From Hadronic Decays to the Chiral Couplings L_{10}^T and C_{87}^T

Martín González-Alonsoa, Antonio Pichb and Joaquín Pradesb

aDepartamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, Apt. de Correos 22085, E-46071 Valencia, Spain

bCAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuente Nueva, E-18002 Granada, Spain

A sum rule analysis of the hadronic $\pi^0\rightarrow\gamma\gamma$ decay data can be used to determine the low energy constants $L_{10}^T(\mu)$ and $C_{87}^T(\mu)$. These constants are QCD chiral order parameters, which appear at order p^4 and p^6, respectively, in the chiral perturbation theory expansion of the $V-A$ correlator. At order p^4 we obtain $L_{10}^T(\mu) = (5.22 \pm 0.06) \times 10^3$. Including in the analysis the order p^6 contributions, we get $L_{10}^T(\mu) = (4.06 \pm 0.59) \times 10^3$ and $C_{87}^T(\mu) = (4.89 \pm 0.19) \times 10^3$ GeV$^{-2}$.

1. Introduction

The fact that the τ is the only lepton mass enough to decay into hadrons makes it an excellent tool to study QCD, both perturbative and non-perturbative. The main idea under these studies is the use of the analyticity properties of the different two-point correlation functions, which are relevant for the dynamical description of the hadronic width. As it is well known, analyticity of two-point correlation functions allow us to relate different regions of the q^2-complex plane. Roughly speaking, one can relate in this way regions where we are able to compute analytically, either with Chiral Perturbation Theory (PT) or with the short-distance Operator Product Expansion (OPE), with regions of the complex plane where we are not able to compute (except in the lattice) but that are experimentally accessible. This connection can be used either to predict observables that we are not able to calculate "directly" or, in the other way around, to extract the value of QCD parameters that are not fixed theoretically.

An excellent example of this last strategy is the accurate determination of the QCD coupling $\alpha_s(\mu)$ [15] from the inclusive decay width into hadrons, which becomes the most precise determination of $\alpha_s(M_Z)$ after QCD running. Other parameters of the Standard Model that have been extracted from physics are the strange quark mass and the Cabibbo-Kobayashi-Maskawa quark mixing [6][10].

Non-perturbative QCD quantities can also be obtained from τ decay data. The fact that the spectral function of the τ decay can be separated experimentally into its vector and axial-vector contributions allows us to study their difference, that is specially interesting because it vanishes in perturbative QCD (in the chiral limit) and therefore it is a purely non-perturbative quantity.

The τ-decay measurement of this $V-A$ spectral function has been used to perform [11][13] phenomenological tests of the so-called Weinberg sum rules (WSRs) [14], to compute the electromagnetic mass difference between the charged and neutral leptons [12], to determine several QCD vacuum condensates [15,16] and to determine the $I=3$ contribution of the $S=1$ four-quark operators Q_7 and Q_8 to $m_\tau^0 = m_\mu - \delta$, in the chiral limit [17].

Using PT [18][20], the hadronic τ-decay data can also be related to order parameters of the spontaneous chiral symmetry breaking (SB) of QCD. PT is the effective field theory of QCD at very low energies that describes the physics...
of the SSB Nambu-Goldstone bosons through an expansion in external momenta and quark masses, with coefficients that are order parameters of SSB. At lowest order (LO), i.e., $O(p^2)$, all low-energy observables are described in terms of the pion decay constant $f_\pi \approx 92 \text{ MeV}$ and the light quark condensate. At $O(p^3)$, the SU(3) PT Lagrangian contains 12 low-energy constants (LECs), L_{ij}, ρ_0 and H_{ij} \cite{20}, whereas at $O(p^5)$ we have 94 \cite{23} additional parameters $C_{i,j}$, ρ_d ($C_{i,j}$, ρ_d) in the even (odd) intrinsic parity sector \cite{21}. These LECs are not fixed by symmetry requirements alone and have to be determined phenomenologically or using non-perturbative techniques. The L_{ij} couplings have been determined in the past to an acceptable accuracy (a recent compilation can be found in ref. \cite{22}), but much less well determined are the $O(p^3)$ couplings C_{i}.

There has been a lot of recent activity to determine the chiral LECs from theory, using as much as possible QCD information \cite{23-32}. This strong effort is motivated by the precision required in present phenomenological applications, which makes necessary to include corrections of $O(p^5)$ where the huge number of unknown couplings is the major source of theoretical uncertainty.

Here we present an accurate determination of the PT couplings L_{10} and C_{97} \cite{33}, using the most recent experimental data on hadronic decays \cite{34}. Previous work on L_{10} using decay data can be found in refs. \cite{12,13,15,35}. Our analysis is the first one which includes the known two-loop PT contributions and, therefore, provides also the $O(p^5)$ coupling C_{97}.

We will first introduce the sum rule relations that we will use, then we will show our results and finally we will compare them with other recent analytic results and hadronic data determinations.

2. Theoretical framework: the sum rules

The basic objects of the theoretical analysis are two-point correlation functions of the non-strange vector and axial-vector quark currents

$$Z_{ij} \rho (q) \propto \int d^4 x e^{i q x} \langle 0 | J_{ij} (x) J_{ij} (0) | 0 \rangle \rho (q^2); \\ \\ \ \ \ \ (1)$$

where J_{ij} denotes $V_{ud} = 5d$ and $A_{ud} = 5s$. In particular, we are interested in the difference

$$Z_{ij} \rho (q) \propto \int d^4 x e^{i q x} \langle 0 | J_{ij} (x) | 0 \rangle \rho (q^2); \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)$$

where J_{ij} denotes $V_{ud} = 5d$ and $A_{ud} = 5s$. In particular, we are interested in the difference

$$Z_{ij} \rho (q) \propto \int d^4 x e^{i q x} \langle 0 | J_{ij} (x) | 0 \rangle \rho (q^2); \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (3)$$

In this way we generate a residue at $s = 0$ when we integrate over the circuit of Fig. 1 and apply Cauchy's theorem.

As we are interested in relating the PT domain (very low energies) with the data, we multiply this correlator by a weight function of the form $1 = s^n$ (with $n > 0$). In this way we generate a residue at $s = 0$ when we integrate over the circuit of Fig. 1 and apply Cauchy's theorem. Taking into account the OPE associated with our correlator at large momentum and working in particular with the cases $n = 1; 2$, one gets the following sum rules (see ref. \cite{33} for a careful derivation):

$$Z_{ij} \rho (q) \propto \int d^4 x e^{i q x} \langle 0 | J_{ij} (x) | 0 \rangle \rho (q^2); \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)$$

$$Z_{ij} \rho (q) \propto \int d^4 x e^{i q x} \langle 0 | J_{ij} (x) | 0 \rangle \rho (q^2); \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (5)$$

$$Z_{ij} \rho (q) \propto \int d^4 x e^{i q x} \langle 0 | J_{ij} (x) | 0 \rangle \rho (q^2); \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)$$

$$Z_{ij} \rho (q) \propto \int d^4 x e^{i q x} \langle 0 | J_{ij} (x) | 0 \rangle \rho (q^2); \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (7)$$

$$Z_{ij} \rho (q) \propto \int d^4 x e^{i q x} \langle 0 | J_{ij} (x) | 0 \rangle \rho (q^2); \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)$$

Figure 1. Analytic structure of $\rho (s)$.
where the integrations start at the threshold $s_{th} = 4 m^2$. These two relations represent the starting point of our work and define the effective parameters L_{10}^0 and C_{87}^0. Their interest stems from the fact that the l.h.s. can be extracted from the data (see Section 3), while the r.h.s. can be rigorously calculated within PT in terms of the LEC’s that we want to determine (see Section 4).

3. The -data side

We will use the recent ALEPH data on hadronic decays [34], that provide the most precise measurement of the $V-A$ spectral function. In the integrals of equations (2) and (3) we are forced to cut the integration at a finite value s_0, neglecting in this way the rest of the integral from s_0 to infinity. The superconvergence properties of (s) at large momentum imply a tiny contribution from the neglected range of integration, provided s_0 is large enough. Nevertheless, this generates a theoretical error called quark-hadron duality violation (DV). From the s_0-sensitivity of the effective parameters one can assess the size of this error.

In Fig. 2, we plot the value of L_{10}^0 obtained for different values of s_0, with the one-sigma experimental error band, and we can see a quite stable result at $s_0 \approx 2 \text{ GeV}^2$ (solid lines). The weight function $1-s$ decreases the impact of the high-energy region, m in using the DV; the resulting integral appears then to be much better behaved than the sum rule with s^0 (in 0) weights.

There are some possible strategies to estimate the value of L_{10}^0 and his error. One is to give the predictions xing s_0 at the so-called duality points*, two points where the rest and second WSRs [14] happen to be satisfied. In this way we get $L_{10}^0 = (6.50 \pm 0.13) \times 10^{-3}$, where the uncertainty covers the values obtained at the two duality points*. If we assume that the integral oscillates around his asymptotic value with decreasing oscillations and we perform an average between the minima and maxima of the oscillations we get $L_{10}^0 = (6.5 \pm 0.2) \times 10^{-3}$. Another way of estimating the DV uses appropriate oscillating functions defined in [36] which mimic the real quark-hadron oscillations above the data. These functions are defined such that they match the data at 3 GeV^2, go to zero with decreasing oscillations and satisfy the two WSRs. We end in this way $L_{10}^0 = (6.5 \pm 0.12) \times 10^{-3}$, where the error spans the range generated by the different functions used. Finally we can take advantage of the WSRs to construct modified sum rules with weight factors $w(s)$ proportional to $(1 - s = s_0)$, in order to suppress numerically the role of the suspect region around $s = s_0$ [2]. Fig. 2 shows the results obtained with $w_1(s)$ ($L_{10}^0 = s_0$) (dashed line) and $w_2(s)$ ($L_{10}^0 = s_0$) (dot-dashed line). These weights give rise to very sta-
ble results over a quite wide range of \(s_0 \) values. One gets \(L_{10}^{(e)} = (6.51 \pm 0.06) \; 10^3 \) using \(w_1(s) \) and \(L_{10}^{(e)} = (6.45 \pm 0.06) \; 10^3 \) using \(w_2(s) \). Taking into account all the previous discussion, we quote as our final result:

\[
L_{10}^{(e)} = (6.48 \pm 0.06) \; 10^3 \quad ; \quad (4)
\]

We have made a completely analogous analysis to determine \(C_{87}^{(e)} \). The results are shown in Fig. 2. The solid lines, obtained from Eq. (3), are much more stable than the corresponding results for \(L_{10}^{(e)} \), due to the \(1-s^2 \) factor in the integrand. The dashed and dot-dashed lines have been obtained with the modified weights \(w_3(s) \) and \(w_4(s) \). The agreement among the different estimates is quite remarkable, and our final result is

\[
C_{87}^{(e)} = (8.18 \pm 0.14) \; 10^4 \; \text{GeV}^2 \quad ; \quad (5)
\]

4. The PT side

Using the results of ref. [37] to calculate with PT the l.h.s. of equations (2) and (3), we get

\[
8 \; L_{10}^{(e)} = 8 \; L_{10}^{(e)} + G_{1L}^{(e)} + G_{0L}^{(e)} + G_{12L}^{(e)} \quad ; \quad (6)
\]

\[
16 \; C_{87}^{(e)} = H_{1L}^{(e)} + H_{2L}^{(e)} + H_{12L}^{(e)} \quad ; \quad (7)
\]

where the functions \(G_{nL}^{(e)} \) and \(H_{nL}^{(e)} \) are corrections of order \(p^n \) generated at the \(n \)-loop level, which explicit analytic form [33] is omitted for simplicity.

Working at \(O(p^6) \) the determination is straightforward and one gets

\[
L_{10}^{(e)} (\text{M}) = (5.22 \pm 0.06) \; 10^3 \quad ; \quad (8)
\]

At order \(p^6 \), the numerical relation is more involved because the small corrections \(G_{0L,1L}^{(e)} \) contain some LECs that represent the main source of uncertainty for \(L_{10}^{(e)} \). It is useful to classify the \(O(p^6) \) contributions through their ordering within the \(1-N_C \) expansion. The tree-level term \(G_{0L}^{(e)} \) contains the only \(O(p^6) \) correction in the large \(N_C \) limit in \(4m^2 \) (\(C_{12}^{(e)} \); \(C_{10}^{(e)} \)); this correction is numerically small because of the \(m^2 \) suppression and can be estimated with a moderate accuracy [27,28,37,39]. At \(NLO \), \(G_{0L}^{(e)} \) contributes with a term of the form \(m^{2} C_{12}^{(e)} \) (\(C_{10}^{(e)} \)). In the absence of information about these LECs, we adopt the conservative range \(\pm 3 \) for \(C_{12}^{(e)} \) (\(C_{10}^{(e)} \)); this generates the uncertainty that will dominate our final error on \(L_{10}^{(e)} \). At this order in \(1-N_C \), there is the one-loop correction \(G_{1L}^{(e)} \), that is proportional to \(L_{10}^{(e)} \) which is better known [40]. Calculating the \(1-N_C^{2} \) suppressed two-loop function \(G_{2L}^{(e)} \) and taking all these contributions into account we finally get the wanted \(O(p^6) \) result:

\[
L_{10}^{(e)} (\text{M}) = (4.06 \pm 0.04, 0.39, \text{LECs}) \; 10^3 \quad ; \quad (9)
\]

\[
C_{87}^{(e)} = (4.29 \pm 0.19) \; 10^4 \; \text{GeV}^2 \quad ; \quad (10)
\]

5. Summary

Through a sum rule analysis, that only uses general properties of QCD and the measured \(V_A \) spectral function [34], we have determined the chiral LECs \(L_{10}^{(e)} (\text{M}) \) and \(C_{87}^{(e)} (\text{M}) \) rather accurately, with a careful analysis of the theoretical uncertainties.

There are other determinations of \(L_{10}^{(e)} \) from data in the literature. Our result for \(L_{10}^{(e)} \) agrees with [12,15,35], but our estimation includes a more careful assessment of the theoretical errors. The较大 discrepancy between the estimation of ref. [13] and ours is caused by an underestimation of the systematic error associated with the duality-point approach used in that reference. In ref. [35] \(C_{87}^{(e)} \) is also determined, in good agreement with our result. The extraction of \(L_{10}^{(e)} (\text{M}) \) from \(L_{10}^{(e)} \) has only been done previously in ref. [12] at \(O(p^4) \).

Our determination of \(L_{10}^{(e)} (\text{M}) \) and \(C_{87}^{(e)} (\text{M}) \) agree within errors with the large \(N_C \) estimates based on lowest-meson dominance [24,29,37,42], \(L_{10} = 3 \zeta^2(8M^2) \) 54 \(10^4 \) and \(C_{87} = 7 \zeta^2(32M^2) \) 53 \(10^4 \) \(\text{GeV}^2 \), and with the result of ref. [31] for \(C_{87}^{(e)} \), based on Fade approximants. These predictions, however, are unable to
x the scale dependence which is of higher-order in $1/N_C$. More recently, the resonance chiral theory Lagrangian [29,43] has been used to analyse the correlator (s) at NLO order in the $1/N_C$ expansion. Matching the effective field theory description with the short-distance QCD behaviour, the two LECs are determined, keeping full control of their dependence. The theoretically predicted values $L_{10}^L(M_{\pi}) = (4\pm 0.9) \times 10^6$ and $C_{87}^L(M_{\pi}) = (3\pm 1.3) \times 10^5 \text{GeV}^2$ [32] are in perfect agreement with our determination, although less precise. A recent lattice estimate [44] finds $L_{10}^L(M_{\pi}) = (52 \pm 0.5) \times 10^6$ at order p^6, in good agreement with our results [8].

Using the results of ref. [41], the SU(2) PT LEC $\bar{\alpha}$ can be extracted from L_{10}^L, we find $\bar{\alpha} = 13.30 \pm 0.11$ at $O(p^6)$ and $\bar{\alpha} = 12.24 \pm 0.21$ at $O(p^8)$.

Recent analyses of the decay $^+^+ \rightarrow \gamma \gamma$ at $O(p^6)$ have provided accurate values for the combinations $L_9 + L_{10}$ and $\bar{\alpha} = 15.22 \pm 0.39$ to order p^8, in perfect agreement with refs. [40,46].

Acknowledgments

M.G.-A. is indebted to M.C.I.N.T. (Spain) for an FPU Grant. Work partly supported by the EU network FLAVIA (Project No MRTN-CT-2006-035482), by M.C.I.N.T, Spain [Grants No PSA 2007-0323, No PSA 2006-05294 and No CSF 2007-00042 (CPAN)], by Junta de Andaluc\'a [Grants No P05-FQM-191, No P05-FQM 467 and No P07-FQM 03048] and by Generalitat Valenciana [Grant No Prom etec 2008/069].

References

15. A. Dom'nguez and K. Schilcher, JHEP 01 (2007) 093; J. Bordes, C.A. Dom'nguez,
28. V. Cirigliano et al., JHEP 04 (2005) 006.