polyakov loop variable only along the lines outlined in \([1]\) is in progress.
its mean value \(h \), that is \(L = h \). Inserting this expansion into (7) we arrive at

\[
\frac{1}{2} \, hA_0 = \arccosh Li \Rightarrow \frac{1}{\text{Li} + h} \frac{1}{2} \, h \text{Li} + O \, h \text{Li}^2:
\]

\[(9)\]

In the center-symmetric phase \(\text{Li} = 0 \), cf. (4). Under center transformations \(L \) transform according to (6) \(L \odot Z \) with \(Z = 1 \) and hence \(L \odot Z \odot L \). It follows that \(h \odot \text{Li}^n = 2 \odot h \odot \text{Li}^n = 0 \), and all odd powers in (8) vanish. The even powers since \(\arccosh \) is an odd function and hence has vanishing even Taylor coefficients \(\arccosh^2(0) \). Thus, in the center-symmetric phase we have

\[
\frac{1}{2} \, hA_0 = \arccosh Li = \frac{1}{2}:
\]

\[(10)\]

In summary we have shown

\[
T < T_c : \quad L \text{[A}_{0}\text{i}] = 0 : \quad \frac{1}{2} \, hA_0(\pi) i = \frac{1}{2}; \quad \frac{1}{2} \, hA_0(\pi) i < \frac{1}{2} ; \quad (11)
\]

We conclude that \(hA_0 \) in Polyakov gauge serves as an order parameter for the cone-membrane phase transition, as does \(L \text{[A}_{0}\text{i}] \). Thus, we only have to compute the effective potential \(V_e \) \(hA_0 \) in order to extract the critical temperature and exponent. This potential is more easily accessed than that for the Polyakov loop. It is here where the specific gauge comes to our aid as it allows the direct physical interpretation of a combination of the gauge field. This property has been already exploited in the literature, where it has been shown that \(hA_0 \) in Polyakov gauge is sensitive to topological defects related to the cone-membrane mechanism (3,4).

III. Quantisation

We proceed by discussing the generating functional of Polyakov gauge Yang-Mills theory. For its derivation we use the Faddeev-Popov method. Specifying to \(SU(2) \), the Polyakov gauge (3) is in principle determined by the gauge xing conditions

\[
\theta_0 \text{tr}_{3A_0} = 0 ; \quad \text{tr}(12)A_0 = 0 ; \quad (12)
\]

where the \(i \) are the Pauli matrices. However, the gauge xing (12) is not complete. It is unchanged under time-independent gauge transformations in the Cartan subgroup. These remaining gauge degrees of freedom are completely xed by the following conditions,

\[
\theta_1 \, d\times_0 \text{tr}_{3A_1} = 0 ; \quad \text{tr}(12)A_1 = 0 ; \quad \theta_2 \, d\times_0 \text{dx}_1 \text{tr}_{3A_2} = 0 ; \quad \text{tr}(12)A_2 = 0 ; \quad \theta_3 \, d\times_0 \text{dx}_1 \text{dx}_2 \text{tr}_{3A_3} = 0 ; \quad (13)
\]

The gauge xings (13) are integral conditions and are the weaker the more integrals are involved. Basically they eliminate the corresponding zero modes. This can be seen directly upon putting the theory into a box with periodic boundary conditions, \(T^4 \), see e.g. (3).

The gauge xing conditions (12, 13) lead to the Faddeev-Popov determinant

\[
F_P \{ A \} = (2T)^2 \frac{\sin^2 \left[\frac{1}{2} \left(A_3 - \frac{1}{2} \right) \right]}{2T} ; \quad (14)
\]

the computation of which is detailed in appendix A. The integration over the longitudinal gauge fields precisely cancels the Faddeev-Popov determinant in the static approximation \(\theta_0 A_0 = 0 \), see Appendix A. Finally we are left with the action

\[
Z [\{ A \}] = \frac{1}{2} d^4 x A_0 \theta_2 A_0
\]

\[
\text{exp} \left[\frac{1}{2} \int d^4 x A_0 \theta_2 A_0 \right] \text{exp} \left[\int d^4 x J_0 A_0 + \int d^4 x J_3 ; \; \text{A}_3 ; \; \text{A}_3 \right] ; \quad (16)
\]

In (16) we have normalised the temporal component \(J_0 \) of the current with a factor \(\theta_2 \). The classical action \(Z [\{ A \}] \) is inherently non-local as it contains one-loop terms \(s \), the Faddeev-Popov determinant as well as the integration over the longitudinal gauge fields.

Instead of putting \(Z [\{ A \}] \) in (16) we shall compute the effective action \(Z [\{ A \}] \) with a functional renormalisation group approach (3,4, 14,15,16,17). To that end we introduce an infrared cut-off to the transversal spatial gauge fields and in the temporal gauge before m odifying the action, \(S ! S_o + S_1 [A_0] + S_2 [A_3] \), with infrared scale \(k \), and cut-off terms \(s \)

\[
S_k [A_0] = \frac{1}{2} d^4 x A_0 R_{0k} A_0
\]

\[
S_k [A_3] = \frac{1}{2} d^4 x A_3 R_{3k} A_3 ; \quad (17)
\]

The regulators \(R_k \) in (17) are chosen to be moment dependent and required to provide masses at low momenta and to vanish at large momenta. For \(k \to 0 \) they vanish identically.

They can be written as one single regulator \(R_{ij} \), which is a block-diagonal matrix in effective space with entries \(R_{ij} = R_{0jk} \), and \(R_{ij} = R_{3jk} \), \(i,j \), where the transversal projector is defined by

\[
\gamma_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} ; \quad (18)
\]
The above structure is induced by the fact the $A_{\gamma;\mu}$ are transversal, and hence $R_{\gamma;J}$ only couples to the transversal degrees of freedom.

The orw of the cut-off dependent effective action θ_{k} is then given by W etaller’s equation [14,15,16] for Yang-Mills theory [3,17] in Polakov gauge,

$$\theta_{k} = \frac{1}{2} \left[\frac{d^{3}p}{2} \right] \left[\left(\begin{array}{c} \frac{1}{R_{A}} \theta_{kR_{\mu}} \\
0 \end{array} \right) \right]$$

$$\times \left[\begin{array}{c} \frac{1}{2} + R_{A} \end{array} \right] \theta_{kR_{\mu}} \right)^{0 \rightarrow 1} \frac{d^{3}p}{2} \right] \left[\left(\begin{array}{c} \frac{1}{R_{A}} \theta_{kR_{\mu}} \\
0 \end{array} \right) \right]$$

where t is the RG time $t = \ln(k=\frac{1}{2})$, and λ is some reference scale.

IV. APPROXIMATION SCHEME

Eq. (19) together with an initial effective action at some initial ultraviolet scale $k = \sqrt{\hspace{1pt}}$ provides a definition of the full effective action at vanishing cut-off scale $k = 0$ via the integrated α_{0} for the solution of (19) we have to resort to its effective action in gauge theories such an approximation also requires a control of gauge invariance, see e.g. [17].

Here we shall argue that in Polakov gauge a rather simple approximation to the full effective action already serves to describe the non-ent-decon-ent phase transition, and, in particular, to estimate the critical time-temperature. We compute the orw of the effective action $A_{0;\gamma}^{\gamma}$ in the following truncation

$$k \left[A_{0;\gamma}^{\gamma} \right] = \frac{Z}{Z} \frac{1}{2} \left[\frac{d^{3}x}{2} \right] \left[\left(\begin{array}{c} \frac{1}{R_{A}} \theta_{kR_{\mu}} \\
0 \end{array} \right) \right]$$

$$\times \left[\begin{array}{c} \frac{1}{2} + R_{A} \end{array} \right] \theta_{kR_{\mu}} \right)^{0 \rightarrow 1} \frac{d^{3}p}{2} \right] \left[\left(\begin{array}{c} \frac{1}{R_{A}} \theta_{kR_{\mu}} \\
0 \end{array} \right) \right]$$

$$\times \left[\frac{1}{2} + R_{A} \right] \theta_{kR_{\mu}} \right)^{0 \rightarrow 1} \frac{d^{3}p}{2} \right] \left[\left(\begin{array}{c} \frac{1}{R_{A}} \theta_{kR_{\mu}} \\
0 \end{array} \right) \right]$$

with k dependent wave function renormalisations $Z_{0;\gamma}$. The effective action (20) relates to the order parameter $H_{L}(x)l_{y}$ as well as its two point correlation $H_{L}(x)l_{y}^{2}(y)$ via the effective potential $V_{A_{0}} = V_{A_{0}}[A_{0}]$ as explained in section. The expectation values $H_{L}(x)l_{y}$ or $L[A_{0}l_{y}]$ is used to determine the phase transition temperature T_{c} as well as critical exponents. The tre-peak dependence of the Polakov loop two-point function relates to the string tension. In the comm phase, for $T < T_{c}$, and large separations y_{1}, the two-point function falls off like

$$\lim_{y_{1} \rightarrow \infty} H_{L}(x)l_{y}^{2}(y)l_{y}^{2} \exp \left[\frac{1}{2} \gamma y_{1}^{2} \right] = \frac{1}{y_{1}^{2}} \gamma y_{1}^{2} : (21)$$

x_{1}, y_{1} stands for the connected part of the related correlation function, i.e. $H_{L}(x)l_{y}^{2}(y)l_{y}^{2} = H_{L}(x)l_{y}^{2}(y)l_{y}^{2} \times H_{L}(x)l_{y}^{2}(y)l_{y}^{2}$. In turn, its fourier transform shows the moment dependence

$$\begin{align*}
\lim_{p_{y}^{\rightarrow 0}} H_{L}(0)L_{y}^{2}(p)l_{y}^{2} & = \frac{1}{y_{1}^{2}} \gamma y_{1}^{2} \left(\frac{1}{y_{1}^{2}} \gamma y_{1}^{2} \right) : \\
\lim_{p_{y}^{\rightarrow 0}} \frac{1}{y_{1}^{2}} \gamma y_{1}^{2} \left(\frac{1}{y_{1}^{2}} \gamma y_{1}^{2} \right) & = \frac{1}{y_{1}^{2}} \gamma y_{1}^{2} : \\
\end{align*} \quad (22)$$

We conclude that the Polyakov loop variable has a mass propagator. This directly relates to a mass propagator of A_{0} in Polakov gauge.

The approximation scheme is fully set by specifying the regulators $R_{\gamma;J}$ and $R_{\gamma;J}$. Namely one would identify the cut-off parameter k in the regulators with the physical cut-off scale k_{phys}. For general regulators this is not possible and one deals with two distinct physical cut-off scales, k_{phys} for $k_{\gamma;\mu}$ related to $R_{\gamma;\mu}$ and $R_{\gamma;\mu}$ respectively, for a detailed discussion see [17,18]. However, within the approximation (20) it is crucial to have a unique effective cut-off scale $k_{\text{phys}} = k_{\gamma;\mu}$, as it ensures physical cut-off scale $k_{\gamma;\mu}$ to $k_{\gamma;\mu}$ necessarily introduce a momentum transfer into the orw which carries part of the physics. This momentum transfer is only fully captured with a non-local approximation to the effective action. In turn, a local approximation such as (23) requires $k_{\gamma;\mu} = k_{\gamma;\mu}$. In other words, a local approximation works best if the momentum transfer in the orw is mimicked. One details about such a scale matching and its connection to optimalisation [19] can be found in [17]. Note in this context that in the present case we also have to deal with the subtlety that A_{0} only depends on spatial coordinates whereas $k_{\gamma;\mu}$ is space-time dependent. However, the requirement of matching momentum transfer in the orw is a simple criterion which is technically accessible.

More specifically we restrict ourselves to regulators [21]

$$R_{\gamma;\mu} = Z_{0}R_{\gamma;\mu}^{\text{opt}}(p^{2}) ; \quad \gamma_{\mu}^{2}(\theta)R_{\gamma;\mu}^{\text{opt}}(p^{2}) ; \quad (23)$$

$$\left[\begin{array}{c} R_{\gamma;\mu}^{\text{opt}}(p^{2}) \end{array} \right] = \left[\begin{array}{c} k^{2} \end{array} \right] \left[\begin{array}{c} k^{2} \end{array} \right] \left[\begin{array}{c} p^{2} \end{array} \right] \left[\begin{array}{c} p^{2} \end{array} \right] ; \quad (24)$$

The detailed scale-matching argument is deflected to Appendix C and results in a relation $k_{\gamma;\mu} = k_{\gamma;\mu}$ depicted in Fig. 7 in the appendix. It is left to determine the effective cut-off scale $k_{\gamma;\mu}$. This cut-off scale can be determined from the numerical computation of the orws of appropriate observables: one comutes the orw with the three-dim ensional regulator $R_{\gamma;\mu}^{\text{opt}}(p^{2})$ in (23), as well as with the four-dim ensional regulator $R_{\gamma;\mu}^{\text{opt}}(p^{2})$. Then the respective physical scales are indentical, i.e. $k_{\gamma;\mu} = k_{\gamma;\mu}$. The results for this matching procedure are depicted in Fig. 8 in Appendix C. Another estimate comes from the orw related to the three-dim ensional A_{0}-uctuations, where we can directly identify $k_{\gamma;\mu} = k_{\gamma;\mu}$. We use the above choices as limiting cases for an estimate of the systematic error in our computation. Our explicit results are obtained for the best choice that works in all physics constraints.
V. FLOW

We are now in the position to integrate the ow equation (19). To begin with, we can immediately integrate out the spatial gauge fields A_γ for $Z_1 = 1$, that is the second line in (19). This part of the ow only carries an explicit dependence on the cut-off k, details of the calculation can be found in Appendix B. It results in a non-trival effective potential $V_{\gamma k}[A_0]$ that approaches the W eff potential in the limit $k \to 0$, and falls off like $\exp(-k^2)$ in the UV limit $k \to \infty$; see Fig. 4. In terms of the eective action, after the integration over A_γ, we are led to an eective action of A_0,

$$Z_k[A_0] = \int d^3x \frac{Z_0}{2} [\theta_0 A_0]^2 + V_k[A_0] + V_{\gamma k}[A_0];$$

(25)

Eq. (25) follows from (23) with $k[A_0] = k[A_0; A_\gamma = 0]$, and

$$V_k[A_0] = V_{\gamma k}[A_0];$$

(26)

The full eective potential is given by $V_k[A_0] = V_{k=0}[A_0] + V_{\gamma k}[A_0]$. We are left with the task to determine $V_{\gamma k}$, which is the part of the eective potential induced by A_0-uculations. In Polyakov gauge, these uculations carry the conning properties of the Polyakov loop variable, whereas the spatial uculations generate a deconing eective potential for A_0, see Appendix B. We emphasise that this structure is present for spatial con nent which is necessarily also driven by the spatial uculations, and solely depends on these uculations in the high temperature limit. We hope to report on this matter in the near future.

Here we proceed with the integration of the ow for the potential $V_{\gamma k}$. To that end we reformulate the ow (19) as a ow for V_{k} with the external input $V_{\gamma k}$, see (23). The ow equation for V_k reads

$$\theta_0 V_{k} = \frac{1}{2} \int d^3x \frac{Z_0}{2} [\theta_0 A_0]^2 + \theta_0 R_{0 k} + \frac{\theta_0 R_{0 k}}{2} (V_k + V_{\gamma k}) + R_{0 k};$$

(27)

With the specic regulator R_k in (23) we can perform the moment integration analytically. We also introduce the scalar field $\gamma = g A_0$, and arrive at

$$\theta_0 V_{k} = \frac{2}{3(2\pi)^2} \frac{(1 + 0 = 5)k^2}{1 + \frac{2\pi^2}{k}G_{k} \theta_0^2 (V_{\gamma k} + V_k)};$$

(28)

where the coupling g_k^2 has to run with the eective cut-off scale k_{phys}, and is estimated by an appropriate choice of the running coupling β

$$g_k^2 = \frac{g^2}{Z_0};$$

with $g_0^2 = 4 \beta(k_{\text{phys}}^2);$$

(29)

see also Appendix B. This also entails that the anomalous dimension γ is linked to the running coupling by

$$\gamma = \beta \log \left(k_{\text{phys}}^2 \right);$$

(30)

At its root (28) is an equation for the dimensionless effective potential $\hat{V} = \hat{V}_k$ in terms of \hat{V}_γ, \hat{V}_k, and $\hat{V} = 4 \hat{V}_k$. The infrared RG-scale k naturally turns into the modified RG-scale $\hat{k} = k$, that is all scales are measured in temperature units. Then the ow equation is of the form

$$\theta_\hat{k} \hat{V} = \frac{2}{3(2\pi)^2} \frac{(1 + 0 = 5)k^2}{1 + \frac{2\pi^2}{k}G_{k} \theta_0^2 (\hat{V}_\gamma + \hat{V})};$$

(31)

The potential \hat{V} and hence \hat{V} has an \hat{k}-independent contribution which is related to the pressure. For the present purpose it is irrelevant and we can conveniently normalise the ow (31) such that it vanishes at \hat{k} where $\theta_\hat{V} (\hat{V}_\gamma + \hat{V}) = 0$. This is achieved by subtracting $2(1 + 0 = 5)k^2 = 2(1, \hat{V})$ in (31) and we are left with

$$\theta_\hat{k} \hat{V} = \frac{1}{1 + 5} \frac{g_0^2 \theta_\hat{V}^2 (\hat{V}_\gamma + \hat{V})}{1 + \frac{2\pi^2}{k}G_{k} \theta_0^2 (\hat{V}_\gamma + \hat{V})};$$

(32)

where we have kept the notation $\theta_\hat{k} \hat{V}$ for $\theta_0 V_{k} = 2(1 + 0 = 5)k^2 = 2(1, \hat{V})$. In this form it is evident that the ow vanishes for \hat{k} where $\theta_\hat{V}_0^2 (\hat{V}_\gamma + \hat{V}) = 0$, i.e. once a region of the potential becomes convex, this part is frozen, unless the external input \hat{V}_γ triggers the ow again.

We close this section with a discussion of the qualitative features of (23). It resembles the ow equation of a real scalar ed theory, and due to $V_{\gamma k}$, the ow is initialised in the broken phase. It relies on two external inputs, $V_{\gamma k}$ and s.

The rst input, \hat{V}_γ, is put in a perturbative approximation to the spatial gluon sector, and its contribution is referred to Appendix B. It is shown in Fig. 4 for various values of the RG scale k, and approaches the perturbative W eff potential (23) for vanishing cut-off $k = 0$. We have argued that with Polyakov gauge this approx-

![Figure 1: V_γ for different values of k](image)

FIG. 1: V_{γ} for different values of k
again that this is not so for the question of spatial component, and the related potential of the spatial Wilson loops.

The second input is \(s = g_k^2 = 4 \), the running gauge coupling. It runs with the physical cut-off scale \(k_{\text{phys}} \) derived in Appendix A, \(s = k_{\text{phys}}^2 \). In the present work we model \(s \) with a temperature-dependent coupling that runs into a three-dimensional xed point \(k_{\text{phys}} = T \) for low cut-o scales \(k_{\text{phys}} = T \). This choice carries some uncertainty as the running coupling in Yang-Mills theory is not universal beyond two loop order. Here we have chosen the Landau gauge couplings \(\Lambda_{\text{Landau}}(k_{\text{phys}}) \) at cut-o scales \(k_{\text{phys}} = T \), see [1, 2, 24, 25, 26, 2, 4]. The corresponding three-dimensional xed point \(\Lambda_{\text{Yang-Mills}} \) is obtained from [24]. A speci c choice for such a running coupling is given in Fig. 3.

This error includes that related to our speci c choice of the running coupling. For example, a viable alternative choice to Fig. 4 is provided by the background el coupling derived in [24] which is covered by the above error estimate.

VI. INTEGRATION

The numerical solution of (32) is done on a suitably chosen grid or path parameterization of \(\tilde{V} \) and its derivatives. As \(\tilde{V}, \tilde{V}_1, \tilde{V}_2, \tilde{V}_3, \) and \(\tilde{V} \) are periodic, one is tempted to solve (32) in a Fourier decom position, see e.g. [27]. However, as can be seen already at the example of the perturbative Wilson potential \(V_W = V_1, p = 0 \), this periodicity is deceiving. The Wilson potential is polynomial of order four in \(k = \bar{r} \mod 2 \), its periodicity comes from the periodic \(\bar{r}(\bar{r}) \), [22]. Consequently the third derivative \(@^3V_W \) jumps at \(k = 2 \) with \(n \in Z \). Moreover, \(@^2V_W \) \(\bar{r} = 0 \) \(\bar{r} \neq 0 \) \(n \in Z \). A periodic expansion of \(V_W \), e.g. in trigonometric functions cannot capture this property at any order. This does not only destabilise the param etisation, but also fails to capture in important physics: the ow of the position of the minimum is proportional to \(@\tilde{V} \). This follows from \(@_x\tilde{V} \{ \bar{r} \in \bar{r} \} = 0 \). Expanding this identity leads to

\[
\tilde{V}^{\bar{r}} \{ \bar{r} \} = \tilde{V}^{\bar{r}} \{ \bar{r} \}
\]

where \(\tilde{V}^{\bar{r}} \{ \bar{r} \} \) is proportional to \(\tilde{V}^{\bar{r}} \{ \bar{r} \} \) which e.g. can be seen by taking the first derivative of [13]. Hence, as a Fourier-decom position enforces \(@\tilde{V} = 0 \) at any order, the minimum does not ow in such an approximation, and the theory always remains in the decon ned phase. Note also that the resulting effective potential at \(\bar{r} = 0 \) for smooth periodic potentials and on \(\bar{r} \) vanishes identically as it has to be convex. In the present case this is not so, as the potential is rather polynomial in \(\bar{r} \) and convexity does not enforce a vanishing effective potential.

In turn, a standard polynomial expansion about the minimum \(\bar{r} = 0 \) already captures the ow towards the decon ned phase. Here, however, we use a grid evaluation of the ow of \(\bar{r} \) with \(\bar{r} = 2 \) \(0 \) that while taking special care of the boundary conditions at \(\bar{r} = 0 \) and \(\bar{r} = 2 \) we have extrapolated the second derivative to \(\bar{r} = 0 \) and \(\bar{r} = 2 \). Since we use a linear order extrapolation, and we have explicitly checked that the resulting ow is insensitive to the precision of the extrapolation.

An alternative procedure is an expansion in terms of Chebyshev polynomials that also works quite well and is also a very fast and convenient way of integrating the ow. A common problem between the results obtained on a grid and with Chebyshev polynomials is that both parameterisations agree nicely and the corresponding ow s deviate from each other only for small values of \(\bar{r} \). This is due to

FIG. 2: ow for tem peratures \(T = 0; 150; 300; 600 \) MeV

The norm alisation of the momentum scale has been done by the commensurability of the Landau gauge propagators to their lattice analogues. Fixing the lattice string tension to \(B = 440 \) MeV, we are led to the above momentum scales. For a common parition with the Landau gauge results obtained in [13] we have also computed the temperature-dependence of the Polyakov loop by using \(\Lambda_{\text{Landau}} \) for all cut-o scales. Indeed, this overestimates the strength of \(s \), as can be seen from Fig. 2. However, qualitatively this does not make a difference: for infrared scales far below the tem perature scale, \(k \approx \bar{r} \neq 0 \), the ow switches o for \(\bar{r} \) with \(\hat{d}^2(\tilde{V}_2 + \tilde{V}) \neq 0 \), that is for the convex part of the potential. This happens both for \(g_k^2 \) const, and for \(g_k^2(k^2 = 0) \). In other words, the minimum of the potential freezes out in this regime. For the non-convex part of the potential, \(\hat{d}^2(\tilde{V}_2 + \tilde{V}) < 0 \), the ow does not tend to zero but simply attains the potential, thus arranging for convexity of the effective potential \(V_e \). The uncertainty in \(g_k^2 \) is taken into account by evaluating the limiting cases. Together with the error estimate on the physical cut-o scale \(k_{\text{phys}} \) in Appendix A this leads to an estimate for the systematic error of the results presented below.
an expected failure of the standard Chebyshev-expansion for those small \tilde{r} where the position of the minimum is almost settled and the potential attains out in the regions that are not convex. This is better resolved with a grid than with polynomials. On a grid in plane-entation we see the potential becoming convex as \tilde{r} ! 0.

VII. RESULTS

In Fig. 3 we show the full effective potential for temperatures ranging from $T = 500$ MeV in the decon ned phase to $T = 250$ M eV in the con ned phase. The expectation value $h' i$ in the center-broken decon ned phase is given by the transition point between decreasing part of the potential for small \tilde{r} and the at region in the middle of the plot. It can also be explicitly computed from \tilde{r}. In the center-symmetric con ned phase it is just given by the minimum at $\tilde{r} = 0$.

The temperature-dependence of the order parameter $L [A_\circ i]= \cos(h'i=2)$ is shown in Fig. 4, and we observe a second order phase transition from the con ned to the decon ned phase at a critical temperature

$$T_c = 305 \pm 10$$

with the string tension $\rho_2 = 0.89 \pm 0.04$).

The critical physics should not depend on this issue. Here we compute the critical exponent ν, a quantity well-studied in the $O(1)$ model which is in the same universality class as $SU(2)$ Yang-Mills theory. Moreover, in Polyakov gauge the effective action A_\circ after integrating-out the spatial gauge field is almost close to that of an $O(1)$ model. Studies using the FRG in local potential approximation with an optimal cutoff for the $O(1)$ model yield $\nu = 0.65$, see [23]. The critical exponent is related to the screening mass of the scalar propagator ϵk by

$$m^2(T) = \epsilon k \frac{T}{T_c}$$

where $m^2 = \nu (T/T_c)^\nu$.

The critical exponent agrees within the errors with the Ising exponent $\nu = 0.63$.

Finally we would like to comment on the difference of the temperature-dependence of $L [A_\circ i]$ depicted in Fig. 4 and that of the Polyakov loop $L [A_\circ i]$. It has been shown in section II that in the con ned phase they both vanish and both are non-zero in the decon ned phase. However, the Jensen inequality \cite{Bark} entails that the present observable $L [A_\circ i]$ takes bigger values than the Polyakov loop $L [A_\circ i]$, which is in agreement with lattice results.

The critical exponent ν is expected to be a good approximation of the exact value $\nu = \frac{65}{12}$, see Appendix B.

We would also like to comment on the difference of the temperature-dependence of $L [A_\circ i]$ depicted in Fig. 4 and the Polyakov loop $L [A_\circ i]$. It has been shown in section II that in the con ned phase they both vanish and both are non-zero in the decon ned phase. However, the Jensen inequality \cite{Bark} entails that the present observable $L [A_\circ i]$ takes bigger values than the Polyakov loop $L [A_\circ i]$, which is in agreement with lattice results.

For the computation we have computed the present $L [A_\circ i]$ with the zero-temperature running coupling in Fig. 2 for
In Fig.6. The coincidence between the two gauges is perature dependence of the Polyakov loop is depicted. We also remark that the quantity L([A_{0}\i]) in general is gauge-dependent, and only the critical temperature derived from it is not. However, in Landau-Dewitt gauge with backgrounds A_{0} in Polyakov gauge temporal fluctuations about this background include those in Polyakov gauge. For this reason we might expect a rather quantitative agreement for the quantity L([A_{0}\i]) in both approaches. The results for the temperature dependence of the Polyakov loop are depicted in Fig.6. The coincidence between the two gauges is very remarkable, particularly since the mechanisms driving con-nement are quite different in the different approaches, as are the approximations used in both cases. This provides further support for the respective results. It also sustains the argument concerning the lack of gauge dependence made above. The quantitative deviations in the vicinity of the phase transition are due to the truncation used in [13], that cannot encode the correct critical physics yet, as has been already discussed there.

VIII. SUMMARY AND OUTLOOK

In the present work we have put forward a formulation of QCD in Polyakov gauge. We have argued that this gauge is specially well-adapted for the investigation of the con-nement-decon-nement phase transition as the order parameter, the Polyakov loop expectation value \langle L[A_{0}\i] \rangle, has a simple representation in terms of the temporal gauge. Moreover, we have shown that L([A_{0}\i]) also serves as an order parameter. In summary this allows us to access the phase transition within a simple approxim ation to the full effective action.

The computation was done for the gauge group SU(2), where we observe a second order phase transition at a critical tem perature of T_{c} = 305 \pm 5 \, \text{MeV}, as well as the Ising critical exponents and to the precision achieved within our approximation. The temperature dependence of the order parameter L([A_{0}\i]) agrees well with a recent computation in Landau gauge [13]. This is very remarkable: mostly the latter computation is technically more difficult as in Landau gauge the full momentum dependence of the propagators is needed to cover con-nement. Secondly the order parameter L([A_{0}\i]) is gauge dependent, only the critical temperature is not.

In the present analysis we used several external inputs which we plan to improve in future work. First of all we proceed with computing the running coupling within Polyakov gauge, that is the momentum dependence of the temporal gauge. As it is one of the advantages of the computation in Polyakov gauge that the momentum dependence of Green functions is rather mild we expect only minor deviations from the computations shown here. As argued in the present work, the momentum dependence of the A_{0} propagator also gives access to the string tension. For a description of spatial con-nement one has to treat the spatial components of the gauge field beyond the present perturbative approximation. Moreover, the present analysis is extended to SU(3), which is conceptually straightforward but technically more challenging. For the matter sector one can revert to the plethora of results with the present renormalization group methods, ranging from results in effective theories to that in QCD based approaches, see e.g. [2, 13, 15, 23, 30].

Acknowledgements We thank J. Braun, H. Gies, F. Lam pecht, D. F. Litim, A. Maaß and B.-J. Schaefer for discussions. We thank O. Jahn for discussions and collaboration at an early stage of this project. FM acknowledges financial support from the state of Baden-Württemberg and the Heidelberg Graduate School of Fundamental Physics.
APPENDIX A: FADDEEV-POPOV DETERMINANT

From the gauge fixing functionals (2) and (3) we can compute the Faddeev-Popov determinant given by

\[
F_P[A] = \det \frac{F^+(A^1)}{1^a}; \quad (A1)
\]

where \(A^1 \) is the gauge transfigured gauge field \(A \). For inhomogeneous gauge transformations it is given by

\[
A^1 = A \quad (\theta^a + i g A^3[a ; b])^a; \quad (A2)
\]

In the following we use the representation \(a^a = !^a + a^3 \) and the related derivatives \(\partial X \). The matrix elements related to \(a^a \) derivatives of \(F^+ \) read

\[
F^+(A^1) = \det \frac{F^+}{1^a} = \text{Tr} \quad \theta^a + i A^3[a ; b]; \quad (A3)
\]

The \(a^a \) derivatives of \(F^3 \) yield long expressions, and we only display the parts proportional to \(\theta^a \text{Tr} A^3 \), where we have abbreviated additional terms proportional to the spatial gauge fields by dots,

\[
F^3(A^1) = i g A^a \text{Tr} A^3[a ; b]; \quad (A4)
\]

Evaluating the traces (A3), (A4), (A5) we can compute the Faddeev-Popov determinant. Again we only concentrate on the terms dependent on \(A_0 \), and use the gauge fixing condition \(A^r_0 = A_0 = 0 \) for eliminating some of the off-diagonal elements.

\[
F_P[A] = \frac{1}{2} \det \theta^2 + [g A^3_0]^2 \det \frac{\theta^2 + a}{2}; \quad (A5)
\]

We note that the second determinant in (A5) is independent of the gauge fields and hence can be absorbed in the norm of the path integral. The first determinant is evaluated in frequency space, we get

\[
Y = (g A^3_0(x))^2 \left((2 \pi T)^2 + (g A^3_0(x))^2 \right) \quad (A6)
\]

Multiplying the determinant (A7) with a further constant norm of the determinant (A7) gives

\[
N = \prod_{n=1}^{\text{r}} \frac{1}{2} (2 \pi T)^2; \quad (A8)
\]

Analogously we get for the \(a^a \) derivatives of \(F^+ \)

\[
F^+(A^1) = 0;
\]

\[
F^+(A^1) = \text{Tr} \quad \theta^a + i A^3[a ; b]; \quad (A3)
\]

\[
F^+(A^1) = \text{Tr} \quad \theta^a + i A^3[a ; b]; \quad (A3)
\]

The \(a^a \) derivatives of \(F^3 \) yield long expressions, and we only display the parts proportional to \(\theta^a \text{Tr} A^3 \), where we have abbreviated additional terms proportional to the spatial gauge fields by dots,

\[
F^3(A^1) = i g A^a \text{Tr} A^3[a ; b]; \quad (A4)
\]

Evaluating the traces (A3), (A4), (A5) we can compute the Faddeev-Popov determinant. Again we only concentrate on the terms dependent on \(A_0 \), and use the gauge fixing condition \(A^r_0 = A_0 = 0 \) for eliminating some of the off-diagonal elements.

\[
F_P[A] = \frac{1}{2} \det \theta^2 + [g A^3_0]^2 \det \frac{\theta^2 + a}{2}; \quad (A5)
\]

We note that the second determinant in (A5) is independent of the gauge fields and hence can be absorbed in the norm of the path integral. The first determinant is evaluated in frequency space, we get

\[
Y = (g A^3_0(x))^2 \left((2 \pi T)^2 + (g A^3_0(x))^2 \right) \quad (A6)
\]

Multiplying the determinant (A7) with a further constant norm of the determinant (A7) gives

\[
N = \prod_{n=1}^{\text{r}} \frac{1}{2} (2 \pi T)^2; \quad (A8)
\]

we arrive at

\[
\text{N det}[G_{A_0}] = \left(\frac{g A^3_0(x)}{2 \pi T} \right)^{\pi T} \left(\frac{g A^3_0(x)}{2 \pi T} \right)^{\pi T}; \quad (A9)
\]

Eq. (A5) is just a product representation of the sine-function, \(\sin(x) = \sum_{n=-1}^{\infty} \frac{x^n}{n!} \), and the main result for the Faddeev-Popov determinant is

\[
F_P[A] = N \prod_{n=1}^{\text{r}} \frac{1}{2} (2 \pi T)^2 \quad \text{sin}^2 \frac{g A^3_0(x)}{2 \pi T}; \quad (A10)
\]

where \(N \) is a further norm of the determinant (A7)

After integrating out the longitudinal gauge fields the action $S_{\alpha} = \frac{1}{2} \int d^4x \tilde{F}^a_\mu \tilde{F}^a_\mu$ reads

$$S_{\alpha} = \frac{1}{2} \int d^4x Z_0 \partial^\mu A_0 \frac{1}{2} \int d^4x A_0^a (\partial^\mu + \partial^2) \partial_\mu A_0^a \frac{1}{2} \int d^4x A^a_i \left(\partial^\mu + \partial^2 \right) \partial_\mu A^a_i + h \partial_\mu A_0 A_0 + h \partial_\mu A^a_i A^a_i$$

Writing $A_0^a = \epsilon(g) + a_0$, where ϵ is a constant and a_0 the fluctuating field, this expression is given to second order in the fluctuating fields by

$$S_{Y M} = \frac{1}{2} \int d^4x Z_0 (\partial a_0)^2 \frac{1}{2} \int d^4x (\partial a_0)^2 A^a_i (\partial^\mu + \partial^2) \partial_\mu A^a_i$$

Then we have deduced

$$D_0^{\delta \beta} = \partial_\mu \epsilon^{\mu \nu} + A_0^a \epsilon^{a \beta}$$

In the present work we neglect back-reactions of the A_0 potential on the transversal gauge fields. An assumption of an expansion around $A_0^a = 0$, $^{(2)}$ is block-diagonal, like the regulators, cf. eq. (23), and we can decompose the covariant equation into a sum of two contributions, schematically written as

$$\chi_{\mu} = \frac{1}{2} \int d^4x \left(\chi_{\mu}^{(2)} + R_A \right) \chi_{\mu}^{(2)}$$

The first term on the rhs encodes the quantum fluctuations of A_0, the second line encodes those of the transversal spatial components of the gauge field, and does not receive contributions from the first term. Therefore we can evaluate the χ_{μ} of the second contribution, and use its output V_{μ} as an input for the remaining field.

The computation is done for the regulators. As explained below in section 1, the cut-off parameters k, and k in R_k for the fluctuations of A_0 and R_k, R_{μ} for the fluctuations of A^a_i respectively satisfy a non-trivial relation $k = k (k)$ for coinciding physical infrared cutoffs k_0 for A_0 and k for A^a_i. The computation is similar to those done in one loop perturbation theory in SU (2) by Weiss [22], the only difference being the infrared cut-off.

$$V_{\mu} = V_{\mu}^{(2)} + \frac{1}{2} \int d^4x \left(\chi_{\mu}^{(2)} + R_{\mu} \right) \chi_{\mu}^{(2)}$$

We infer from the second line in (B4) that $V_{\mu} = V_{\mu}^{(2)} + \frac{1}{2} \int d^4x \left(\chi_{\mu}^{(2)} + R_{\mu} \right) \chi_{\mu}^{(2)}$.

From (B7) we deduce that the potential V_{μ} approaches V_{μ} in the limit $k ! 0$ and vanishes like k for $k ! 0$. From eq. (B3) we can now extract the χ_{μ} of the effective potential, by setting $V_{\mu} = V_{\mu}^{(2)}$. Then we get

$$\chi_{\mu} = \frac{1}{2} \int d^4x \left(\chi_{\mu}^{(2)} + R_{\mu} \right) \chi_{\mu}^{(2)}$$

with the input V_{μ} given in (B7) and $\chi_{\mu}^{(2)}$ in (B4). The factor g^2 arises from the fact that we parametrize the potential in terms of V_{μ} rather than in A_0 and $A_0^a = g^2 Z_0$ is nothing but the running coupling at the on-shell p^2_{phys}. Thus we estimate $g^2 = 4 \epsilon (g^2 = k^2_{phys})$. Note that ϵ is an RG-invariant. The on-shell integration can be performed analytically, and we are led to

$$\chi_{\mu} = \frac{2}{3} \int d^4x \left(\chi_{\mu}^{(2)} + R_{\mu} \right) \chi_{\mu}^{(2)}$$

The factor g^2 arises from the fact that we parametrize the potential in terms of V_{μ} rather than in A_0 and $A_0^a = g^2 Z_0$ is nothing but the running coupling at the on-shell p^2_{phys}. Thus we estimate $g^2 = 4 \epsilon (g^2 = k^2_{phys})$. Note that ϵ is an RG-invariant. The on-shell integration can be performed analytically, and we are led to

$$\chi_{\mu} = \frac{2}{3} \int d^4x \left(\chi_{\mu}^{(2)} + R_{\mu} \right) \chi_{\mu}^{(2)}$$

as the consistent choice in the given truncation.
APPENDIX C: MATCHING SCALES

The ow of the ten pr o t on param on of the gauge ed s, A_0(\mathbf{x}), is com puted with a three-d im ensional en sional reg ul at or, see [23]. In Polyakov ga ug e A_0(\mathbf{x}) only depends on the spa tial co ordin at es, whereas the spatial com onents A_\gamma(\mathbf{x}) are fou r-d im ensional ed s. For cut-o scales far lower than the temperature, k = T , also the spa tial ga ug e ed s are e ectively three-d im ensional ed s as only the M at s ubara zero mode propag ates. Hence in this regime we can identify k = k_\gamma. For large cut-o scales, k = T , the A_0 - ow decoupl es from the theory. A comparison between the two ow s can only be done after the summ ation of the spa tial ow over the M at s ubara frequ encies. In the as ympt otic regime k = T , this leads to the relation

\begin{equation}
\frac{1}{k} \sum_{n=1}^\infty \frac{1}{\frac{1}{2} \mathbf{n} + k_\gamma^2} \frac{1}{2k_\gamma} \; \text{(C1)}
\end{equation}

The crossover between these as ympt otic regimes happens at about k = T = 1. This crossover is im pl emented with the help of an appropriately chosen interpolat ing function f,

\begin{equation}
\frac{T}{k^2} f(k=T) = \sum_{n=1}^\infty \frac{1}{\frac{1}{2} \mathbf{n} + k_\gamma^2} \; \text{(C2)}
\end{equation}

A n atural choice for f(k = T) is depicted in Fig. 7, and has been used in the com put at ion. A more sophisti- cated ad just ment of the relative scales can be performed within a comparison of the ow on m om entum-dependent observ ables such as the wave function renormalisation Z_0. The peak of these ow s in m om entum space is directly related to the cut-o scale. Indeed, the function f carries the physical information of the peak of the ow at some m om entum scale. Scanning the set of f gives some further access to the uncertainty in such a procedure. The e ective cut-o scales k_{phys}(k_0) and k_{phys}(k_\gamma) in the ow s of the tem poral gluons and of spatial gluons respectively do not match in general. If solving the ow within a local truncation as chosen in the present work we have to identify the two e ective cut-o scales, k_{phys}(k_0) = k_{phys}(k_\gamma) = k_{phys}, leading to a non-trivial relation k_0 = k_{phys}(k_0). Moreover, the e ective cut-o scale has to be used in the running coupling \(s = s (p^2 = k_{phys}^2). \)

FIG. 8: k_{phys}(\hat{k}) from the comparison of ow s with three- di m ensional reg ulators and four-d im ensional reg ulators.

It is left to deter mine the physical cut-o scale k_{phys} from either the ow of the spa tial gauge ed s as k_{phys}(k_\gamma) or from the tem poral ow k_{phys}(k_0). We rst discuss the sp atial ow. For an optimised reg ulator depending on all m om entum direc tions, p^2, we have the relation k_{phys} = k_{\gamma}. Hence the relation k_{phys}(k_\gamma) can be computed if comparing the ow s for a speci c observable with three-d im ensional reg ulator R_{opt,phys} (p^2), [23], with ow s with four-d im ensional reg ulator R_{opt,phys} (p^2). Here, as a m ode exam ple, we choose the e ective potential of a 't -theory. This leads to the relation k_{phys}(k_\gamma) displayed in Fig 8. We remark that the relation in Fig. 8 depends on the dim ension d of the theory, and atten to k_{phys}(k) = k for d = 1. In other words, \lim_{k \to \infty} k_{phys}(k) = k is proportional to d(d - 1). Moreover, from m om entum-de pendent observables the crossover rather resembles the relation k_0 (k_\gamma) as it is more sensitive to the propagator than to the m om entum integral of the propagator. Indeed, for the three-d im ensional ed s A_\gamma(\mathbf{x}) the cut-o scale k_0 is another natural choice for the physical cut-o scale, k_{phys}(k_0) = k_0, even though it underscores the importance of the spatial ow for the correlations of the tem poral gauge ed s. In summary, we take the above two extrem al choices k_{phys} = k_{\gamma phys} depicted in Fig 8 and k_{phys} = k_{phys}(k_0) = k_0 as a broad estimate of the systematic error in the present computation.