HADRON PROPERTIES IN THE NUCLEAR MEDIUM

Ryugo S. Hayano and Tetsuo Hatsuda
Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033

The QCD vacuum shows the dynamical breaking of chiral symmetry. In the hot/dense QCD medium, the chiral order parameter such as h_{qg} is expected to change as a function of temperature T and density of the medium, and its experimental detection is one of the main challenges in modern hadron physics. In this article, we discuss theoretical expectations for the in-medium hadron spectra associated with partial restoration of chiral symmetry and the current status of experiments with an emphasis on the measurements of properties of mesons produced in near-ground-state nuclei.

Contents

I. INTRODUCTION

A. Chiral symmetries
B. Dynamical breaking of chiral symmetry in the vacuum
C. Chiral symmetry and hadron spectra

II. CHIRAL SYMMETRY AND IN-MEDIUM HADRON SPECTRA

A. Chiral condensate in the medium
 1. Finite temperature
 2. Finite baryon density
B. Spectral functions in the medium
 1. In-medium pion
 2. In-medium scalar meson
 3. In-medium vector meson
C. Dynamical approaches to in-medium hadrons
 1. Naive quark model
 2. Nambu–Jona-Lasinio model
 3. QCD sum rules
 4. Hadron mass scaling
 5. Bag model
 6. Hadronic models
 7. Chiral effective theories
 8. Lattice QCD

III. PSEUDOSCALAR MESON: IN NUCLEI

A. Theoretical background
B. Pion-nucleon optical potential
 1. s-wave and p-wave parts
 2. Pion hydrogen - the N scattering length at threshold
 3. The s channel repulsion problem
C. Deeply-bound pionic atom spectroscopy
 1. Structure of deeply-bound pionic atom
 2. Form factor of deeply-bound pionic atom
 3. GSI S236 - Sn(d,He)
 In-medium iso-vector scattering length
 b$_{is}$
 In-medium quark condensate

IV. SCALAR MESON: IN NUCLEI

A. Theoretical background
B. Experiments
 1. CHAOS
 2. CrystalBall
 3. TAPS
C. Final-state interaction (FSI) effects

V. VECTOR MESONS: ?; IN NUCLEI

A. Theoretical background
B. Dileptons, why and how?
 1. γ-pair detection
 2. e^+e^- pair detection
 3. Combinatorial background
C. High Energy Heavy Ion Reactions
 1. Bevalac/SIS energies (1-2A GeV)
 DLS
 2. SPS energies (40-200 A GeV)
 HELIOS/3 (p)
 CERES (NA45) (e^+e^-)
 NA60 (π^+)
 CERES (NA45/2) (e^+e^-)
 3. RHIC ($p_{NN} = 200$ GeV)
 4. High energy heavy ion summary
D. ω and ϕ mesons produced in nuclei with elementary reactions
 1. TASS at INS Electron Synchrotron
 2. E325 experiment at KEK
 3. E325 results on the $\pi^+\pi^-$ mesons
 4. ω-pair detection
E. Vector-meson in-medium with from transparency-ratio measurements
 The attenuation
 The ω attenuation

VI. CONCLUDING REMARKS

ACKNOWLEDGMENTS

REFERENCES

I. INTRODUCTION

Quantum chromodynamics (QCD), which is the color SU(3) gauge theory of quarks and gluons [Nambu, 1966], is now established as the fundamental theory of strong interactions. The Lagrangian density of QCD reads

$$ L = \frac{X}{4} \left(q \bar{q} + \frac{1}{4} G_{q} q \right) + \frac{1}{8} G_{q} q $$

(1.1)
we focus on three light flavors $q = (u; d; s)$ with the mass matrix $m = \text{diag}(m_u, m_d, m_s)$ throughout this article. The quark U belongs to the triplet representation of the color gauge group $SU(3)_C$. The right (left) handed quark $q_R = \frac{1}{\sqrt{2}}(1 + \frac{\alpha}{2})q$ ($q_L = \frac{1}{\sqrt{2}}(1 - \frac{\alpha}{2})q$) is the eigenstate of the chirality operator γ_5 with the eigenvalues $\pm 1(1)$. The covariant derivative is defined as $D \equiv +igtA$ with g being the strong coupling constant, t_3 being the SU(3)$_c$ generator and A being the color-octet gluon field. The gluon iside nad $\sigma = \theta A \sigma A g$ of $A A$ with f being the structure constant of SU(3)$_c$. The QCD Lagrangian Eq. (14) is explicitly invariant under the local SU(3)$_c$ gauge transformation of quarks and gluons. The running coupling constant $g(\tau)$ is defined as an effective coupling strength among quarks and gluons at the energy scale τ. Due to the asymptotic freedom nature of QCD, $g(\tau)$ becomes small as τ increases [Politzer, 2003; Wilczek, 2005]. This is explicitly seen in the two-loop perturbation theory as

$$s(\tau) = \frac{1}{4} \frac{\ln(\frac{\tau}{\tau_0})}{\ln(\frac{\tau}{\tau_0})} \\ t \ln(\frac{\tau}{\tau_0})$$

where $s(\tau) = \frac{\alpha^2(\tau)}{\pi}, \tau = \frac{2N_C}{3} = (4 \frac{1}{2} f^2N_C = (4 \frac{1}{2} f^2), \tau = \frac{1}{2} \tau_0 N_C = (4 \frac{1}{2} f^2, N_C$ is the number of flavors and τ_0 is called the QCD scale parameter to be determined from experiment.

Fig.1 and Eq. (14) indicate that the running coupling constant increases and becomes strong at low energies $\tau = 200$ MeV. This is the typical energy scale where various non-perturbative effects such as the confinement of quarks and gluons [Isgur, 2003] and the dynamical breaking of chiral symmetry [Nambu and Jona-Lasinio, 1961(a); Hatsuda and Kunihiro, 1994]. Both effects are responsible for the formation of composite hadrons and nuclei and for the origin of their masses. In this article, we will focus on the dynamical breaking of chiral symmetry (DBCS) realized in the QCD vacuum and in the hot-dense QCD medium by using in-medium hadrons as useful probes of QCD matter.

A. QCD symmetries

Similar to the running coupling constant $s(\tau)$, the quark mass receives quantum corrections and becomes scale dependent, $m(\tau)$. As seen from Fig. 2, the current knowledge of the up and down quark masses shows that they are about 50 to 100 times smaller than the QCD intrinsic scale μ^2, while the strange quark mass is comparable to μ^2. Therefore, it is legitimate to treat $\mu^2 = \mu^2$ and $m_\pi^2 = \mu^2$ as small expansion parameters.

In the limit case where $m_{ut} = 0$, which is called the SU(2) chiral limit, the QCD Lagrangian Eq. (14) acquires an exact global symmetry called chiral symmetry under independent SU(2) rotations of the left and right handed quarks: $q_L^u \rightarrow U_L q_L$ and $q_L^d \rightarrow U_R q_L$ with U_L, U_R being the global SU(2) matrices. Thus we have the exact QCD symmetries for $m_{ut} = 0$, $G = SU(3)_c \rightarrow SU(2)_c \rightarrow SU(2)_L \rightarrow U(1)_L$.

where $U(1)_L$ corresponds to the baryon number symmetry corresponding to the global phase rotation, $q^L \rightarrow e^{i\alpha} q^L$. Although a similar phase rotation, $q_L \rightarrow e^{i\alpha} q_L$ and $q^L \rightarrow e^{i\alpha} q^L$ looks like a symmetry of Eq. (14), it is broken explicitly by a quantum effect known as the axial anomaly. Currents associated with these symmetries are defined as $V^a = q^L t^a q^L$ (the triplet vector current), $A^a = q^L s^a t^a q^L$ (singlet axial-vector current), $V^0 = q^L t^a q^L$ (baryon current), $A^0 = q^L s^a t^a q^L$ (singlet axial current), where $t^a = \varepsilon_{abc} q^L$ and $s^a = 2$ with a being the Pauli matrices and $t^0 = 0$, 1. The divergences of these currents are

$$\alpha V^a = i g q^L \varepsilon^a_{bc} H$$
$$\alpha A^a = i g q^L \varepsilon^a_{bc} s^c q^L$$
$$\alpha V^0 = 0$$
$$\alpha A^0 = i g q^L s^a t^a q^L$$

where H is the Higgs field and g is the coupling constant.
with $G = \frac{1}{2} G$ being the dual field strength of the gluon. [;] and $f ; g$ are the commutator and the anti-commutator in the color-space, respectively. For later convenience, we define the scalar and pseudo-scalar density as

\[
S^0 = q t^0 q; \quad S^a = q t^a q; \quad (I.8)
\]

\[
P^0 = q i s^0 q; \quad P^a = q i s^a q; \quad (I.9)
\]

From the time component of the currents, generators of the chiral transformation are defined as $Q^a(t) = \gamma_0\gamma^a(t\gamma)\gamma_0\gamma^a$ and $Q^a(t) = -\gamma_0\gamma^a(t\gamma)\gamma_0\gamma^a$. Then the bilinear quark operators defined above obey the following relations under the axial transformation $Q^a(a = 1; 2; 3)$:

\[
Q^a(t)\gamma^b(t\gamma) = i\delta^{ab} \gamma^c(t\gamma) \quad (I.10)
\]

\[
Q^a(t)\gamma^b(t\gamma) = i\delta^{ab} \gamma^c(t\gamma) \quad (I.11)
\]

\[
Q^a(t)\gamma^b(t\gamma) = i\delta^{ab} \gamma^c(t\gamma) \quad (I.12)
\]

\[
Q^a(t)\gamma^b(t\gamma) = i\delta^{ab} \gamma^c(t\gamma) \quad (I.13)
\]

\[
Q^a(t)\gamma^b(t\gamma) = i\delta^{ab} \gamma^c(t\gamma) \quad (I.14)
\]

\[
Q^a(t)\gamma^b(t\gamma) = i\delta^{ab} \gamma^c(t\gamma) \quad (I.15)
\]

In the past few years, remarkable progress was made in calculating the hadron spectra on the basis of lattice QCD simulations with dynamical $u; d; s$ quarks. This progress was achieved partly because the supercomputer speed is doubled every 1.2 years and partly because of new simulation algorithms: The lattice QCD simulations for quark masses very close to the physical point are now possible in the Wilson fermion framework [Aoki et al., 2008; Durr et al., 2009]. Shown in Fig. 3 is an example of the lattice results for $m_{u; d; s}$, extrapolated to the physical quark masses using the point mass data in the interval, $[m_{u; d; s}] = 2(0.7) = 35 M e V$ (corresponding to $m = 156 M e V$ 702 M eV). The experimental results are reproduced with 3% accuracy. The simulations right at the physical quark masses will be performed in the near future.

B. Dynamical breaking of chiral symmetry in the vacuum

Even if QCD in the SU(2) chiral limit has the symmetry of Eq. (I.13), the ground state of the system may break some of the symmetries dynamically. Let us consider the QCD vacuum Φ at zero temperature and density. A strong argument that the vacuum is Lorentz invariant and taking into account the fact that QCD does not allow dynamical breaking of parity and vector symmetry in the vacuum [Vafa and Witten, 1984], we have the following possibility of the symmetry breaking pattern:

\[
SU(2)_L \times SU(2)_R \times SU(2)_L \times SU(2)_R : \quad (I.16)
\]

In terms of the generators of the vector and axial-vector rotations, such a vacuum state is characterized as

\[
Q^a \Phi = 0; \quad \bar{Q}^a \Phi \Phi = 0: \quad (I.17)
\]

FIG. 3 Light hadron spectrum obtained from lattice QCD simulations with dynamical $u; d; s$ quarks in the Wilson fermion framework. The hadron masses are extrapolated to their physical values by using the data in the interval, $[m_{u; d; s}] = 2(0.7) = 35 M e V$ (corresponding to $m = 156 M e V$ 702 M eV). The spatial lattice volume is V and the lattice spacing a is $2(9)$. The horizontal bars denote the experimental values [Aoki et al., 2008].

Strictly speaking, we need to take the SU(2) chiral limit $m_{u; d} = 0$ after taking the the vacuum. If $V = 0$ to make the matrix elements of Q^a well defined. This is similar to the case of the spin system where the external magnetic field plays the role of $m_{u; d}$.

At this point, it is important to mention generalization of the order parameter. Consider a symmetry group G and its generator Q. If there is an operator such that $h^{ij} \cdot \bar{\rho}_{i} (h^{ij} \cdot \bar{\rho}_{i}) \Phi = 0$, this expectation value is called the order parameter. If the vacuum is symmetric under Q, the order parameter becomes zero. On the other hand, if the vacuum is not symmetric under Q, there exists a Nambu-Goldstone boson having the same quantum number as Q. Note that the order parameter is not unique for a given G; one can introduce higher dimensional order parameters in principle to characterize the system [Kogan et al., 1999; Watanebe et al., 2004].

For the symmetry breaking pattern as Eq. (I.16), Q is identical to Q^a, and a simplest choice of Q^a is P^a. Then, it leads to the order parameter $h^{0 \cdot i}_{0} = \bar{\rho}_{i}$, $\Phi = 0$. Recent lattice QCD simulation of the chiral condensate using overlap Dirac fermion with dynamical $u; d; s$ quarks indicates [Fukaya et al., 2009]

\[
h^{0 \cdot i}_{0} = \frac{1}{2} h^{0}_{i} + d^{i}_{0} = (242(04))^{10}_{13} M e V \quad (I.18)
\]

where the renormalization scale is taken to be $= 2G e V$ with the statistical and systematic errors in parentheses. This result implies that the QCD vacuum is the Bose-Einstein condensate of quark-antiquark pairs $h^{ij}_{0} = h(q_i + q_j, i)$ and has the power to change left-handed quarks to right-handed quarks and vice versa: Nambu-Goldstone condensate induces a dynamical quark mass. Since quarks are confined, it is not possible to isolate a single quark to measure the dynamical quark mass. Nevertheless, there is indirect evidence that the quarks inside hadrons have an effective mass (constituent quark
position of this statement with should vanish for an arbitrary operator. The contraposition of this statement with $n = 2$ and $S^a(x)S^a(y)P^a(x)P^a(y)\gamma_5\gamma_\mu\gamma_\nu\gamma_\rho\gamma_\sigma\gamma_5\gamma_5 = 0 \mid \bar{\psi}\gamma_\mu\gamma_\nu\gamma_\rho\gamma_\sigma\gamma_5\gamma_5 \psi = 0; (I21)

$W^a(x)\bar{\psi}_a(y)\gamma_5\gamma_\mu\gamma_\nu\gamma_\rho\gamma_\sigma\gamma_5\gamma_5 = 0 \mid \bar{\psi}_a(y)A^a(x)\gamma_5\gamma_\mu\gamma_\nu\gamma_\rho\gamma_\sigma\gamma_5\gamma_5 = 0; (I22)

Experimentally, the pion (the pseudo-scalar meson) does not have a scalar partner at the same mass, and the vector meson does not have an axial-vector partner at the same mass, which are the direct evidences of DBCS. Such non-degeneracy is also seen in other channels, e.g. K and \bar{K} as illustrated in Fig. 4.

II. CHIRAL SYMMETRY AND IN-MEDIUM HADRON SPECTRA

Connections between properties of the QCD vacuum and hadronic correlation functions as discussed in Sec. I.B and Sec. I.C can be generalized to QCD at finite temperature and density. In this section, we will summarize such theoretical connections with special emphasis on the pion, the scalar meson, and the vector mesons in the medium.

A. Chiral condensate in the medium

Let us now consider how the simplest chiral order parameter changes its value inside the hot and/or dense medium. Exact formulas for the in-medium chiral condensate in terms of the QCD partition function Z at finite temperature T and the baryon chemical potential μ is given by

$$h_{qq} = \frac{1}{Z} \text{Tr} \bar{q}qq^T e^{\frac{i}{\hbar}Z^\mu\gamma_\mu - H_{QCD}^m + \mu q^T q}; (II.23)$$

where

$$Z(\mu,T) = \frac{1}{Z} \text{Tr} e^{\frac{i}{\hbar}Z^\mu\gamma_\mu - H_{QCD}^m + \mu q^T q}; (II.24)$$

and

$$K_{QCD} = H_{QCD}^m - (\mu q^T q)\gamma_5 x; (II.25)$$

with $H_{QCD}^m = 0$ being the QCD Hamiltonian without the quark mass term.
where \(R = \frac{\mathbf{q} \cdot \mathbf{F}}{\mathbf{F} \cdot \mathbf{F}} \) and \(\mathbf{F} \) is the electric field. The electric field in the medium \(F(x) \) is related to the electric field \(E_0 \) in the vacuum by the following relation:

\[
F(x) = \frac{E_0}{n(x) + 1}
\]

where \(n(x) = \frac{1}{\epsilon(x)} \) and \(\epsilon(x) \) is the relative permittivity of the medium at position \(x \). The charge density \(\rho(x) \) in the medium is given by the following integral:

\[
\rho(x) = \int_{\text{volume}} n(x') \, \mathbf{E} \cdot \mathbf{n} \, \text{d}V
\]

where \(\mathbf{n} \) is the unit normal vector to the surface and \(\text{d}V \) is the volume element. The electric field \(E(x) \) in the medium is related to the electric field \(E_0 \) in the vacuum by the following relation:

\[
E(x) = E_0 \frac{n(x) + 1}{n(x)}
\]

Essentially, the charge density in the medium is the same as in the vacuum, but the electric field is modified due to the presence of the medium. Therefore, the electric field in the medium is reduced compared to the electric field in the vacuum.
strong interactions with the medium. Therefore, it is not enough to talk about the mass and width of the hadrons, but we need to study the hadronic spectral functions. For mesonic resonances coupled to the composite operator \(O(\tau x) = q(\tau x) g(\tau x) \) with being an arbitrary combination of Dirac and avor matrixes, we have the spectral decompositional result of the retarded correlation as

\[
G^R(\tau; k) = \frac{1}{Z_1} \int_0^\infty \frac{\hat{d}u}{u^2}(I + i\hat{d})du; \quad (II.31)
\]

where \(F.T. \) stands for the Fourier transform,

\[
R(\tau(\tau x)B(\tau; y)) = \langle t \langle \tau x \rangle A(\tau x)B(\tau; y) \rangle \text{ is the retarded product of the operators } A \text{ and } B, \text{ and } h \text{ implies the expectation value at time } T \text{ and } \tau. \text{ The spectral function, } \langle \tau; k \rangle, \text{ has all the information of the states having the same quantum numbers with the operator } O. \text{ In particular, } P^a \text{ and } V^a \text{ are the relevant operators for studying the in-medium pion and the } m \text{ meson, respectively.}

\section*{1. In-medium pion}

The Nambu-Goldstone theorem which guarantees massless pions in the QCD vacuum in the chiral limit holds also in the medium. Indeed, by considering the correlation,

\[
Z = \int d^4x \hat{d}[R]\langle a^a(\tau x)P^b(0)\rangle; \quad (II.33)
\]

the following sum rule can be derived \cite{Yagietal,2005}:

\[
Z = \frac{1}{x!} \int_0^\infty \frac{a^b(\tau; 0)}{t^2}dt^2 = \frac{a^b\rho_0^b}{x!}; \quad (II.34)
\]

where we considered a two-avor system \((m = m_\pi < m \pi = 1, m_\pi = 1) \) for simplicity. \(a^b \) corresponds to the spectral function associated with \(a^b(x) = R(\tau x)P^b(0)) \). To have a non-zero chiral condensate in the r.h.s. of Eq. (II.34) in the chiral limit \(m^2 \to 0 \), the spectral function \(m \) must have a pole, \(a^b(\tau; 0): 0 \to a^b(C) (1_\uparrow\downarrow \text{ avor} = 1) \), so that \(m \) in the numerator is canceled by this pole in the chiral limit. This means nearly massless pions exist even in the medium as long as DBCS takes place.

In the leading order of the virial expansion at \(T \to 0 \) with \(0 = 0 \), the self-energy of the in-medium pion is dictated by the forward pion-pion scattering amplitude which vanishes in the chiral limit. In this case, the pion is still a real pole with the mass \(m = (T) \) and the decay constant \(f = \gamma(T) \). Since the Lorentz symmetry does not hold in the rest frame of the medium, a difference arises between the bare pion pole \(f \) and the spatial residue \(f^s \) in general, although they are equal in the leading order of the virial expansion at low \(T \). Combining Eq. (II.36) and Eq. (II.26), the GOR relation turns out to hold in the dilute pion gas at low \(T \) \cite{ParslilandTytgat,1993,Toubler,1993}:

\[
\frac{m^2}{m} = 1 + \frac{1}{4}(T); \quad (II.35)
\]

\[
\frac{f^s(T)}{f} = 1 + \frac{1}{4}(T); \quad (II.36)
\]

Here, the in-medium pion decay constant \(f^s(T) \) is defined by the residue of the pion pole of the correlation function of \(A^a \). Since the Lorentz symmetry does not hold in the rest frame of the medium, a difference arises between the bare pion pole \(f \) and the spatial residue \(f^s \) in general, although they are equal in the leading order of the virial expansion at low \(T \). Combining Eq. (II.36) and Eq. (II.26), the GOR relation turns out to hold in the dilute pion gas at low \(T \) \cite{ParslilandTytgat,1993,Toubler,1993}:

\[
(f^s(T) \gamma(T^2)) = \left(\frac{\mu^a_u + \mu d_i}{\mu d_i} \right)^2; \quad (II.37)
\]

which was originally noticed in the Nambu-Jona-Lasinio model at finite \(T \) \cite{BatsudaandKunihiro,1987}. In the case \(T \to 0 \) with \(T = 0 \), the in-medium pion properties at low baryon density is determined by the pion-nucleon forward scattering amplitude which is dictated by several low energy constants \cite{Meissneretal,2003;ThorssonandWirseba,1993}. For the symmetric two-avor nuclear matter, we have

\[
R = \frac{m^2}{m} = 1 + \frac{2}{f^2} \frac{1}{2 \omega} \left(\frac{1}{\omega} + \frac{\omega^2}{8m_n} \right); \quad (II.38)
\]
\[
\frac{f^+(q^2)}{f} = 1 + \frac{2}{f^2} c_2 + \frac{q^2}{8m_N};
\]
(II.39)

\[
\frac{f^-(q^2)}{f} = 1 + \frac{2}{f^2} c_2 + \frac{q^2}{8m_N};
\]
(II.40)

Using Eq. (II.29) and a relation \(q^2 \rightarrow 4q^2 \), the GOR relation is shown to hold at low density:

\[
\frac{f^+(m)}{f} \text{huu + dd} = 1;
\]
(II.41)

With the empirical values, \(c_1 = 0.81 \), \(c_2 = 0.25 \), \(c_3 = 4.70 \), \(q^2 = 924(3) \), and \(m_N = 12695(29) \), one finds that \(f^+ = 1 + (0.02 \pm 0.04)(0.05 \pm 0.09) \). Note that, in asymmetric nuclear matter, there is splitting between \(m \), \(m \), and \(m \). For example, \(N-Z = 15 \) at \(Z = 0 \), and there is an approximately 18 M eV shift for \(\Delta m^2 = 0.12 \). A possible problem of the linear density formula Eq. (II.40) is that \(f^+ \) vanishes even below nuclear matter density.

In the leading order of baryon density and in the SU(2) chiral limit, one can formulate two different representations of the in-medium change of the chiral condensate in terms of the physical observables:

\[
\frac{f^+(q^2)}{f} \text{hqqi} = \frac{f^-(q^2)}{f} \text{hqqo},
\]
(II.42)

\[
\frac{f^+(q^2)}{f} \text{m}^2 \text{} \text{hhuu} + \text{dd} = 1;
\]
(II.43)

The first one is the in-medium GOR relation Eq. (II.41), while the second one is a combination of the in-medium Tomozawa-Weinberg relation \(k \) (Kokubu et al., 2003), \(\text{hqqi} \to \text{hqqo} \) and the in-medium Geshi-Weyberg relation \(\text{Jido et al., 2003} \), \(\text{hqqi} \to \text{hqqo} \). Here \(\text{hqqi} \) is the isovector pion-nucleon (pion-nucleon) scattering length in the chiral limit and \(Z \) is the in-medium change of the pion residue due to the correlation function of the pseudo-scalar operator \(P^\mu(x) \). The slope of \(Z \) as a function of the pion density is related to the isovector pion-nucleon scattering amplitude, while \(\text{hqqi} \) is related to the energy levels of the deeply bound atom. Experimental data at \(Z < 0 \) indicate \(Z < 1 \) and \(\text{hqqi} < 1 \), so that the chiral condensate indeed decreases at the baryon density.

2. In-medium scalar meson

The light scalar-isoscalar meson has been customarily called the \(H \). Since it has the same quantum number as the vacuum \(\phi \), it is analogous to the Higgs boson \(\phi \) in the electro-weak (EW) theory. The may be interpreted as the excitation associated with the amplitude variation of the chiral condensate. The bosons associated with spontaneous symmetry breaking SU(2) \(\Upsilon(1 \text{J}) \) are absorbed into the gauge bosons, while the NG bosons in QCD (the phase variation of the NG boson) are nothing but physical pions. Therefore, it is allowed to have s-wave decay into two pions as long as \(m > 2 \). Thus should be a very broad resonance even if it exists.

Because of the above reason, it has been long debated whether there is no baryon or baryon evidence of such a light and broad resonance in scattering, collision, heavy meson decays, and so on. Recently, an analysis based on the model independent Roy equation for the partial wave amplitude in the scalar-isoscalar channel, \(t^\pm(0,0) \), has been carried out for the scattering lengths obtained from chiral perturbation theory. Then and the width corresponding to the second pole are then deduced with high accuracy by Caprini et al., 2003; Leutwyler, 2003:

\[
m = 441^{+16}_{-18} \text{M eV}; \quad 544^{+18}_{-25} \text{M eV};
\]
(II.44)

A thorough existence of is established, its quark-gluon structure is still unknown, and is actively studied theoretically, experimentally (Pennington, 2003) and also numerically in lattice QCD simulations (Kunihiro, 2003; Prelovsek, 2003).

The medium modification of has not been established yet even at low temperature and density unlike the case of the pion. Nevertheless, we may expect from general grounds that there would be a partial degeneracy between and if the system approaches to the point of chiral symmetry restoration (Hatsuda and Kunihiro, 1985, 1987; Bernard et al., 1988; Chikyu and Hatsuda, 1998; Hatsuda and Kunihiro, 2001; Hatsuda et al., 2003). At high temperature, such a chiral degeneracy can be detected, e.g., by the thermodynamic susceptibilities associated with the operator \(\phi^4 \) in the Euclidean time:

\[
Z_{\text{1+T}} = \int d^4x \phi^0(\phi^0) = \int \frac{\phi^4}{4!} = \int \frac{\phi^4}{4!} = \frac{1}{4!};
\]
(II.46)

Show in Fig. 3 is the lattice QCD simulation of with dynamical quarks in two flavors and a scalar-isosvector meson, traditionally called \(a_0 \) at low temperature, which indicates that the spectral strength in the channel has...
functions in the medium, but they coincide at zero spatial momenta, so that such a distinction is not made in the above formulas. As is obvious from Eq. (II.50), the DBCS in the vector and axial-vector channels is manifest as the higher dimensional four-quark operator and not by the simple bilinear operator $qq =qq +qq$.

The in-medium changes of H_0^{4q} and h_{q1}^2 are different in general [Ketschaj, 1993; Hatsuda et al., 1993]. At finite T with zero baryon density, it has been proven that there is no exotic phase in which $h_{q1} = 0$ and $H_0^{4q} = 0$ take place simultaneously [Kogan et al., 1993]. However, such a phase is not ruled out at finite baryon density and is indeed realized in the color superconducting phase [Hatsuda et al., 2003].

The spectral modifications of vector and axial-vector channels at low T with zero density are realized as a mixing of the two channels due to alphas. The leading order of the virial expansion in the two-avor system, one finds [Dev et al., 1998]

$\nu = (1) (T) \nu \nu$; $\lambda = (1) \nu v + (T) v \nu$; (II.51)

with (T) given by Eq. (II.52). The spectral functions in the vacuum are measured experimentally (see, e.g., Fig. 4 in the vector channel). The above mixing formulas show that the pole positions of the correlation functions do not change at low T, while the pole residues are modified as $(f^2(T)) = 1 (T)$. Note also that these formulas satisfy the Weinberg sum rules. In fact, the T-dependence of H_0^{4q} in the r.h.s. of Eq. (II.45) is calculated by using the soft pion theorem coincide with that obtained from Eqs. (II.51) [Hatsuda et al., 1993].

The density dependence of the four-quark condensate H_0^{4q} is not known precisely. In the leading order of the virial expansion in terms of the baryon density, we have $H_0^{4q} = H_0^{4q} + H_0^{4q}$. The nucleon matrix element of $O = O^{4q}$ corresponds to higher twist terms in the deep inelastic lepton-nucleon scattering, but the value is still uncertain. A crude approximation originally made was a factorization ansatz [Hatsuda and Lee, 1992]: $h_{q1}^2 q_{i q} q_{j q} / h_{q1}^2 q_{i q} q_{j q}$ with appropriate Fierz coe$cients. It is not obvious, however, whether this estimate is accurate enough and further studies are necessary [Thomas et al., 2003].

C. Dynamical approaches to in-medium hadrons

Although there are numerous attempts to relate hadronic spectral functions to h_{q1} in the medium [Alam et al., 2001; Cassing and Bratkovskaya, 1993; Madsen, 2003; Rapp and Wambach, 2003], no rigorous relations have been established yet except for the pion. In the following, we briefly outline various theoretical approaches that have been attempted so far.

1. Naive quark model

Assuming that the constituent quark mass M originates mainly from DBCS according to the idea of Nambu
and Jona-Lasinio, and assuming further that the vector meson mass follows the additive rule \(m_J = 2m_V \), one may expect a reduction of \(m_V \), associated with the partial restoration of chiral symmetry. Such a shift could be detected through the decay of the neutral vector meson into dileptons (Pisarski, 1983).

2. Nambu-Jona-Lasinio model

As a hadron-theoretical model to treat the meson properties in the medium beyond the simple additive rule, the Nambu-Jona-Lasinio (NJL) model in infinite temperature and density has been studied. In particular, the spectral degeneracy between and in hot and/or dense matter was explicitly demonstrated (Hatsuda and Kunihiro, 1985; 1987a; Bernardi et al., 1987; 1989). Further progress along these lines and a similar dynamical model based on the Dyson-Schwinger equation can be seen in (Buballa, 2005; Hatsuda and Kunihiro, 1994; Klevansky, 1992; Vogt and Wiese, 1991) and in (Roberts and Schröder, 2002), respectively.

3. QCD sum rules

The QCD sum rule (QSR) is a method which can relate the hadronic spectral functions to the QCD condensates through the hadronic product expansion and the dispersion relation (Shifman et al., 1979a,b,c). This approach has been generalized to attack the problem of hadron properties in the hot/dense medium (Bochkarev and Shaposnikov, 1986; Hatsuda et al., 1993; Hatsuda and Lee, 1993), and further theoretical elaborations were made (Asakawa and K. J. 1993; Jin and Linweber, 1993; King et al., 1997; Koike and Hayashi, 1997; Leupold et al., 1998; Ruppert et al., 2004). A major difference of the in-medium QSR from the in-vacuum QSR is that there arise Lorentz-tensor condensates. The weighted average of the spectral function \(h_i = \frac{1}{n} \) \((nW/\!\!W) \) obtained from the in-medium QSR gives useful QCD constraints on various models (Eichstädt et al., 2007; Kwon et al., 2008; Thomas et al., 2005).

4. Hadron mass scaling

It was conjectured that the masses of light vector mesons (\(\pi^0 \)) scale universally as a function of density and/or temperature (Brown and Rho, 1991). Near the chiral restoration point, \(h_{\pi^0} = h_{\pi^0}^{0} \), the scaling law reads

\[
\frac{m}{m_0} \approx \frac{\tilde{m}}{\tilde{m}_0}, \quad h_{\pi^0} = h_{\pi^0}^{0},
\]

where \(m \) denote the pole mass of in-medium vector mesons (Brown et al., 2003). The theoretical foundation of such a scaling law may be obtained by an approach in which the vector mesons are considered to be gauge bosons associated with the hidden local symmetry of the chiral effective Lagrangian (Harada et al., 2002; Harada and Sasak, 2002; 2004; Harada and Yamaoka, 2002; Hidaka et al., 2008).

5. Bag model

The bag model is a phenomenological approach in which quarks and gluons are confined inside a bag* in non-perturbative QCD vacuum. In the nuclear medium, the non-vanishing expectation values of the scalar-isoscalar mesons and the timelike component of the vector-isoscalar meson develop, so that they act as effective scalar and vector potentials on the quarks inside the bag. In such a quark-meson coupling model, in-medium baryons composed of three valence quarks feel both scalar and vector potentials with opposite sign, while the in-medium mesons composed of quark and antiquark feel only the scalar potential and obey a universal scaling law dictated by the density dependence of the quark and hadronic model (Saito and Thomas, 1995; Saito et al., 1997a, 2003).

6. Hadronic models

There are purely hadronic descriptions of the in-medium vector mesons. In the Walecka type models, the one-loop self-energy of vector mesons in nuclear matter receives contributions from the low-energy particle-hole (p-h) excitations and the high-energy nucleon anti-nucleon (N-N) excitations. The former gives the standard parameter which increases the pole mass of the vector meson, while the latter tends to decrease the pole mass. These effects are simply understood from the quantum mechanical level repulsion. The net effect with a standard parameter set of the Walecka model shows that the N-N e ect wins and the pole mass decreases (Callibon and Labasriougui, 1993; Jean et al., 1994; Kurasawa and Suzuki, 1990; Saito et al., 1989;...
III. PSEUDOSCALAR MESON: IN NUCLEI

A. Theoretical Background

As we have shown in the introduction, a sizable reduction of the chiral condensate in nuclear matter of about 30% is theoretically expected. A possible way to detect this reduction is to study the in-medium pion properties through precision spectroscopy of deeply bound pionic atoms and through precision measurements of the low-energy pion-nucleus scattering.

The basic tool to relate the in-medium chiral condensate and the experiment data is the pion-nucleus optical potential $U_{opt}(r)$. The starting point is the pion propagator in asymmetric nuclear matter,

$$U(\kappa) = \left(\frac{T^+}{T} \right) ; \quad (III.55)$$

where $P + n$ (total baryon density), = $P + n$ (total isospin density), and $i = 0, 1$ for $j = 0, 1$. The 0^{-}-shell isoscalar (isosvector) forward scattering amplitude $T^+(0)$ for small q and at $q = 0$ reads [Ericson and West, 1985]

$$T^+(q) = \frac{1}{q^2}; \quad T^-(q) = \frac{1}{2q^2}; \quad (III.56)$$

From the constraints $T^+(m) = 4 (1 + m^3) / 3$, we have $m_N = m$. This approximation is valid in 5% accuracy to $q = 0$. The 0^{-} does not have a mass shift in the nuclear medium in the same approximation.

One may introduce the energy independent optical potential as $f^2 = m^2 + 2mU_{opt}$ which is a solution of the dispersion relation $f_f = 0$. As long as U_{opt} and the linear density approximation is valid, one nds

$$U_{opt} = \frac{3}{4}f_f(0); \quad (III.57)$$

This implies that there is an extra repulsion (attraction) for f_f from the medium associated with the reduction of the pion decay constant [West, 2000, 2003].

In the local density approximation, $p_{pn} = p_{pn}(r)$, the Klein-Gordon equation corresponding to Eq. (III.54) reads $f^2 + r^2 - m^2 = 0$; or equivalently near the mass shell,

$$f^2 + r^2 - m^2 = 2mU_{opt}(p_{pn}(r)) = 0; \quad (III.58)$$

with $f = +1$. $V_{coul}(r)$ where V_{coul} is the Coulomb potential between the nucleus. There are several important contributions to U_{opt} other than Eq. (III.57).
in studying the experimental data of the deeply bound pionic atoms and the low energy nucleus scattering: (i) higher order terms in l and m to the s-wave part of T and T [Eriksen and Osgood, 2008; Kolomietz et al., 2003], (ii) the two-nucleon absorption of the pion, and (iii) the p-wave contribution with spatial derivatives [Eriksen and Wils, 1988; Friedmann and Gia, 2007]. Their explicit form are given in the next section.

B. Pion-nucleus optical potential

1. s-wave and p-wave parts

The pion-nucleus potential [Eriksen and Eriksen, 1966] is composed of the s-wave and p-wave parts:

$$U_{opt}(r) = U_s(r) + U_p(r);$$ \hspace{1cm} (III.59)

$$U_s(r) = \frac{2}{m} \left[b(r) + \frac{1}{2} C_0 \right] \; r;$$ \hspace{1cm} (III.60)

$$U_p(r) = \frac{2}{m} \sum c(r) \; \left[\frac{1}{2} C_0 \right] \; L(r);$$ \hspace{1cm} (III.61)

with

$$b(r) = \frac{1}{1+m} \frac{1}{m_N} \frac{1}{m_p} \; p(r);$$ \hspace{1cm} (III.62)

$$c(r) = \frac{1}{1+m} \frac{1}{m_N} \frac{1}{m_p} \; p(r);$$ \hspace{1cm} (III.63)

$$L(r) = \frac{1}{1+m} \frac{1}{m_N} \frac{1}{m_p} \; L(r).$$ \hspace{1cm} (III.64)

where is the Lorentz-Lorenz-Eriksen-Eriksen correction parameter. The kinematic factors b_1 and b_2 are defined as $b_1 = 1 + m = m_N$ and $b_2 = 1 + m = 2m_N$ with the nucleon mass m_N. The complex parameters B_0 and C_0 are the s-wave and p-wave absorptive parameters, respectively.

From the pionic-atom x-ray data, the p-wave parameters have been fairly precisely determined, while the x-ray data are less sensitive to the s-wave parameters. This situation can be understood from Fig. 10, which shows that the 1s strong-interaction shift is dominated by the s-wave potential while the 3d (and higher) level shifts are dominated by the p-wave potential. It is therefore important to obtain experimental information on the 1s level in order to precisely determine the s-wave parameters.

2. Pionic hydrogen – the 1s scattering lengths at threshold

In the low-density limit, the potential is described by just two parameters, b_1 and b_2 in Eq. (III.62), which are nothing but isoscalar and isovector N scattering lengths, respectively\(^1\). These have been very precisely determined by the pionic hydrogen x-ray spectroscopy at the Paul Scherrer Institut (PSI) [Gotta et al., 2008; Schroeder et al., 2003].

The 1s scattering lengths can be determined from the observed strong-interaction shift 1s and with 1s of pionic hydrogen:

$$\frac{1s}{B_{1s}} = \frac{4}{r_b} \frac{a}{p!} (1 + \cdots);$$ \hspace{1cm} (III.65)

$$\frac{1s}{B_{1s}} = \frac{g}{r_b} \frac{1}{p} a^p (1 + \cdots)^2;$$ \hspace{1cm} (III.66)

where $B_{1s} = 3.24$ keV and $r_b = 216$ fm respectively are the 1s binding energy and the Bohr radius of pionic hydrogen, $g = 0.1421$ fm$^{-1}$ the center-of-mass (c.m.) enurn of the δ in the charge-exchange reaction $p^+ \delta n$ and $P = 1.546$ 0.009 the branching ratio of charge exchange and radiative capture (Panofsky ratio). The quantities δ represent the corrections to be applied to the experimental data in order to obtain pure strong-interaction quantities.

The PSI experiment R-98.01 (Fig. 11) used a superconducting cyclotron trap to produce a high density for pions in a hydrogen gas target, a Johann-type bent-crystal spectrometer, and a two-dimensional CCD focal plane detector to determine the pionic-hydrogen x-rays. The 1s strong-interaction shift was determined from the 3p-1s energy to be $\delta = 7120$ 11 meV. These

\(^1\) Eriksen and Eriksen [1968] define $b_1 = (a_{1s} + 2a_{3s})/3$ and $b_2 = (a_{3s} - a_{1s})/3$, while isoscalar a^s and isovector a scattering lengths are $a^s = (a_{1s} + 2a_{3s})/3$ and $a = (a_{3s} - a_{1s})/3$ in pionic hydrogen literature (e.g., Gotta et al., 2008). Here, a_{1s} and a_{3s} respectively are the isospin $1/2$ and $3/2$ scattering lengths. Note therefore $b_1 = a^s$ and $b_2 = a$.

\hspace{1cm} FIG. 10 The binding energies with finite-size Coulomb potential, B_{Coul}, and pion plus optical potential, B_{opt}, are calculated. The energy shifts $B_{\text{Coul}} - B_{\text{opt}}$ are shown by the solid bars. Dotted bars are the results with the real terms (local plus non-local) in the optical potential [Yamamoto et al., 2003].
hadronic broadening was deduced from the widths of 4p 1s, 3p 1s and 2p 1s transitions, so as to correct for the kinematical broadening caused by the preceding transitions width, to be $15_5 = 823 \pm 18$ MeV. With the corrections and obtained within chiral perturbation theory (Gasser et al., 2003; Leım, 2003), the scattering lengths have been obtained to be (Gottet al., 2008)

$$b_0 = 0.069 \pm 0.031 \text{fm}; \quad (\text{III.67})$$

$$b_2 = 0.086 \pm 0.002 \text{fm}; \quad (\text{III.68})$$

These values are near the leading-order result derived from current algebra (called Tomozawa-Weinberg (TW) values) of

$$b_0^{\text{TW}} = 0; \quad (\text{III.69})$$

$$b_2^{\text{TW}} = \frac{1}{4} \frac{1}{2} \frac{1}{2} = 0.079 \text{fm}; \quad (\text{III.70})$$

with $i = 1 + m = m_N = 1449$, $m = 13957$ MeV and $f = 924$ MeV, revealing an important feature of the underlying chiral symmetry. The 10% gap between the experimental value of b_0 and b_2 gets closed by pion-loop corrections of order m^3 (Bernard et al., 1993, 1995).

3. The missing repulsion problem

It has been long known that the available pionic-atom x-ray data cannot be fitted with b_0 and b_2 values, but some enhancement of the s-wave repulsive strength is required. This is known as the "missing repulsion" problem. The situation is illustrated in Fig. 12, in which the s-wave parameters b_0 and $Re b_0$ obtained by various authors are plotted. We note, firstly, that there is a strong correlation between b_0 and $Re b_0$, approximated by $b_0 + 0.215 Re b_0 = 0.028$ (known as the Seki-Masutani relation (Seki and Masutani, 1983)). Secondly, the Seki-

\[b_0! b_0 = \left[b_2 + 2b_1^2 \right] \frac{1}{2} \quad (\text{III.71}) \]

where the inverse correlation length is expressed by the Fermi momentum k_F as

\[\frac{1}{1-r} = \frac{3}{2} k_F(1) = \frac{3}{2} \frac{3}{2} \left(\frac{r}{1-r} \right) \quad (\text{III.72}) \]

but this correction is still insufficient to account for the missing repulsion. The experiment S236 at GSI, discussed in the next section, established that the in-medium value of b_0 is enhanced relative to b_0, which, through Eq. (III.71), provides the extra s-wave repulsion.

C. Deeply-bound pionic atom spectroscopy

In 1996, the experiment S160 at GSI reported the first observation of the deeply bound pionic states in 207Pb (Yamazaki et al., 1996), whose existence and formation had been predicted previously (Friedman and So, 1983; Krenzaki et al., 1991, 1989; Toki and Yamazaki, 1988). This discovery opened an entirely new way to study the hadronic properties in the nuclear medium. As illustrated in Fig. 13, the 1s wavefunction is bound to a heavy nucleus overlaps appreciably with the nuclear density distribution, and hence the in-medium modification of the pion properties may have detectable effects on the binding energy and/or width.
FIG. 13 a) The pion optical potential for 208Pb. The nms-size Coulomb potential is expressed by the dotted curve and the one with the optical potential by the solid curve. The imaginary part is depicted by the dashed curve. b) The pionic wave functions of the $1s, 2s$ and $2p$ states in coordinate space. The dashed curves and the solid curves are obtained with the nms-size Coulomb potential and with the optical potential. The half-density radius R_0 of 208Pb is indicated by the broken line (Toki et al., 1991).

Although this was not clearly recognized when the deeply-bound pionic atom spectroscopy was initially conceived (Toki and Yamazaki, 1988), it was later established that the in-medium value of the isovector N scattering length $b_λ$, derived from the $1s$ binding energies, is connected to the (temporal part of the) in-medium pion decay constant \bar{f} via the in-medium Tomozawa-Weinberg relation (Tomozawa, 1968; Weinberg, 1968), and the $\lambda=0$ as well.

\[
b_λ = \frac{4}{1 + \frac{\sqrt{m}}{\lambda}} = \frac{m}{2E^2} \tag{III.73}
\]

which is in turn connected to the in-medium chiral condensate via the in-medium Gell-Mann-Oakes-Renner (GOR) relation Eqs. (II.41) and (II.42), or via the Glashow-Weinberg (GW) relation Eq. (II.43).

In the case of deeply-bound pionic atoms, the quantum number is well defined. Moreover, as will be shown, the use of recoilless (d^3He) kinematics ensures that the nucleus is in the ground state. The pion wavefunction and its overlap with the nuclear density are therefore precisely calculable by solving the Klein-Gordon equation. This makes it possible to compare the experimental results with theoretical predictions, and to quantitatively deduce the effects of partial restoration of chiral symmetry.

1. Structure of deeply-bound pionic atoms

This, however, does not mean that those states do not exist, as was recognized by Friedman and So (1983) and by Toki and Yamazaki (1988). In Fig. 14, a typical pion-nucleus optical potential set (see section III.B) was used to calculate the binding energies and widths of pionic Zr (left) and Pb (right) atoms. The $1s$ level width Γ_{1s} is found to be much smaller than the $2p - 1s$ level interval ($E_{2p-1s} < \Gamma_{1s}$) even for heavy pionic atoms such as pionic 208Pb. Namely, the deeply-bound pionic atom is metastable, despite the strong pion-nucleus absorption. This somewhat counter-intuitive result arises due to
the repulsive nature of the pion-nucleus s-wave interaction, which causes the 1s binding energies to decrease (Fig. 16) and also pushes the wave function outwards (see the difference between the solid and dashed curves in Fig. 13(b)). This then reduces the pion-nucleus overlap, making the level width narrower.

2. Formation of deeply-bound pionic atom

The original deeply-bound pionic atom formation scheme proposed by Toki and Yamazaki [1984] was to use the 208Pb(n,p) reaction. This was tested at TRIUMF [Wasakiet al., 1991], but no bound-state peak was observed. It was soon recognized that (n,p) or (d,3He) reactions (see Fig. 17) are more suitable [Hirenzaki et al., 1991]. These are recoilless as well as substitutional reactions, in which a neutron in the s shell is picked up and the produced is left in the 1s orbit with a small momentum transfer (Fig. 18). Due to the substitutional nature of the reaction, the angular momentum transfer is \(L = 0 \). The small momentum transfer makes it possible to satisfy the angular momentum matching in surface reactions, thereby minimizing the nuclear distortion.

Using the (d,3He) reaction, the experiment at GSI succeeded to observe the 2p and 1s states of pionic

![FIG. 16 Energy levels of pionic atoms of \(^{90}\)Zr and \(^{208}\)Pb. The results with the finite-size Coulomb potential (i.e., taking account of the nuclear charge distribution) are shown by dashed bars, while those with the optical potential by solid bars with hatched area indicating the level widths [Toki and Yamazaki, 1988].](image)

![FIG. 17 Diagrams for proton-pick-up pion-transfer (a) \((n, p)\) and (b) \((d, 3\text{He})\) reactions to form pionic bound states on a neutron-hole state [Hirenzaki et al., 1991].](image)

![FIG. 15 Strong-interaction shift (top) and width (bottom) of pionic atoms. The continuous lines join points calculated with the bestoptical potential [Batty et al., 1997].](image)
is to make use of isotopes over a wide range of $(N-Z)/A$ to sensitively deduce the isovector parameter b_1.

The experiment S236 used a deuteron beam from the heavy-ion synchrotron SIS at GSI, Darmstadt, combined with the fragment separator (FRS) as a high-resolution forward spectrometer (Fig. 18). They chose the exact recoilless condition to suppress in-or scattering other than the enhanced $1s$ states with quasi-substitutional $1s$ states, with a deuteron beam of a small momentum spread and an accurately measured energy of $503\pm388\ 0.00\ MeV$. The Q-value resolution was $394\ 33\ keV$ (FW HM), and the absolute Q-value scale was calibrated to an accuracy of $7\ keV$ using the $p(d^3He)$ reaction, where a thin Mylar layer put on the surface of each Sn target was used as the proton source.

The observed spectra, $d^3He = dE - dE$, on Mylar-covered ^{116}Sn, ^{120}Sn, ^{124}Sn targets as a function of the $3He$ kinetic energy, are shown in Fig. 19. In each spectrum of Fig. 19, a distinct peak at around $365\ MeV$ was observed, which was assigned to a dominant configuration of $(1s)(3s)\ ^1$. The skewed peaks at around $371\ MeV$ arise from $p(d^3He)$\ 0. The overall spectrum shapes for the three Sn targets were found to be in good agreement with the predicted ones (Fig. 19). The spectra were decomposed according to the theoretical prescription of [Umemoto et al. 2000], from which the $1s$ binding energies (B_{1s}) and widths (Γ_{1s}) were determined as:

\begin{align*}
115Sn\ B_{1s} &= 3.906 \pm 0.021 \text{ (stat)} \pm 0.012 \text{ (syst)} \text{ M eV;}
1s &= 0.441 \pm 0.068 \text{ (stat)} \pm 0.054 \text{ (syst)} \text{ M eV;}
119Sn\ B_{1s} &= 3.920 \pm 0.013 \text{ (stat)} \pm 0.012 \text{ (syst)} \text{ M eV;}
1s &= 0.326 \pm 0.047 \text{ (stat)} \pm 0.065 \text{ (syst)} \text{ M eV;}
123Sn\ B_{1s} &= 3.744 \pm 0.013 \text{ (stat)} \pm 0.012 \text{ (syst)} \text{ M eV;}
1s &= 0.341 \pm 0.036 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ M eV;}
\end{align*}
In-medium isovector scattering length b

The s-wave potential parameters $b_0, b_1, R E B_0, \text{Im } B_0G$ were deduced simultaneously tting B_{1s} and l_s of the three Sn isotopes together with those of symmetric light nuclei ($^{16}O, ^{20}Ne$ and ^{28}Si), with the p-wave parameters fixed to the known values from proton x-ray data listed in Battye et al. (1997).

The obtained values are:

$$b_0 = 0.0233, 0.0038 \text{ fm}^{-1}$$
$$b_1 = 0.1149, 0.0074 \text{ fm}^{-1}$$
$$R E B_0 = 0.019, 0.017 \text{ fm}$$
$$\text{Im } B_0G = 0.0472, 0.0013 \text{ fm}$$

The effective density profile by the was

0.5 (obtained from the overlap of the nuclear density and the pion wavefunction, such as shown in Fig. 13 Yamazaki and Hrenzak, 2003). Figure 23 shows the likelihood contours in the plane of $b_0, \text{Im } B_0G$. As shown, the best- t value deviates signi cantly from the 'free'-value obtained from pionic hydrogen.

Also shown therein is how the best- t values move if the shape of the neutron distribution was changed. In fact, the most serious problem in the analysis was the relatively poor knowledge concerning the neutron distribution $n(r)$ in Sn isotopes, whereas the proton distribution $p(r)$ is well known Frick et al. (1993). In the t, the neutron di useness b_0 and half-density radius c_0 parameters in the two-param eter Ferm distribution were chosen so as to satisfy the difference between the neutron and proton rms radii $r_{np} = (1.01 \pm 0.05)N(2)A + (0.04 \pm 0.03)\text{ fm}$ (Fig. 23), based on experimental data of antiprotonic atom of Sn isotopes Tyczynska et al. (2001) as well as of any other nuclei. The two extreme assumptions, the "skin" type $(c_p < c_t, b_0 = a_0)$ and the "halo" type $(c_p = c_t, b_0 < a_0)$, where $c_p (c_t)$ is the proton (neutron) half-density radius and $a_0 (a_t)$ is the proton (neutron) di useness of the two-param eter Ferm di
distribution, are shown in Fig. 25 in open diamonds and open squares, respectively. The best-fit values were obtained by using the parameters halfway between these two assumptions. The two crosses in the gure indicate the dependence of b_0 on the uncertainty of 0.04 fm in n_p. The quoted errors on the best-fit values do not include these uncertainties in the neutron distribution\(^3\).

In-medium quark condensate

From the observed enhancement of the b_1 parameter relative to the free value, $b_1 = b_1(\rho) = 0.78 \pm 0.05$, Suzuki et al. (2004) deduced that the chiral order parameter ρ is subject to the in-medium reduction of $(f^+(\rho)f^-) = 0.54$ at the normal nuclear density $\rho = 0$, based on the suggestion of K"onig and Yamazaki (2001).\(^4\) This implies that the missing repulsion may be explained in terms of a possible in-medium change of the pion decay constant. A global fit (Friedman et al., 2002a, b) to the pionic π-ray and also the deeply-bound 205Pb data (Meissner et al., 2002) supported this view. Recent direct calculation of $b_1 = b_1(\rho)$ in the unitarized chiral approach (e.g., 2005) is also consistent with the above result (D"oring and Oset, 2005).

Here, we adopt a new model independent relation obtained by exploiting operator relations in QCD, Eq. (II.23) of Ref. (2005).\(^5\) Jiho et al. (2003) showed that $Z_{\pi\rho}^{-1}(\rho) = 1 - \rho$, with $\rho = 0.184$. Using $b_1 = b_1(\rho) = 0.78$ at $\rho = 0.55$, the ratio of the quark condensates is found to be

$$\frac{\langle \bar{q}q \rangle}{\langle \bar{q}q \rangle_0} = 1.03 \pm 0.02.$$ \hspace{1cm} \text{(III.74)}

\(^3\) Recently, Fujikawa et al. (2004) have determined the neutron mass radii of Sn isotopes using proton elastic scattering at 295 MeV. Their results are in good agreement with the radii sum ed in Suzuki et al. (2004). See Fig. 25.

\(^4\) A similar conclusion, $h_{\eta_{PQ}} = h_{\eta_{PQ}}^{0.7}$, was obtained from the di\-correlation τ-nucleus elastic scattering data at 21.5 MeV (Friedman et al., 2004).

\(^5\) In-medium isovector $b_1(\rho)$ compared to the vacuum isovector term b_0. The gray band, the experimental result from Suzuki et al. (2004), is compared with chiral calculations by D"oring and Oset (2002) (dashed line) and Friedman et al. (2004) (dash-dot line). The point is a phenonological t by Nieves et al. (1993). From D"oring and Oset (2002).

IV. SCALAR MESEN: IN NUCLEI

A. Theoretical background

The σ meson in the vacuum is a very broad resonance in the scalar-isoscalar channel as discussed in Sec. III. 2. It is an excitation having the same quantum number as the vacuum, i.e., $n = 0$, and may be interpreted as the Higgs boson in QCD. The fate of such scalar-isoscalar excitation in hot and/or dense medium is strongly correlated with chiral symmetry restoration (Nakano and Kubis, 1985, 1987). The basic idea is rather simple and general: If a sizable reduction of the chiral condensate takes place in the medium, the ground state becomes a soft against the amplitude of the order parameter due to the reduction of the stiffness. In fact, the frequency of the excitation (the amplitude of the amplitude) is red-shifted toward the frequency of the excitation (the phase of the excitation). Similar softening phenomena are well known in solid state physics, e.g., the soft phonon modes in anti ferro-electric crystals such as SrTiO$_3$ (Gebhardt and Kremer, 1986) and in ferro-electric crystals such as SbSI (KHH, 2003).

In the case of QCD, an interesting signal associated with the chiral softening is the spectral enhancement in the scalar-isoscalar channel near the threshold at ρ, the temperature and density as mentioned in Sec. III. 7. Consider the retarded propagator of ϕ at...
rest in the medium, \(D \) (!). The spectral function is defined as \(\frac{1}{\text{Im } D} = \frac{1}{\text{Im } D} (\text{Re } D)^2 + (\text{Im } D (2m)^2 \right) ! \) because of the softening and strong coupling, \(\text{Re } D \). The small or even vanishes at a certain tem perature or baryon density. In that situation, the spectral function is dominated by the imaginary part of the inverse propagator with the phase space factor (Chiku and Hatsuda, 1998, 1999; Volkov et al., 1993),

\[
(1) = \frac{1}{\text{Im } D} (1) / \frac{1}{\text{Im } D} (2m) : \text{(IV.75)}
\]

This implies a large enhancement of the spectral function near 2 threshold. Such an enhancement may be seen in, e.g., the dipion production and diphoton production from the hot/dense medium. Also, a \(- \) mesic nucleus (or the bound dipion in nuclei) could be formed by \((d\pi), (d^2H)\) and \((p\pi)\) reactions, if there is large enough softening (Krasznahorkay et al., 2002; Nagahiro et al., 2003).

In reality, the pion has a width inside the medium, so that the spectral function in the channel does not have a simple form such as Eq. (IV.75). Nevertheless, more sophisticated approaches indicate similar enhancement of the in-medium scattering amplitude in the scalar-isoscalar channel near the 2 threshold (see the references cited in Section III.C). Shown in Fig. 27 is one of such examples obtained by using the chiral unitary model. Here we note that the expansion parameter of the non-linear chiral models is a ratio, [typical cm entry of the pion or nucleon \(\epsilon \sqrt{s} \)] / [chiral symm etry breaking scale \(4 f \)]. Therefore, non-linear chiral approaches lose their predictive power at high tem perature and/or high baryon density.

B. Experiments

1. CHAOS

The CHAOS (Canadian high acceptance orbit spectrometer) collaboration at TRIUMF was the first to report such low-mass enhancement in the \(\pi^- J = 0 \) channel. They used \(\pi^+ \rightarrow \pi^- \times \) reactions on hydrogen (Kerman et al., 1998) and on nuclear targets (Bonuttii et al., 1998, 1999, 2003; Cabrera et al., 2004, 2005; Gion et al., 2003) at pion kinetic energy \(T = 243\), 305 MeV, and observed the spectral "softening" in the \(\pi^- \) channel but not in the \(\pi^+ \) (i.e., \(I = 2 \)) channel. The nuclear data were taken at \(T = 283\) MeV on \(^3H, ^{12}C, ^{40}Ca \) and \(^{208}Pb \) targets, as well as at \(T = 243; 284; 305 \) MeV on \(^{48}Sc \).

Figure 28 shows a typical reconstructed \(\pi^+ \) event. The spectrometer is based on a cylindrical dipole magnet producing vertical magnetic fields up to \(1.5T \) (0.5 T for the 2 experiments) (Bonuttii et al., 1998). The target is located in the center of the magnet. Charged particle tracks produced by pion interactions are identified using four concentric cylindrical wire chambers (WC1, 2, 3, 4) surrounding the target. Particles are identified by cylindrical layers of scintillation counters and lead-glass Cherenkov counters, which also provide a \(\pi^- \) level trigger (CFTs). The detector subtends approximately 18\% of 4. The momentum resolution delivered by the detector system is 1\%. The pion-detection threshold energy is 11 MeV.

Fig. 29 shows the \(\pi^+ \) (left) and \(\pi^- \) (right)
invariant-mass spectra taken on nuclear targets. The distributions span the range from \(m \) up to the \(420 \text{ MeV} \), the maximum allowed by the reaction. While the * spectra can be fairly well represented by the phase-space simulations (shaded region), the * spectra show a peak in the low-\(m \) mass region, increasing with mass number \(A \).

Instead of comparing the raw spectra with theoretical predictions or with results of other experiments, a composite observable was used:

\[
C^A = \frac{\langle M^A \rangle}{\langle M^N \rangle} = \frac{\langle A \rangle}{\langle T \rangle};
\]

where \(\langle M^A \rangle \) (\(\langle M^N \rangle \)) is the triple differential cross section \(d^3 = dM \, d \theta \, d \phi \) for nuclei (nucleon), \(M \) represents the invariant mass, \(A \) denotes the pion-detection solid angle, and \(\langle A \rangle \) \(\langle T \rangle \) is the total cross section in nuclei (nucleon). The ratios are presented in Fig. 29. The ratios \(C^A \) (right panel) show that the low-\(m \) mass * pairs are more abundant in heavier targets, while no such trend can be seen in \(C^N \) (left panel).

FIG. 29 Invariant mass distributions (diamonds) for the * and * reactions on \(^1H, ^{12}C, ^{40}Ca \) and \(^{208}Pb \). The shaded regions represent the results of phase-space simulations for the pion-production reaction \(^1H!C \) in [2001].

- **FIG. 30** (left): \(C^A \), the bin-by-bin ratio (see text) of invariant mass distributions for the two reactions * and * and * reactions on \(^1H, ^{12}C, ^{40}Ca \) and \(^{208}Pb \). The shaded regions represent the results of phase-space simulations for the pion-production reaction \(^1H!C \) in [2001].

2. CrystalBall

The CrystalBall (CB) collaboration at the AGS investigated the \(^1H!^0A^0 \) reaction on \(CH_2, CD_2, C \), \(A \) and \(Cu \) targets at \(p = 408 \text{ MeV/c} \) [Starostin et al., 2001]. The CrystalBall collaboration used 672 optically isolated \(Na(I) \) crystals that cover 93% of 4, and has a 17% acceptance of 11. The invariant mass resolution is about 1.2% at \(m = 2m \) and reaches a plateau of 2.2% at \(m = 0.03 \text{ G e V/c}^2 \). The measured invariant-mass spectra (left panel of Fig. 29) show a gradual shift of intensity toward lower \(m \) for heavier targets, but a sharp strong peak near 2\(m \) as reported by the CHAOS collaboration cannot be seen.

However [Cam erini et al., 2001] pointed out that if the composite ratios \(C^A \) are used to compare the CHAOS and CB results, as so as to (most) remove uncertainties arising from acceptance corrections\(^4\), the two results are not statistically inconsistent, at least in the case of \(^{12}C \) (the only nucleus common to the two experiments). See Fig. 29 right panel.

3. TAPS

The TAPS (Two Am s Photon Spectrum e ter) collaboration used the tagged photon facility at the MAM I accelerator [Anthony et al., 1991] to measure \(A (\gamma!0^0) \) as well as \(A (\gamma!0^2) \) cross sections [Biehler et al., 2007; Meech, 2007].

The experiments covered the photon energy range from 200800 \text{ M e V} \) with an energy resolution of 2 \text{ M e V} per

\(^4\) Note that the CHAOS acceptance is about 10% of 4 while that of CrystalBall is 93% of 4. The small acceptance of CHAOS may be the origin of the sharp peaks close to the threshold.
The targets used were ^1H, ^{12}C, nat Pb (Messchendorp et al. 2002), as well as ^{40}Ca (Bloch et al. 2002). The reaction products from the target were detected with the electron magnetic calibrating TAPS, comprising 510 hexagonally shaped BaF$_2$ crystals of 25 cm length with an inner diameter of 5.9 cm. They were arranged in six blocks of 64 modules and a larger forward wall of 138 modules (see Fig. 32). The blocks were arranged in one plane around the target at a distance of 55 cm from the target center and at polar angles of 54°, 103°, and 153°, while the forward wall was placed 60 cm away from the target center at 0° and the photon beam passed through a hole in the center of the forward wall. Each detector module was equipped with an individual plastic veto detector, read out by a separate photon multimeter. The setup covered 37% of the full solid angle. The two- and three-mass resolutions were between 20% and 25% in the incident-photon energy range of interest.

Figure 33 shows the $^{0}_0$ (left) and $^{0}_0^{++}$ (right) spectra measured at the incident photon energy range of 400–460 MeV. This energy range was chosen so that its center corresponds to the same center-of-mass energy as was used in the pion-induced experiments, enabling a direct comparison. Since this range is below the production threshold of 550 MeV, the event identification is clean. Figure 33 indicates that the strength in the distribution of M^{0_0} (but not $M^{0_0^{++}}$) is shifted towards smaller invariant masses with increasing A.

A more recent analysis of $^{40}\text{Ca}(\gamma,\gamma')$ with higher statistics by Bloch et al. 2007, shown in Fig. 34, revealed that the invariant-mass spectra show a similar softening effect as already found in Messchendorp et al. 2002 for carbon and lead nuclei.5, and that the strength of the effect is comparable to carbon, but they also found that a sizable part of the in-medium effects can be explained by non-state interaction effects, namely, pion rescattering, as discussed below.

5 Note that the cross-section ratios $^{0_0^{++}}(\gamma,\gamma')_H/^{0_0^{++}}(\gamma,\gamma')_C$ are about 2 in Fig. 33, while they are about 5 in Fig. 34. This is likely due to the larger systematic errors in the $^{0_0^{++}}$ cross sections in Messchendorp et al. 2002. K uschel 2008.
C. Final-state interaction (FSI) effects

The solid curves in Fig. 33 are predictions by Roca et al. (2002). Here, the meson-meson interaction in the \(I = J = 0 \) channel is studied in the framework of a chiral- unitary approach at finite baryon density. The model dynamically generates the resonance, reproducing the meson-meson phase shifts in vacuum and accounts for the absorption of the pions in the nucleus. In the model, the FSI modified by the nuclear medium produces a shift of strength of the invariant mass distribution induced by the moving of the poles to lower meson masses and widths as the nuclear density increases. The data are well described by the model considering a theoretical uncertainty of 20%.

On the other hand, the curves in Fig. 34 are the results of the semi-classical Boltzmann-Uehling-Uhlenbeck (BUU) calculation by Buss et al. (2003), which reproduce both \(0^+ \) and \(0^- \) data reasonably well. This model does not contain the in-medium interactions, but the softening of the spectrum is due to charge-exchange pion-nucleon scattering (i.e., N FSI) which mixes the contributions from the different charge channels. Since the total cross-section for \(0^+ \) production is much larger than the \(0^- \) cross-section, the latter receives significant side feeding from the \(m \overline{m} \) charge channel via N + N scattering, which increases the fraction of re-scattered low-energy pions in this channel. In the same way, re-scattering of \(1^- \) contributes to the \(0^+ \) channel.

V. VECTOR MESONS: \(\pi; \) IN NUCLEI

A. Theoretical background

As discussed in Sec. II.B.3, the direct signature of chiral restoration is the degeneracy between the vector spectral function \(\rho_V \) and axial-vector spectral function \(\rho_A \). Since the vector current couples to virtual photons which eventually decay into dileptons (\(1^+ \)), \(\rho_V \) is directly related to the physical observable. For example, the emission rate of dileptons (number of dileptons emitted per space-time volume \(d^4 x \) and per energy-momentum volume \(d^3 p \)) from the hot/dense matter reads

\[
\frac{d^3 N_{\pi^+}}{d^3 x d^3 p} = \frac{2}{3} \frac{(2^+ + 1)(1^+)}{e^I} T_{1/2} \left(m_1^2 + p^2 \right); \quad (V.76)
\]

Here \(p = (1^+, p) \) is the total four momentum of \(\pi^+ \) and \(1^+ \), the superscript \(T \) (L) implies transverse (longitudinal) and \(I(z) = (1 + 2z)(1 - 4z)^{-1} (1 + 4z) \) with \(z = m_1^2 + p^2 \) denotes the phase space correction from the naive lepton mass, \(m_1 \). Unlike the case of \(\rho _A \), it is difficult to measure \(\rho_V \) by dilepton, since the decay occurs through \(Z^0 \) and is highly suppressed at low energies.

The spectral constraints on \(\rho_A \) are obtained from the operator product expansion. Hatsuda et al., 1993; Hatsuda and LeD, 1993, similar to the derivation of the Weinberg-type sum rules in Sec. II.B.3:

\[
Z^0 \frac{d I^2}{d^3 x d^3 p} \rho_{CC}^{(1)} (1^-, 1^-) = 0; \quad (V.77)
\]

\[
Z^0 \frac{d I^2}{d^3 x d^3 p} \rho_{CC}^{(1)} (1^-, 1^-) = X C_1 h_0; \quad (V.78)
\]
Here $O_{\frac{1}{2}}$ are the local composite operators with dimension n with Lorentz indices in general, and $C_{\frac{1}{2}}$ are the corresponding Wilson coe cients. In the SU(2) chiral limit $m_{\frac{1}{2}} = 0$, $O_{\frac{1}{2}}$ are all chiral symmetric, while $O_{\frac{1}{2}}$ contain both chiral symmetric and non-symmetric operators. Also, $\varphi_{\alpha\beta}(1)$ is the spectral function which reproduces the perturbative calculation of the correlation function (the l.h.s. of Eq. (V.31)) in the deep Euclidean region ($\omega > 0$). Then, $\varphi_{\alpha\beta}(1)$ is chiral symmetric by definition. These are the reasons why the Weinberg-type sum rules with only chiral symmetric condensates in Sec. V.B.3 are obtained by taking the difference between vector and axial-vector correlations. Since chiral symmetric operators do not have to vanish at the critical point of the chiral transition, one cannot immediately relate the spectral density of vector-m mesons to the restoration of chiral symmetry.

Even if in-medium changes of $\varphi_{\alpha\beta}(1)$ are obtained exactly from lattice QCD simulations, the above sum rules only supply information on the weighted averages of the spectral function and not on the exact spectral shape. Nevertheless, these sum rules are useful to make a consistency check in various models of QCD (Kling et al., 1997; Kwon et al., 2003). A lso, these sum rules may be used to extract the information on $\varphi_{\alpha\beta}(1)$ by adopting the experimental dilepton spectrum after background subtraction in the l.h.s. of Eqs. (V.78, V.79) (Hatsuda, 1997).

In general, the spectral function receives peak-shift, broadening, new peaks, etc. due to the complex interaction of the vector current with the medium (Rapp and Wamback, 2003). A lso, such spectral changes may well depend on the spatial momentum of the current (Ionescu and Io, 1997; Friman et al., 1993; Janssens et al., 1994). Indeed, the transverse and longitudinal spectral functions $\tilde{T}^{\mu\nu}(1, p)$ obey different Weinberg-type sum rules for $p \neq 0$ (Kapusta and Shuryak, 1994). Because of these reasons, it is not appropriate to oversimplify the problem to an axis shift vs. with broadening $^\perp$. Nevertheless, there is a theoretical suggestion that the width broadening at low temperature and/or baryon density is eventually taken over by the mass shift near the critical point of chiral transition (Yokokawa et al., 2002; Brown et al., 2003). Experimentally, it is important to measure the full momentum dependence of the spectral function $\tilde{T}^{\mu\nu}(1, p)$ instead of the projected invariant mass spectra.

B. Dileptons, why and how?

Dileptons (l^+l^- pairs, where $l = e$ or μ) are an excellent tool to study possible in-medium modifications of vector m mesons (Table II), l^+ and in nuclear media, because of their negligible final-state interactions. Due to their short lifetime, m mesons have larger probability of decaying in medium, while l^+ and l^- tend to decay outside. In order to study l^+l^- in-medium properties, it is important to choose a proper reaction and to select slow-moving mesons.

Obtaining dilepton distributions (usually presented in the form of l^+l^- invariant mass spectra $M_{l^+l^-}$) is technically very demanding because of the small dilepton-decay branching ratios of these mesons (Tab. II), while there are many hadronic sources which can produce leptons. The detector therefore must have an excellent lepton-identification capability, and must also provide means to suppress the combinatorial background, the background caused by an l^+ being erroneously paired up with an l^- from another origin (e.g., μ^- from J^+, μ^- paired up with an e^+ from the semileptonic event).

Even with the start-of-the-art dilepton detectors, the combinatorial background is severe, especially in high-energy heavy-ion collisions. For example, at CERN SPS (158 A GeV central collisions), the NA60 experiment ("l") reported a signal to background l^+/l^- ratio of about $1/11$ (Damjanov, 2003), and it was about $1/22$ in the case of the CERES experiment ("e" e) (Adamova et al., 2003). At RHIC ($p_{T}^{} < 200$ GeV/AA in minimum bias), the PHENIX experiment ("e" e) reported a signal-to-background ratio of about $1 = 100$ (Afanasev et al., 2007).

In order to reliably extract meaningful results despite such small signal-to-background ratios, methods such as event mixing and like-sign pair subtraction have been developed to reliably subtract combinatorics, as discussed in Section V.B.3.

The combinatorics-subtracted $M_{l^+l^-}$ distribution still contains a broad continuous background due to Dalitz decays. In order to extract the vector-m meson contributions, the measured distribution is compared with the hadronic cocktail, which contains all known sources of l^+l^- pairs produced in the detector acceptance.

1. "l"-pair detection

μ^+ and μ^- produced in pion and kaon decays (e.g., $\pi^0 \rightarrow \mu^+ \mu^-$, and $K^+ \rightarrow \mu^+ \nu$) are much more abundant than those from vector-m meson decays, and they contribute to the combinatorial background. It is therefore essential to absorb hadrons as close as possible to the interaction point in a thick absorber. But the absorber itself is placed behind the absorber, corrected for the energy loss and multiple scattering in the absorber, and the measured signal is reconstructed. This is exactly how (b) was first discovered by Herb et al. (1973).

This method works well for heavy-m mass region (as well as J^0, where the decay-m mesons have high momenta, and the particle multiplicities are low, but the measured l^+l^- invariant mass vector meson is difficult due to larger combinatorial background and larger multiplicity scattering in the absorber (hence lower mass resolution).
HELIOS/3 and NA60 at CERN SPS overcame these difficulties and successfully measured the dimuon spectra all the way down to the pair-mass threshold of $2\text{m} \nu$.

2. $\mu^+\mu^-$-pair detection

The spectrometer used in the discovery of $J^P = (00)$ in the $p + \text{Be} \rightarrow \mu^+\mu^-X$ reaction contains the essence of $\mu^+\mu^-$ measurement, such as (i) excellent electron identification (hadron rejection), (ii) good momentum (pair-mass) resolution, and (iii) in the context of rejecting $\mu^+\mu^-$ pairs from photon conversion and Dalitz decays.

In the e^+e^- spectra, severe background sources are photons from meson decays such as $\pi^0 \rightarrow 2\gamma$ and in detectors, and the Dalitz decays such as $\pi^0 \rightarrow \gamma \gamma \gamma$, $\pi^0 \rightarrow e^+e^-\gamma$, $\pi^0 \rightarrow e^+e^-\pi^0$, and $\pi^0 \rightarrow e^+e^-\nu\bar{\nu}$.

Although meson decays from these sources have small opening angles and low mass, the limited track reconstruction efficiency and acceptance lead to a combinatorial background for events in which two or more of these low-mass pairs are only partially reconstructed. This is the central problem of any low-mass e^+e^--pair experiment.

3. Combinatorial background

Uncorrelated sources can produce, in addition to unlike-sign ($\pi^0 \rightarrow \gamma\gamma$) pairs, like-sign ($\pi^0 \rightarrow \gamma\gamma$) pairs. Most experiments make use of this fact in evaluating the combinatorial background.

A typical method of subtracting the combinatorial background is as follows: Under the assumption that electron and positron multiplicities are Poisson-distributed, and that the like-sign pairs are uncorrelated, the combinatorial background B can be accounted for by

$$B = \frac{N^+ N^-}{N_{\text{tot}}^+ N_{\text{tot}}^-};$$

where N^+ and N^- are the number of measured π^0 and π^0 pairs, respectively. The number of signal pairs S is then obtained as $S = N^+ N^- B$, where N^+ is the number of measured unlike-sign pairs.

This would work if the detector acceptance is the same for like and unlike-sign pairs, and if a sufficient number of like-sign pairs are collected. This is in general not the case. A mixed event technique is then used to compute the combinatorial background. In this method, unlike-sign tracks from different events (with similar event topology) are paired. Since the same tracks can be used many times, paired up with tracks from different events, the background spectra can be generated with high statistics. The accuracy of the technique can be tested by comparing the shape of the measured like-sign pair spectrum with that of the mixed combinatorial background. The generated background event distribution can be normalized to the number of expected unlike-sign pairs from Eq. (V.80).

C. High Energy Heavy Ion Reactions

Although the main subject of the present review is the behavior of π mesons produced in nuclei with elementary reactions, we nevertheless touch upon the low-mass ($\leq 1 \text{GeV}/c^2$) dileptons observed in heavy-ion collisions.

An enhanced yield of dilepton pairs in the low-mass region is significant from 1AGeV (Bevalac/SIS), through SPS energies (400–2000 G eV), up to the RHIC energy of $\sqrt{s_{NN}} = 200 \text{GeV}$. Here, the \textit{enhancement} is defined as the excess of the observed Γ^π yield over the sum of the \textit{hadronic cocktail} as discussed above.
FIG. 36 Top view of the DLS (dilepton spectrometer) at Bevalac (Yegneswaran et al., 1990).

FIG. 37 The dilepton spectrum for Ca + Ca at 1.0 A GeV measured by the DLS collaboration (circles) (Porter et al., 1997), compared with the "hadronic cocktail" assuming the "free" spectral function (Bratkovskaya et al., 1998).

1. Bevalac/SE energies (1–2 A GeV)

DLS

The first anomalous dilepton excess was reported by the DLS (dilepton spectrometer) experiment at Bevalac (1 A GeV). Using a two-arm spectrometer as shown in Fig. 36, with a pair-mass resolution of $M = M' \approx 10\%$, they succeeded for the first time to measure the dilepton spectra in heavy-ion collisions (Porter et al., 1997). When the measured spectra were compared with transport theory calculations (Bratkovskaya and Cassing, 2005; Cassing and Bratkovskaya, 1999; Cosma et al., 2006; Ernst et al., 1998; Shekhter et al., 2003), an excess of about a factor 6–7 was found in the mass range of $0.15 < M < 0.4$ GeV (Fig. 37). Including the π^0 meson modifications in the medium (mass dropping), it did not eliminate the discrepancy (the observed yield was still higher by about a factor of 3 over the HSD curve). This has become known as the "DLS puzzle".

FIG. 38 A side view of HADES. The RICH detector, consisting of a gaseous radiator, a carbon fiber mirror and a tilted photon detector, is used for electron identification. Two sets of multiwire drift chambers (MDCs) are placed in front and behind the magnetic field to measure particle momenta. A time-of-flight wall (TOF/TOFNO) accompanied by a pre-shower detector at forward angles is used for an additional electron identification and trigger purposes. For a reaction time measurement, a start detector is located near the target (Salabura et al., 2004).

FIG. 39 Direct comparison of the dilepton pair mass distributions measured in C + C at 1 A GeV by HADES (within the DLS acceptance) and at 1.04 A GeV by DLS (Porter et al., 1997). Statistical and systematic errors are shown. Overall normalization errors (not shown) are 20% for the HADES and 30% for the DLS data points (Agakishiev et al., 2008).

HADES

This DLS puzzle has been recently revisited by the HADES (high acceptance dilepton spectrometer) collaboration at the heavy ion synchrotron SIS at GSI Darmstadt. HADES uses modern technologies such as a ring-imaging Cerenkov detector (RICH) to achieve good particle identification as well as a high mass resolution of $M = M' \approx 2.7\%$ (Fig. 39). They recently studied 1 A GeV C + C collisions in a low-resolution mode ($M = M' = 8\%$ at 0.8 GeV/c2 to emulate that of DLS) and projected the measured spectra into the DLS acceptance.
The resulting spectrum, shown in Fig. 39, is consistent with that measured by DLS. Form factors of $0.15 \text{ GeV}^2 < M_{\pi^-} < 0.50 \text{ GeV}^2$ exceed expectations based on the known production and decay rates of hadrons (most important being the ρ^0 meson) by a factor of about 7, thereby recon- ciling the DLS data.

However, recent HADES measurements of $p + p$ e' e' X and p + n e' e' X seem to show that the C + C spectrum at 10 GeV agree well with the $\frac{1}{2} (p + n p)$ spectrum at 1.25 GeV, when scaled by the $\frac{1}{2}$ yield (Galatyuk et al., 2003). This may be indicating that the DLS/HADES e ect does not have nuclear (in-medium) origin, but that the NN bremsstrahlung cross sections are in fact larger than hitherto assumed: Kaptari and Kamper (2003), Shyam and Mose (2003). With the enhanced bremsstrahlung cross sections implemented in the HSD transport code, Bratkovskaya and Cassing (2008) have recently shown that the calculated spectra agree well with DLS and HADES data.

2. SPS energies (40 2000 GeV)

At the CERN Super Proton Synchrotron (SPS), low-mass dilepton spectra were studied in the e' e' mode by the CERES Collaboration, and in the $^+$ mode by the HELDS/3 collaboration and the NA60 collaboration. These experiments all reported a low-mass dilepton enhancement.

HELDS/3 ($^+$)

The HELDS/3 experiment used a dimuon spectrometer shown in Fig. 40 to measure $^+$ distributions in proton on tungsten and sulphur on tungsten at 200 AG eV. The spectrometer consisted of a hadron absorber (placed 25 cm downstream from the target), six interaction lengths of Al$_2$O$_3$ and 100 cm of Fe, followed by a magnetic spectrometer and m uon hodoscopes.

They found, by comparing the measured p-W and S-W dimuon distributions, each normalized to the charged-particle multiplicity (Fig. 41), an excess in S-W interactions relative to minimum-bias p-W interactions. The observed excess is continuous over the explored mass range and has no apparent resonant structure. In the low mass ($< 0.7 \text{ GeV}$) region the dimuon yield increases by 76% of the corresponding p-W dimuon spectrum (in the higher mass region, the excess was higher).

CERES (NA45) (e' e')

CERES is an innovative 'hadron-blind' axial-symmetric detector (Fig. 42) dedicated to the measurement of electron pairs in the low mass range (up to 15 GeV/c^2). At the heart of CERES are the two coaxial ring imaging Cerenkov detectors (shown in the left half of Fig. 42) having a high Cerenkov threshold of $\theta > 32^\circ$, placed in a superconducting solenoid. With this setup, e’ e’ pairs in a window of $\Delta \eta = 0.53$ around mid-rapidity were selectively detected and reconstructed.

The di-electron pairs charged particles, shown in Fig. 43 show that while the p-B and p-Au data are reproduced within errors by Dalitz and direct decays of neutral mesons as known from p-p collisions, dielectrons from S-Au collisions reveal a substantial enhance-
moment in the mass region 0.2–1.5 GeV=c of a factor 5 [Agakichiev et al., 1995].

This observation generated lots of excitement in the community. It has been attributed to the pion annihilation in the rebal, e+e− with a strong in-medium modification of the intermediate, such as mass dropping [Brown and Rho, 2002] or broadening [Rapp and Wambach, 2000].

NA60 (—)

The NA60 experiment added a telescope of radiation-tolerant silicon pixel detectors in between the target and the hadron absorber of the NA50 dimuon spectrometer (see Fig. 44). This enabled the collaboration to match muon tracks before and after the hadron absorber, both in angular and momentum space, thereby improving the dimuon mass resolution in the region of light vector mesons from 80 to 200 MeV=c [Adamová et al., 2008].

With this setup, NA60 succeeded to completely resolve ! and peaks in the In-In collisions at 158 A GeV, for the first time in nuclear collisions. This is shown in Fig. 45 (the mixed-event technique was employed here to subtract the combinatorial background).

By adjusting the cross section ratios =!, =!, and =!, as well as the level of D meson pair decays, the peripheral data could be fitted by the expected electron magnetic decays of the neutral D mesons, i.e., the 2-body decays of the , ! and resonances and the Dalitz decay of the !. In the more central cases, a procedure is ruled out due to the existence of a strong excess with a priori unknown characteristics.

The excess was therefore isolated by subtracting the measured decay cocktail without the , from the data, as shown in Fig. 46. The resultant distribution shows some non-trivial centrality dependence, but is largely
consistent with a dominant contribution from $e^+ e^-$ annihilation. Fig. 48 shows a distribution obtained for semi-central collisions, compared with in-medium broadening (Rapp and Wambach, 2000) and mass-dropping (Brown and Rho, 2002) scenarios. The observed distribution (spectral function) exhibits considerable broadening, but essentially no shift of the peak position.

CERES (NA45/2) ($e^+ e^-$)

In preparation for the lead beam acceleration in the SPS, CERES upgraded the detector by adding a cylindrical projection chamber (TPC) with a radially electric eld (right half of Fig. 42). Among other things, this improved the mass resolution $m = m$ in the region of the $= 1$ from 9% to about 6% (Agakichiev et al., 2005, March 2004).

The dielectron distribution obtained in Pb-Au collisions at 158 GeV before combinatorial subtraction, together with the normalized mixed-event background is shown in the left panel of Fig. 47. The background-subtracted distribution is compared with the hadronic cocktail in the right panel of Fig. 47. Here again, an enhancement over the cocktail is observed in the mass range $0.2 < m < 1.1$ GeV/c^2, the enhancement factor being 2.45 ± 0.21 (stat) ± 0.35 (syst) ± 0.45 (decays), where the last error is from the systematic uncertainty in the cocktail calculation.

Fig. 48 shows the dielectron yield after the hadronic-cocktail subtraction, compared with the mass dropping (left) and width broadening (right) assumptions. Although the error bars are larger than those in the NA60 spectra, the authors concluded that a substantial in-medium broadening of the pole mass.

FIG. 47 (left) CERES unlike-sign pair yield (histogram) and combinatorial background (dashed curve). (right) Invariant $e^+ e^-$ mass spectrum compared to the expectation from hadronic decays (Adamova et al., 2008).

FIG. 48 CERES $e^+ e^-$ pair yield after subtraction of the hadronic cocktail. In addition to the statistical error bars, systematic errors of the data (horizontal ticks) and the systematic uncertainty of the subtracted cocktail (shaded boxes) are indicated. The broadening scenario (long-dashed line: van Hees and Rapp, 2006; Rapp and Wambach, 2000) is compared to a calculation assuming a density dependent dropping mass (dotted line in (a): Brown and Rho, 1991, 1996, 2002) and to a broadening scenario excluding baryon effects (dotted line in (b)). From Adamova et al. (2008).

FIG. 49 The PHENIX experiment at RHIC (Adcox et al., 2003).

3. RHIC $p_{T,n} = 200$ GeV

At RHIC, the PHENIX experiment (Fig 49) has been designed to measure dielectrons over a wide mass range. Electrons and positrons are reconstructed in the two central spectrometers using drift chambers, boosted outside an axial magnetic field. They are identi ed by hits in the ring imaging Cerenkov detector (RICH) and by matching the p_T spectrum with the energy measured in an electromagnetic calorimeter.

Fig. 50 shows a dielectron distribution observed by PHENIX in Au+Au minimum bias collisions at $p_{T,n} = 200$ GeV, after combinatorial background subtraction using the mixed event shape normalized to the unlike-sign pair yields (Afanasiev et al., 2001). The dielectron yield in the minimum bias collisions, in the mass range between 150 and 750 MeV/c^2, is enhanced over the cocktail by
a factor of 3:1 0.2(stat.) 13(syst.) 0.7(m od el). A clear increase with centrality is also observed. No detailed analysis of the excess is available yet.

4. High energy heavy ion summary

An enhanced yield of dilepton pairs over the hadronic sources in the low-mass region has been observed, regardless of the bombarding energy. At low beam energy of 1AGeV, the long-standing DLS puzzle (excess) has been confirmed by the recent HADES experiment. However, recent indications of C+C dilepton distribution agreeing within the (p+p/n)=2 distribution, if confirmed, may rule out the possibility of in-medium modulation effects at this energy.

The two SPS experiments, CERES measuring dileptons and NA60 measuring dimuons, both established that there is a dilepton enhancement in the low-mass region. The excess here is consistent with a: 1. I L with the signal slightly broadened in the nuclear medium, while the data do not call for the simple mass change.

At RHIC, the PHENIX experiment showed that there is a dilepton enhancement in the low-mass region, the magnitude of which increases faster with the centrality of the collisions than the number of participating nucleons, but the statistical errors are still fairly large in order to draw conclusions based on the data.

D. , ! and mesons produced in nuclei with elementary reactions

1. TAGX at INS Electron Synchrotron

The TAGX experiment (Fig. 51) at the 1.3 GeV INS Electron Synchrotron (Institute for Nuclear Study, Tokyo University) used a tagged photon beam in the energy range of 600–1120 MeV to study the A + X reaction on A = 2H, 3He and 12C targets. This was a pioneering experiment which attempted to study in-medium modifications of 0 with elementary reactions.

However, the claim of finding a mass shift of 160–350 MeV in 2H (Leib et al., 1998) was met with skepticism due to the inevitable pion rescattering effect even for light targets (the emitted pions being in the resonance region), the small target volume, and the much-larger-than-expected shift.

They later applied a helicity analysis to extract in-medium 0 invariant mass distributions (Huber et al., 2003), compared the spectra with various simulations (Post et al., 2004; Rapp et al., 1997; Saito et al., 1997a), and obtained a smaller but still sizable mass shift of 65–75 MeV in the photon energy bin of E = 800–900 MeV, and 45–55 MeV for E = 960–1120 MeV. The 12C distributions on the other hand, were found to be consistent with quasi-free 0 production.

Why TAGX observed such a large effect only in 2H is not yet understood, but in view of the fact that the A + e e X data of CLAS-g7 (section V.D.3) do not show any sign of 0 mass shift, this is most likely unrelated to the 0 in-medium modification. 7

2. E325 experiment at KEK

The experiment E 325 at the KEK 12 GeV Proton Synchrotron was the first to measure dileptons in search for the modification of the vector meson mass in a nucleus in elementary reactions. They measured the invariant mass spectra of e+ e- pairs produced in 12 GeV proton-induced nuclear reactions. The setup is a two-arm spectrometer (Fig. 52), and was designed to measure the decays of

7 The incident photon energy range of TAGX was 0.6–1.2 GeV while it was 0.61–3.82 GeV in the CLAS-g7 experiment. Therefore, a more direct comparison would be to use low incident energy events of the CLAS-g7 data sample.
the the like-sign pair distribution.

For electron identification, two stages of electron-identification counters were used. The first was the forward gas-Cerenkov counters (FGC). The second stage consisted of the rear gas-Cerenkov counters (RGC), the rear lead-glass electron magnetic (EM) calorimeters (RLG), the forward lead-glass EM calorimeters (FLG), and the side lead-glass EM calorimeters (SLG). The overall electron efficiency was 78% with a pion rejection power of 3 \times 10^{-4} (Sekimoto et al. 2004).

The mass resolution was estimated to be 8.0 MeV/c^2 and 10.7 MeV/c^2 for \(e^+e^- \) and \(e^+e^- \) decays, respectively.

The kinematical region covered was \(0.5 < \beta < 2 \) and \(1 < \gamma < 3 \) for \(e^+e^- \) pairs (Fig. 53), where the decay probability inside the target nucleus was expected to be enhanced. A summing that the meson decay widths are unmixed in nuclei, the coverage would correspond to the in-nucleus decay fractions shown in Table II.

The E325 invariant mass spectra for C and Cu targets are shown in Fig. 54. The data were taken with the \(\text{unlike-sign-double-arm} \) trigger condition, i.e., either a positron in the left arm and an electron in the right arm (LR event) or vice versa (RL event), to suppress the background from Dalitz decays and conversions, thereby excluding the possibility of normalization of the background to the like-sign pair distribution.

![Diagram](image)

Fig. 52: Schematic view of the experimental setup of the E325 spectrometer: (a) the top view and (b) the side view. The top view shows the cross section along the center of the kaon arm (Ozawa et al. 2002; Sekimoto et al. 2004).

Fig. 53 Kinematical distributions of \(e^+e^- \) pairs in the mass region (0.95 \& 1.05 GeV/c^2) detected in the E325 spectrometer (points with error bars), together with the simulation result using the JAM nuclear cascade code (histogram, Nara et al. 1995). (left) \(\beta \) distribution, (right) Rapidity vs. pair transverse momentum \(p_T \) (Muto et al. 2007).

Table II Expected in-nucleus decay fractions of vector mesons in the E325 kinematics, assuming that the meson decay widths are unmixed in nuclei, obtained by using a Monte Carlo-type model calculation (Muto et al. 2003; Nankai et al. 2006).

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_+)</td>
<td>46%</td>
<td>61%</td>
</tr>
<tr>
<td>(m_-)</td>
<td>5%</td>
<td>9%</td>
</tr>
<tr>
<td>(m_0)</td>
<td>6%</td>
<td></td>
</tr>
</tbody>
</table>
* for slow \(m_+ \) mesons with \(m \sim 1 \).

The kinematical background shape was obtained by the event-mixing method, and its normalization was obtained by fitting the data together with contributions from \(\text{Dalitz decays} \) and \(\text{conversions} \), assuming that the meson decay widths are unmixed in nuclei, the coverage would correspond to the in-nucleus decay fractions shown in Table II.

The E325 invariant mass spectra for C and Cu targets are shown in Fig. 54. The data were taken with the \(\text{unlike-sign-double-arm} \) trigger condition, i.e., either a positron in the left arm and an electron in the right arm (LR event) or vice versa (RL event), to suppress the background from Dalitz decays and conversions, thereby excluding the possibility of normalization of the background to the like-sign pair distribution.

The striking features of the \(\text{Dalitz decays} \) are as follows. i) A significant excess can be seen on the low-mass side of the \(\gamma > \) peak, which could not be fitted with the cocktail. Therefore, in the region \(0.5 < \beta < 1.0 \text{GeV/c}^2 \) was excluded from the fit. ii) The \(\gamma = \beta \) ratio, which is known to be close to unity in pp collisions at this energy (Babek et al. 1974), is here \(\gamma > \beta \).
mass, which would take away the strength from the normal and put it in the excess region. This assumption was tested by fitting the background-subtracted spectra using a M onte C arlo-type model including the mass-dropping model,

\[m_M (\setminus m_M (0) = 1) k(= 0) : \]

(V.81)

The vector mesons were generated on the surface of an incident hemisphere of the target (supported by the \(A^{2+3} \) dependence of the \(\pi \) production cross section [Tabaru et al., (2008)]), propagated through the nucleus which was modeled by a W oods-Saxon density distribution. The parameter \(k \) was common for \(\pi \) and as well as for \(C \) and \(C u \) targets. The \(\pi = \pi \) ratio was also allowed to vary.

The best- \(t \) results are, \(k = 0.092 \) 0.002 and \(\pi = \pi \) ratio of 0.7 0.1 and 0.9 0.2 respectively for \(C \) and \(C u \) targets. The best- \(t \) curves are superimposed on the background-subtracted spectra shown in Fig. 55. They also examined whether or not the \(\pi = \pi \) interference can account for the observed shoulder, but found that the interference cannot explain the data even though the \(\pi = \pi \) ratio and the mixing angle were scanned over a wide range.

So for the \(\pi = \pi \) region, E325 concluded that both and \(\pi = \pi \) mesons are shifted by 9% at the normal density. Fits with density-proportional \(\pi \) width had no effect on the data; the \(\pi = \pi \) results favored the zero-broadening case [Nanki et al., (2006)]. This is in contrast to the J-Lab CLAS g7 results discussed in V.D.3.

E325 results on the \(\pi = \pi \) meson

Due to the long lifetime of the \(\pi = \pi \) meson, in-medium modification effects, if any, are expected only for the slow-moving \(\pi = \pi \) mesons which have a chance to decay inside the target nucleus. E325 therefore divided the data in three parts based on the values of the observed \(\pi = \pi \) pairs, < 125, 125 < 175 and 175 < (see Fig. 55).

The selected spectra are shown in Fig. 54, together with the \(\pi = \pi \) results. The was assumed to have in-vacuum mass and width, convoluted over the detector response in the simulation according to the JAM-generated kinematic distributions for the \(\pi = \pi \) meson in each region. A quadratic background was added to the simulated peak, and the background parameters and the abundance were obtained from the \(\pi = \pi \) data. The \(\pi = \pi \) results are satisfactory, except for the < 125 region of \(C u \) data, in which a large excess of \(N_{\pi = \pi} > 0.2 \% \) was found. If this excess is to be ascribed to the in-medium \(\pi = \pi \) modification, not only the mass but also the width need to be varied, since the JAM-based simulation indicates only 6% of the \(\pi = \pi \) meson produced in copper nucleus would decay in the target nucleus if broadening is not introduced (see Tab. (3)).

It was thus attempted to fit the data by introducing both the density-linear mass shift:

\[m (\setminus t - m (0) = 1 k(= 0) : \]

(V.81)
Figure 56: Obtained e+e- distributions with the results. The target and region are shown in each panel. The points with error bars represent the data. The solid lines represent the results with an expected e+e- shape and a quadratic background. The dashed lines represent the background [Muto et al., 2007].

Figure 57: Confidence ellipsoids for the modulation parameters k_1 and k_2^tot in cases (i) in (a) and (ii) in (b). The values of e's in both panels are the differences from the 2 M (≈ 3164) at the best-point in case (i) which is shown by the cross in the panel (a). The best-point in case (ii) is shown by the closed circle in the panel (b), and also in (a) since the ordinates are common to both cases in parameter space [Muto et al., 2007].

The fit favors the former case. The obtained values are k_1 = 0.034^{+0.026}_{-0.017} and k_2^ee = k_2 = 2.3^{+1.8}_{-1.2}, indicating the in-medium -e meson mass shift of 3.4% and with increase of a factor of 3.6 (\t = 15 M eV/c^2) at normal nuclear density.

3. J-Lab E01-112 (g7) experiment

J-Lab E01-112, better known as the CLAS experiment g7, was conducted in Hall-B of Jefferson Laboratory (Fig. 58). An electron beam accelerated by the Continuous Electron Beam Accelerator Facility (CEBAF) was used to produce a tagged photon beam having an energy range of 0.61 - 3.92 GeV.

The CEBAF Large Acceptance Spectrometer (CLAS) is a nearly 4-detector based on a six-coil superconducting toroidal magnet, and was designed to track charged particles with momenta greater than 200 M eV/c over the polar angle range from 8 to 142°, while covering up to 80% of the azimuth. The CLAS detector is divided into six identical spectrometers sectors), each made of three regions of drift chambers (DC), time-of-flight scintillators, Cerenkov counters (CC) and electromagnetic calorimeters (EC) (Fig. 58 bottom). The target materials were liquid deuterium (LD_2), carbon, titanium, iron,
and lead (simultaneously in the beam). To reduce the low-energy e and e' background from pair production in the targets, a "minitorus" magnet was situated just beyond the target region and inside the D.C.

The $e' e$ event selection and the rejection of the very large e' background were done through cuts on the EC and the CC. The π^0 rejection factor was 5×10^4 per track, or 2×10^7 for the event. The pair mass resolution was $10 \text{ MeV} = c^2$ for the peak. The pair mass change of $0.07 \text{ MeV} = c^2$ were accepted, similar to the K.EK E325 acceptance [E. Eenberger et al., 2008].

In reconstructing the $e' e'$ pairs, the two leptons were required to be detected in different sectors of the CLAS detector. This requirement removed the large background due to pair-production, Bethe-Heitler processes, and Dalitz decays that have a small opening angle.

The combinatorial background was approximated by an event-mixing technique, and was normalized to the number of expected opposite-charge pairs, calculated from the number of observed like-sign pairs using Eq. (5.20). The spectra shown in Fig. 59 (left) are the reconstructed $e' e'$ distributions, compared with the normalized combinatorial background [W. et al., 2004]. The uncertainty of the normalization was estimated at 7%.

Monte Carlo calculations using a code based on a semi-classical BUU transport model were used to simulate the background-subtracted spectra (Fig. 59, right). In the model, the particles produced as a result of the N reaction in the target nucleus were propagated through the nucleus allowing for final-state interactions [E. Eenberger et al., 1999]. The acceptance-corrected BUU mass shapes for the $^3 H$ and $^3 Li$ mesons were scaled separately so as to match the experimental mass spectra. A substantial contribution from the meson was found (dot-dashed curves in Fig. 59, right) unlike in the K.EK E325 analysis.

As the probabilities of the e' and e mesons decaying inside the nucleus are low, the simulated e' and e mass shapes were subtracted from the data, to obtain the mass spectra. The results are shown in Fig. 59. The curves therein are Breit-Wigner $^3 H$ (top), C (middle), and Fe(Ti) (bottom) data [W. et al., 2004]. The curves on the right panels are Monte-Carlo calculations by the BUU model for various vector meson decay channels [E. Eenberger et al., 1999; E. Eenberger and M. Mosel, 2004].

The mass and width of the ω meson in various targets were obtained by performing a simultaneous fit to the mass spectra and the ratio of each spectrum to the $^2 H$ data (so as to impose more constraints on the ω). The ω results are shown in Table II. These are consistent with collisional broadening without mass modification.

The mass shift coefficient k as defined in Eq. (7.31) was obtained by analyzing the ratio of the Fe(Ti) to the $^2 H$ distributions to be 0.92 ± 0.02, which corresponds to an upper limit of $k = 0.95$ with a 68% confidence level. These results are quite different from those obtained by the K.EK E325 experiments.

4. CBELSA/TAPS experiment

The CBELSA/TAPS collaboration at the electron stretcher accelerator (ELSA) in Bonn used the A $^0 X$ reaction to study the e' meson in-medium behavior using the Crystal Barrel (CB) and TAPS crystal spec-

TABLE III Mass and width of the ω meson obtained by the CLAS-g7 collaboration from the simultaneous t-s to the mass spectra for each target and the ratio to $^2 H$.

<table>
<thead>
<tr>
<th>Target</th>
<th>M (MeV)</th>
<th>Width (MeV)</th>
<th>t/$^2 H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3 H$</td>
<td>773.9</td>
<td>32.185.2</td>
<td>83.6</td>
</tr>
<tr>
<td>C</td>
<td>726.5</td>
<td>37.176.4</td>
<td>9.5</td>
</tr>
<tr>
<td>Fe,Ti</td>
<td>779.9</td>
<td>58.217.7</td>
<td>14.5</td>
</tr>
</tbody>
</table>

3 In the CLAS g7 experiment, the probability of an untagged photon and a tagged photon being in the same radio-frequency timing bunch was about 25%. This contribution to the combinatorics, in addition to the usual case of picking up a wrong lepton produced in the same event.
trometers show n in Fig.64. Tagged photons in the energy range of 0.564 - 2.53 GeV were incident on targets (Nb and LH$_2$) mounted in the center of the CB, a photon calibrating system consisting of 1290 CsI(Tl) crystals with an angular coverage of 30° to 168° in the polar angle and a complete azimuthal angle coverage. Reaction products emitted in forward direction were detected in the TAPS detector, which consisted of 528 hexagonally shaped BaF$_2$ detectors covering polar angles between 4° and 30° and the complete 2° azimuthal angle. The resulting geometrical solid angle coverage of the combined system was 99% of

FIG. 60 Individual Breit-Wigner fits to the mass spectra (background and continuum contributions subtracted) [Wood et al., 2003].

FIG. 61 Side view of the Crystal Barrel (CB) and TAPS detector combination.

4. Charged particles were identified with a scintillating fiber detector placed inside the CB, and a plastic scintillator mounted in front of each TAPS crystal [Aker et al., 1992; Janssen et al., 2000; Novotny, 1991].

The 0 decay mode has a large branching ratio of 8.9% and is a clean and exclusive mode to study the 1-medium properties since the 1 branch among is only $0^+ < 10^{-5}$ (see Table 1). Therefore, the study of this mode is complementary to the dilepton decays [Shibata et al., 2004]. A serious disadvantage is the strong nonlinear interactions of the 0 meson within the nucleus. Monte Carlo simulations [Messchendorp et al., 2001] show that the rescattering effect is small in the mass range of interest, and can be further reduced by removing low-energy pions ($T < 150$ MeV), as depicted in Fig. 62.

The 0 events are reconstructed from three photons, and the invariant mass spectra are shown in the left panel of Fig. 65. Here, in order to maximize the 0-nucleus decay probability, slow-moving 0 mesons with $p_j < 0.5$ GeV/c were selected. The large continuum background is due to four-photon decays of 0 and 0 where one of the four photons is missing. A smooth polynomial background was assumed and was subtracted, and the resultant LH$_2$ and Nb data are compared in the right panel. As shown, a shoulder on the low-mass side of the peak was found on the Nb target. This was taken as evidence for an 0-in-medium mass reduction by 60^{+10}_{-15} MeV at an average nuclear density of 0.6, or in terms of the mass shift coefficient k as defined in Eq. (V.31), this gives $k' = 0.4$. The width was found to be $\Gamma = 55$ MeV, dominated by the experimental resolution.

The background-subtraction procedure was criticized by Kasukova et al. [2003], who pointed out if the same background shape is used both for LH$_2$ and
FIG. 63 (a) Inclusive \(^0 \) invariant mass spectra from eta less than 500 MeV/c. Upper histogram: Nb data, lower histogram: \(\Lambda \Lambda \) target reference measurement. The dashed lines indicate fits for the respective background. (b) \(^0 \) invariant mass for the Nb data (solid histogram) and \(\Lambda \Lambda \) data (dashed histogram) after background subtraction. The error bars show statistical uncertainties only. The solid curve represents the simulated line shape for the \(\Lambda \Lambda \) target (Tmka et al., 2002).

\(\) The CBELSA/TAPS group pointed out that the experimental data clearly show that the background distributions are di erent and hence it is not justified to assume the same background shape (M et al., 2008). However, the fact that slightly di erent background assumptions lead to a complete di erent conclusion on the \(m \) mass shift is quite alarming.

The CBELSA/TAPS group has therefore started to employ the event-mixing technique to generate the background distribution, instead of using a polynomial function. Preliminary results were presented in (M et al., 2008), but these were later found to contain some problems, and are being further investigated (M et al., 2008). Therefore, until the reanalysis is nalized by the group, the \(m \) mass shift reported in (Tmka et al., 2005) cannot be regarded as a conclusive evidence for the inmedium \(m \) modi cation.

\(\) E. Vector-meson in-medium width from transparency-ratio measurements

Instead of obtaining the in-medium \(m \) width from fits to the observed invariant-mass peak, an alternative method of using the transparency ratio \(T \) is proposed (V.82)

\[
T = \frac{A}{N} \frac{\text{h} \cdot \text{c}}{\text{V}}
\]

was proposed (Hernandez and Oset, 1992; Kaskulov et al., 2007; Moch and Oset, 2006), and has been used to extract (Ishikawa et al., 2005) and (Kotulla et al., 2008) in-medium widths. Here, \(A/V \) is the inclusive nuclear vector-meson (V) photo-production cross section and \(N/V \) is the cross section on a free nucleon. The ratio \(T \) is a measure for the loss of vector-meson ux via inelastic processes in nuclei, and is related to the absorptive part of the meson-nucleus potential.

This is conceptually a simple measurement, but extracting the in-medium \(m \) width from the \(T \) dependence of the ratio \(T \) requires comparison with theory calculations.

\(\) The attenuation

The photo-production of \(m \) mesons from \(Li,C,A \), and \(Cu \) targets was measured at \(E = 15 \) \(GeV \), using the laser-electron photon facility at Spring-8 (LEPS), in the \(A \) \(K \) \(K \) channel (Ishikawa et al., 2005). The \(A \) dependence of the coherent photo-production cross section was found to be \(A \rightarrow A^{0.57} \) (or \(T = A^{0.28} \), as shown in Fig. (5)). Using a Glauber-type model calculation, the in-medium \(m \) -nucleon cross section was deduced to be \(m = 35^{+17}_{-11} \) \(M \) \(b \), which is much larger than the free-space value of \(m = 140^{+10}_{-10} \) \(M \) \(b \) used as an input to the model calculation (Ambor et al., 2003). Theoretical calculations (Cabrera et al., 2004) predicted much larger \(T \) values (solid and dashed curves in Fig. (5)).

Using the classical low-density relation

\[
V = \text{h} \cdot \text{c} ; \quad (V.83)
\]

this would correspond to a width of \(^0 80 \) \(M \) \(eV \) at \(= 0 \), and \(^0 07 \) (i.e., \(^0 71 \)), where the KEK E.325 experiment reported a much smaller in-medium width of \(15 \) \(M \) \(eV \) (see section V.2).

\(^{10} \) This discrepancy may at least partly be due to the way the trans-
For this reason, the ratio shown in Fig. 65 is normalized to the carbon data in comparison with a theoretical Monte Carlo simulation (Kaskulov et al., 2003) (left) and a BUU calculation (Muehlh et al., 2004) (right) varying the width at 1.1 GeV/c m c.m. momentum, respectively. The width is given in the nuclear rest frame. Only statistical errors are shown (Kotulla et al., 2005).

VI. CONCLUDING REMARKS

The CBELS/TAPS collaboration measured the A dependence of the photoproduction cross section on the nuclei C, Ca, Nb, and Pb. The average m c.m. center of the m esons was 1.1 GeV/c, so that almost all m esons decay outside the nuclear target. Since the photoproduction cross section on the neutron is not known, they took the transparency ratio normalized to the carbon data, as shown in Fig. 65.11

The data were then compared with three different types of models: i) a Glauber model similar to the LEPS analysis, ii) a BUU analysis (Muehlh et al., 2004) and iii) a calculation by the Valencia group (Kaskulov et al., 2004). In all cases, the inelastic width was found to be 130 - 150 M GeV/c = 0 for an average m c.m. momentum of 1.1 GeV/c, or in terms of N cross section, 1/m ' ≈ 70 m b.

One of the interesting signals associated with the in-medium chiral restoration would be the spectral enhancement on the channel near the 2 threshold. Intriguing experimental results of the "softening" of the (0+J=0) distribution (i.e., shift of the peak position to lower m meses) have been obtained. These agree fairly well with i) in-medium modiﬁcations of the interaction, as well as with ii) rescattering of outgoing pions with the nucleons without in-medium interaction. In fact, the results of two calculations, Roca et al. (2002) and Busa et al. (2004), predict very similar spectra, as shown in Fig. 65. However, as long as the rescattering scenario can reproduce most of the observed "softening" trend, we cannot yet extract the predicted partial chiral restoration signature from the spectra. New high-statistics data taken on C, Ca, Pb with the Crystal Ball/TAPS detector, which is being analyzed, may help shed some light on this problem (Metag, 2008).

Vector mesons

Significant experimental work has been done to detect the possible in-medium "mass shift" of vector m esons, both using heavy-ion collisions and using e+m annihilation particle beams. In general, the vector spectral function receives a shift of the peak, broadening, new structures, etc., due to the complex interaction of the vector current with the m esons. A large such spectral shift may well depend on the spatial m c.m. momentum of the current. Therefore, it would not be appropriate to oversimplify the problem to "mass shift vs. width broadening". With this caution in mind, we list experimental results on the in-medium mass shift and width of the m and m esons produced with...
elementary reactions, measured in different experiments in Table IV. The TAGX results are not included here due to reasons discussed in section V.E.1. The ! mass shift from CBELSA/TAPS is listed in the table, but it may change after the ongoing reanalysis, and hence we do not include this in the summary discussion.

Upon examining this table, we realize that there are some inconsistencies, and we discuss the two most pressing issues below.

(i) E325 and g7 disagree on the (!) mass shift: The E325 result is both and ! masses get reduced at by 9% (the mass shift parameter k = 0.292, 0.202), while the CLAS g7 placed a 95% confidence upper limit at k = 0.053. The comparison of the background-subtracted dilepton distributions (carbon target) of E325 (circles) and CLAS g7 (triangles) in Fig. 66 shows that the two spectra are very different.

Wood et al. (2008) pointed out that this difference must be due to the way the combinatorial background was subtracted in E325. In the E325 analysis, due to the lack of a sample of same-charged leptons by which to extract the normalization of the combinatorial background, the background contribution was treated with caution and hence these results must be treated with caution and further studies are needed.

(ii) E325 and CBELSA/TAPS disagree on the ! width: While an ! width broadening was not observed by the E325 experiment, CBELSA/TAPS found an unexpectedly large in-medium broadening. These two observations are mutually inconsistent. Even though the extraction of the in-medium width depends on theory, the observed A-dependent reduction of the transparency ratio T clearly shows that the ! meson is attenuated in the target nucleus. This conclusion must be robust.

Table IV clearly shows that experimental results have not yet converged, and more work is needed to obtain consistent understanding of the in-medium behavior of vector mesons. In view of the robustness of the method, the in-medium broadening of vector mesons deduced from the transparency-ratio measurements are hard to rule out. On the other hand, problem (s) have been pointed out for all experiments which observed in-medium mass shifts, and hence those results must be treated with caution and further studies are needed.

ACKNOWLEDGMENTS

This article is based on a talk given by RH at the International Nuclear Physics Conference held in Tokyo (INPC 2007). During its preparation, the authors have benefitted from the assistance of so many of their colleagues that it would be impossible to mention them all by name. However, we should like to acknowledge the specific contributions of Akaiishi, C. D. Jalal, H. En'yo, D. Gotta, D. Ji, Oset, K. Ozawa, P. Salibra, and S. Schmidt. It is a pleasure to acknowledge, too, the many insightful discussions at various times with S. Hirenzaki, P. Kienle, T. Kunihiro, H. Toki, and T. Yamazaki.

This work is supported in part by Grant-in-Aid for Scientific Research (C) (18540253), and the Global COE Program "The Physical Sciences Frontier", MEXT, Japan.

REFERENCES

12 Note that the ratio in the pp collisions at the KEK energy is about unity, while that in the p collisions at the CLAS energy is about 3 to 1. Barth et al., 2003.

13 In reality, there is no such freedom in the g7 background normalization. This was done just for the sake of g7-E325 comparison.
<table>
<thead>
<tr>
<th>Reaction</th>
<th>M cm entum</th>
<th>Invariant mass</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E325 @ KEK</td>
<td>pA 12 GeV</td>
<td>p > 0.5 GeV/c</td>
<td>A 402, 411.</td>
</tr>
<tr>
<td>CLAS g7 @ Jlab</td>
<td>A 0.6, 3.2 GeV</td>
<td>p > 0.8 GeV/c</td>
<td>Batt, C.J., E. Friedman, and A. Gal, 1997, Phys.Rept. 287, 385.</td>
</tr>
</tbody>
</table>

This may change as a result of the ongoing reanalysis [M et al., 2008b].