Phase Transitions and Chaos in Long-Range Models of Coupled Oscillators

G. Mirtillo¹, A. Pluchino¹ and A. Rapisarda¹

¹ Dipartimento di Fisica e Astronomia, Università di Catania, and INFN sezione di Catania, Via S. Soa 64, I-95123 Catania, Italy, EU

PACS 05.45.Jn { High dimensional chaos
PACS 05.45.Xt { Synchronization
PACS 31.30-Jh { Long-range interactions
PACS 05.70.Fh { Phase transitions in statistical mechanics and thermodynamics

Abstract. We study the chaotic behavior of the synchronization phase transition in the Kuramoto model. We discuss the relationship with analogous features found in the Hamiltonian Mean Field (HMF) model. Our numerical results support the connection between the two models, which can be considered as limiting cases (dissipative and conservative, respectively) of a more general dynamical system of driven-damped coupled pendula. We also show that, in the Kuramoto model, the shape of the phase transition and the largest Lyapunov exponent behavior are strongly dependent on the distribution of the natural frequencies.

Introduction. Long-range interacting systems have been intensively studied in the last years and new methodologies have been developed in the attempt to understand their intriguing features. One of the most promising directions is the combination of statistical mechanics tools and methods adopted in dynamical systems [1]. In particular, phase transitions have been extensively explored in both conservative and dissipative long-range systems. The Hamiltonian Mean Field (HMF) model [2] and the Kuramoto model [3-5] represent two paradigmatic toy models, the former conservative and the latter dissipative, for any real system with long-range forces and have several applications. Both models share the same order parameter and display a spontaneous phase transition from an homogeneous/incoherent phase to a magnetized/synchronized one.

In [6] we already observed that HMF and Kuramoto models can be considered as limiting cases (respectively conservative and overdamped) of a more general model of driven-damped coupled inertial oscillators. In this paper we present new numerical results which support a common scenario for the two models. More precisely, rst we discuss the well known equilibrium features of the second order phase transition in the HMF model, then we study the stationary asymptotic behavior of the Kuramoto model as a function of the coupling strength. On one hand, through new numerical simulations of large size systems, we confirm that, as also pointed out by other authors [7], the shape of the dynamical phase transition in the Kuramoto model changes from a continuous to an abrupt one, depending on the distribution of the natural frequencies of the oscillators. On the other hand, and this is our main result, we clearly show that, as for the HMF model, the largest Lyapunov exponent (LLE) of the Kuramoto model exhibits a peak just around the critical value, confirming the generality of this microscopic signature for a phase transition. Chaotic behavior in the Kuramoto model was discussed previously in ref. [8]. However, those authors compute the entire spectrum of the Lyapunov exponents only for small sizes and only for one kind of natural frequencies distribution, without discussing the strong dependence of the chaotic behavior on the shape of that distribution and its persistence in the thermodynamic limit. Finally, by tuning the width of the natural frequencies distribution, we show how the phase transition changes continuously from 2nd-order-like behavior towards a 1st-order-like one and we draw a complete synchronization phase diagram. As far as we know, these results are reported for the rst time and we think that they could provide new insights for the study of dynamical phase transitions in systems displaying collective synchronization.

Phase transition and chaos in the HMF model. The Hamiltonian Mean Field model describes the dynamical behavior of a system of coupled oscillators by the Hamiltonian

\[H = \sum_{i=1}^{N} \frac{1}{2} p_i^2 + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \frac{J_{ij}}{4\pi (|\mathbf{x}_i - \mathbf{x}_j| + |\mathbf{x}_j - \mathbf{x}_k| - |\mathbf{x}_i - \mathbf{x}_k|)^2} \theta (|\mathbf{x}_i - \mathbf{x}_j| - \frac{1}{2} |\mathbf{x}_j - \mathbf{x}_k|) \theta (|\mathbf{x}_j - \mathbf{x}_k| - \frac{1}{2} |\mathbf{x}_i - \mathbf{x}_j|), \]

where \(\mathbf{x}_i \) is the position of the \(i \)-th oscillator, \(p_i \) is its momentum, \(J_{ij} \) is the coupling strength between oscillators \(i \) and \(j \), and \(\theta \) is the Heaviside step function. The Hamiltonian is composed of two parts: the kinetic energy term \(\frac{1}{2} p_i^2 \) and the potential energy term \(\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \frac{J_{ij}}{4\pi (|\mathbf{x}_i - \mathbf{x}_j| + |\mathbf{x}_j - \mathbf{x}_k| - |\mathbf{x}_i - \mathbf{x}_k|)^2} \theta (|\mathbf{x}_i - \mathbf{x}_j| - \frac{1}{2} |\mathbf{x}_j - \mathbf{x}_k|) \theta (|\mathbf{x}_j - \mathbf{x}_k| - \frac{1}{2} |\mathbf{x}_i - \mathbf{x}_j|) \).

The potential energy term describes the interaction between oscillators through a pair potential that is zero for distances smaller than the sum of the oscillators' radii and infinity for distances larger than the sum of the oscillators' radii. This potential ensures that the system remains in a confining region, preventing oscillators from escaping to infinity.

The Hamiltonian Mean Field model was introduced by Tong et al. [2] and is known to have a phase transition from a disordered phase to a synchronized phase. The transition occurs at a critical value of the coupling strength, and the synchronization is achieved through the collective alignment of the oscillators' phases.

In the Kuramoto model, the Hamiltonian is simplified by assuming that oscillators are identical and that the potential energy term is replaced by a term that depends only on the average of the phase differences between oscillators.

\[H_{Kuramoto} = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=i+1}^{N} J_{ij} (\mathbf{x}_i - \mathbf{x}_j) \theta (|\mathbf{x}_i - \mathbf{x}_j| - \frac{1}{2}) \theta (\mathbf{x}_j - \frac{1}{2} |\mathbf{x}_i - \mathbf{x}_j|), \]

where \(\theta (x) \) is the Heaviside step function. The potential energy term in the Kuramoto model is a simplified version of the Hamiltonian Mean Field model, and it is designed to capture the essential features of synchronization without the complexity of the long-range interactions.

The Kuramoto model is known to have a phase transition from a disordered phase to a synchronized phase, and the transition occurs at a critical value of the coupling strength.

The main difference between the two models is that the Hamiltonian Mean Field model has a long-range interaction that allows for synchronization over large distances, while the Kuramoto model has a short-range interaction that limits synchronization to nearest neighbors.

In this paper, we focus on the chaotic behavior of the phase transition in the Kuramoto model. We show that the shape of the phase transition and the largest Lyapunov exponent behavior are strongly dependent on the distribution of the natural frequencies of the oscillators. This behavior is similar to that observed in the Hamiltonian Mean Field model, which suggests that the two models are related.

Conclusion. In conclusion, we have studied the chaotic behavior of the synchronization phase transition in the Kuramoto model. We have shown that the shape of the phase transition and the largest Lyapunov exponent behavior are strongly dependent on the distribution of the natural frequencies of the oscillators. This behavior is similar to that observed in the Hamiltonian Mean Field model, which suggests that the two models are related.

Acknowledgments. This work has been partially supported by the Italian Ministry of Education, University, and Research (MIUR) through the Excellence Program "Rinascita" and the project "Complex Systems: Emergence, Condensation, and Order" (CSECO), and by the EU through the project "Thermodynamics of Complex Systems" (THERMOCOM). We would like to thank the referees for their valuable comments and suggestions.

ics of classical spins or rotators, characterized by the angles \(\theta_i \) and \(\phi_i \) (and the conjugate ones \(p_\theta \) and \(p_\phi \)) which can also be represented as particles moving on the unit circle. In its ferromagnetic version the Hamiltonian of the model is given by:

\[
H = K + V = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \frac{1}{2N} \sum_{i=1}^{N} \left[1 - \cos (i - j) \right];
\]

where \(i = 1; \ldots ; N \) and the mass \(m \) is usually set to 1. The potential term of Eq. 1 reveals the mean field nature of the model, since each rotator can interact with all the others. Such a nature becomes more evident if we deriving order parameter magnetic moment \(M = M e^i = \sum_{i=1}^{N} e^i \), where \(M \) and \(e^i \) are the modulus and the global phase. Within this assumption the Hamiltonian equations of motion can be written

\[
i + B + CM \sin (i - j) = M \sin (i - j); i = 1; \ldots ; N ;
\]

which correspond to the equations of single pendula in a mean field potential. We note also [6] that Eq. 2 can be regarded as the conservative limit of the following mean field equations describing a system of driven and damped pendula (with unit mass):

\[
i + B + CM \sin (i - j) = \frac{d}{dt} M \sin (i - j); i = 1; \ldots ; N ;
\]

provided that the coupling \(C = 1 \), the damping coefficient \(B = 0 \) and the torque \(\theta = 0 \).

The equilibrium solution of the Hamiltonian model can be derived in both the classical and microcanonical ensembles [2]. It gives the exact expression of the so-called collapse curve, i.e. the dependence of the energy density \(U = H/N \) on the temperature \(T \) via \(U = \frac{1}{2} + \frac{1}{2}(1 - M^2) \), being \(M \) the modulus and \(M = 1.5 \) predicts a second-order phase transition from a low-energy condensed phase (with \(M > 0 \)) to high-energy homogeneous one (with \(M = 0 \)) at the critical temperature \(T_C = 1.2 \) (corresponding to the critical energy density \(U = 4.3 \)).

The microcanonical simulations at equilibrium confirm these predictions and also allow to get some information about the microscopic dynamics of the system [2,9]. It is wellknown that in classical any-particle system microscopic collective behavior can coexist with chaos at the macroscopic level. This feature is particularly evident near a phase transition, where chaotic dynamics can induce non trivial time dependence in macroscopic quantities. In these cases it is worth to study the Largest Lyapunov exponent (LLE), which gives a suit condition for chaotic instability by measuring the asymptotic rate of exponential growth of vectors in tangent space. For this purpose one has to consider the limit:

\[
\lim_{d(t) \rightarrow \infty} \ln \left(\frac{d(t)}{d(t)} \right) = \lim_{d(t) \rightarrow \infty} \ln \frac{d(t)}{d(t)} = \frac{1}{2} \ln \frac{d(t)}{d(t)} = \frac{1}{2} \ln \frac{d(t)}{d(t)},
\]

where \(d(t) = \frac{\sum_{i=1}^{N} (\dot{X}_i)^2 + (\dot{\phi}_i)^2}{2} \) is the Euclidean distance calculated from the initial displacements at time \(t \). Then, in order to obtain the time evolution of \(d(t) \), one must integrate along the reference orbit the linearized equations of motion following the procedure of ref. [10].

In the upper panel of Fig. 1 we plot the LLE as a function of the energy density for increasing system sizes \(N \), while in the lower panel the correspondent magnetization curve, exhibiting the typical shape of a continuous phase transition, is reported for comparison. An average over 10 realizations at equilibrium has been considered for each point. As expected, in both the limit of small and large energies, where the system becomes integrable, the LLE goes to zero. On the other hand, just before the critical energy, LLE exhibits a peak which persists and becomes broader increasing the size \(N \) (see also [9]). In particular, it has been already shown (see Fig. 16 in [2]) that the LLE is positive and \(N \)-independent just below the transition, while it goes to zero above it (as \(N^{-1/3} \)) and also for very small energy densities. Such a behavior at equilibrium is strikingly correlated to the kinetic energy fluctuations [2,9] and it is also in agreement with a theoretical formalism relating the LLE with other dynamical quantities [11], see [12,13] for the general theory. In the next section we will show that analogous features can be found also in an apparently different context, as that one of the Kuramoto model.

Phase transition and chaos in the Kuramoto model. The Kuramoto model [3,5] is considered one of the simplest models exhibiting spontaneous collective
synchronization. It describes a large population of coupled limit-cycle oscillators, each one characterized by a phase \(\phi_i \) and a natural frequency \(\omega_i \), whose dynamics is given by:

\[
\dot{\phi}_i = \omega_i + \sum_{j=1}^{N} K \frac{\sin(j \omega_i)}{N};
\]

(4)

where \(K \) is the coupling strength and \(i = 1; \ldots; N \). The natural frequencies are time-independent and are randomly chosen from a symmetric, unimodal distribution \(g(\omega) \). We will consider here only uniform and Gaussian \(g(\omega) \) distributions. As in the case of the Hartman–Grobard model, one can imagine the oscillators as particles moving on the unit circle. For any value of \(K \), the oscillators act as if they were uncoupled and each oscillator tends to move independently and incoherently with its own frequency. Instead, when \(K \) exceeds a certain threshold \(K_c \), the coupling tends to synchronize each oscillator with all the others and the system exhibits a spontaneous transition from the previous incoherent state to a synchronized one, where all the oscillators rotate at the same frequency (a value which corresponds to the average frequency of the system, preserved by the dynamics). As shown by Kuramoto itself [3], the critical value of the coupling depends only on the central value \(g(\omega = 0) \) of the distribution \(g(\omega) \) in accordance with the expression \(K_c = \frac{2}{g(0)} \).

The order parameter of the Kuramoto model is perfectly equivalent to the magnetization in the Hartman–Grobard model and it is given by \(r = r e^{i\theta} = \frac{1}{N} \sum_{i=1}^{N} e^{i\omega_i} \), where \(r \) is, again, the average global phase corresponding to the centroid of the phases of the oscillators and the modulus \(0 < r < 1 \) represents the degree of synchronization of the population. In terms of the variables \(r \) and \(\theta \), eq. (4) can be rewritten as:

\[
\dot{\theta} = 1 + K r \sin(\theta); \quad i = 1; \ldots; N;
\]

(5)

where, as happened also for the Hartman–Grobard model, the mean field character of the system becomes obvious. For a given value of \(K \), as the population becomes more coherent, \(r \) grows and the effective coupling \(K r \) increases. In this regime of partial synchronization, as predicted by the solutions of eq. (5), two kinds of oscillators coexist depending on the size of \(j \): (i) oscillators with \(j ; j > K r \), called drifting oscillators, that run incoherently around the unit circle; (ii) oscillators with \(j ; j \leq K r \), called locked oscillators, that are trapped in a rotating cluster. The dynamic interplay between these two kinds of oscillators is probably at the root of the microscopic chaotic behavior which, as we will show, characterizes the regime of partial synchronization. On the other hand, when the effective coupling \(K r \) becomes strong enough, all
the oscillators rotate in the same cluster at the frequency
and any fingerprints of chaos disappear: in fact, in this
case, the system behaves like a single giant oscillator and
become thus integrable.

If we consider again eq. (3) describing a system of cou-
pled driven/damped pendula, one can immediately verify
that eq. (4) represents its overdamped limit, i.e. the
case $B > 1$ \([5]\). In this context, the natural frequen-
cies ω_1 play the role of the torque term, while $C = K$
and $M = r$. This common origin of both HMF and Kura-
mo t o models from eq. (3) seems to indicate the existence of
a non-trivial link between the two oscillators system s,
with the non-Hamiltonian character of the latter. Ac-
tually, such a dynamics reveals any analogies. In ref. [14]
the authors studied a generalized version of the Kura-
moto model which share similarities with the behavior of
the HMF model. On the other hand, in ref. [6] we studied
analogies in the quasi-stationary behavior, i.e. the ap-
appearance of metastable states near the phase transition.

In the following we will compare the stationary behavior of the Kura-
moto model with the equilibrium regime of the
HMF model, with particular focus on the chaotic aspects.
In the lower panels of Fig. 2 and Fig. 3 we show the asym-
ptic behavior of the Kuramoto order parameter r as a
function of the control parameter K for two different
distributions of the natural frequencies ω_1, respectively a
Gaussian and a uniform one, and for large system sizes of
oscillators (from $N = 20000$ to $N = 50000$). As predicted
by Kuramoto analysis, in both cases we observe a phase
transition at a critical value $K_c = \frac{2}{3}(0)$. The Gaussian
distribution has mean 0 and variance 1, therefore from
the normalization condition follows $g(0) = 1 = \frac{2}{3}(2)$ and
$K_c = \frac{159617}{18}$: the uniform distribution is selected in
the range $\omega = \{ 2 \}$ and $\omega = \{ 2 \}$ therefore the normalization condi-
tions gives $g(0) = 1 = \frac{2}{3}(4)$ and $K_c = \frac{8}{3}$. In order to compare the two
cases, we plot the order parameter as a function of
$K = K_c$ for several sizes of the system. Please note
that we show decreasing values of $K = K_c$ in order to
better compare Kuramoto data with those of the HMF
model. An average over 10 realizations has been consid-
ered for each dot. One immediately recognizes a distinct
type of transition: a continuous (2nd-order-like) one, for
the Gaussian g_1 (Fig. 2) and an abrupt (1st-order-like)
one, for the uniform g_1 (Fig. 3). Correspondingly, two
different behaviors of the LLE (calculated as in the pre-
vious section following ref. [10]) were also observed: they
are plotted in the upper panels of Figs. 2 and 3 and clearly
show that the LLE can be considered as a good dynamical
indicator of the phase transitions. In fact, in both cases we
observe a pronounced peak around the transition. But,
while it slowly decreases for $K > K_c$ in the Gaussian g_1
case, in the uniform one it goes to zero abruptly just af-
after the critical point. In both cases the chaotic regime,
characterized by a positive LLE, seems to be related
with the simultaneous presence of drifting and locking os-
cillators, i.e. with the existence of partially synchronized
assyptotic stationary states, and seem not to depend on
the size of the system (as happened below the critical en-
ergy in the HMF model). On the other hand, as expected,
the LLE vanishes for small or high values of the coupling,
being in those cases the system completely homogeneous
or fully synchronized (i.e., in both the cases, integrable).

These results confirm previous studies \([7]\) concerning the
dependence of the transition order on the g_1 distribu-
tion, and extend the investigation of M. Aizenstark et al. \([8]\)
without any contradiction. In particular, in the latter, the
authors show that phase chaos in Kuramoto model arises
as soon as $N = 4$ or more oscillators interact. But, even if
they compute the entire Lyapunov spectrum, indeed they
take into account only relatively small system sizes (up to
$N = 200$) and do not distinguish between different
types of phase transition. Furthermore, they mainly con-
sider the so-called symmetric Kuramoto model, where
the natural frequencies ω_1 are symmetrically allocated around
the mean frequency; the latter is a very peculiar case,
which gives rise to a very sharp 1st-order-like phase tran-
sition for the order parameter, with a corresponding LLE
that is zero for all the values of the coupling except for
a very narrow zone around the transition, which seems to
vanish increasing the size of the system. Numerical results for
the symmetric g_1 distribution are shown in the
insets of Fig. 3, where the sharp transition in the
order parameter is clearly evident (lower inset), together
with the correspondent size-dependent LLE behavior (up-
per inset). This distribution is however very peculiar and
not very realistic, although easier to deal with from an
analytical point of view. On the other hand, compared
with those of Fig. 1, the plots of Fig. 2 seem to indicate

![Fig. 4: Temporal evolution of the order parameter $r(t)$ near the phase transition for several runs and different distributions g_1: the Gaussian one, panels (a), (b) and (c) and the uniform one, panels (d), (e) and (f). Metastable states are visible in panels (a) and (f). See text.](image-url)
that the Gaussian distribution yields a phase transition and a chaotic behavior qualitatively analogous to that one found in the HMF model. Comparing Fig. 2 and Fig. 3, it clearly appears that, at variance with what happens in the uniform case, where both homogeneous and synchronized states simultaneously appear in correspondence of the abrupt phase transition, the Gaussian distribution drives the Kuramoto system along an HMF-like continuous transition without coexistence of different phases. In Fig. 4 we present several plots which con m this interesting feature. For a system of \(N = 20000 \) oscillators, we draw the temporal evolution of the order parameter \(r(t) \) for several single runs as a function of three values \(K = K_c \) near the phase transition, for both Gaussian (left column) and uniform (right column) distributions. It clearly appears that in the latter case (panels e) and (f)) stationary states with high and low asymptotic values of \(r \) coexist, while in the former case (panels a), (b) and (c)) only partially synchronized stationary states are visible. Such a result reinforces the distinction between the 1st-order-like and 2nd-order-like dynamical phase transitions, occurring in the Kuramoto model in correspondence of different 1st-order critical distributions, which seem to play a very crucial role. As already noticed in ref. [6], in some cases (see for example panels a) and (f)) a metastable state appears, for both Gaussian and Gaussian-like distributions, analogously to the appearance of metastable quasistationary states \((QSS) \) in the HMF model (when the system starts from out-of-equilibrium initial conditions), that the Gaussian distribution yields a phase transition and a chaotic behavior qualitatively analogous to that one found in the HMF model. Comparing Fig. 2 and Fig. 3, it clearly appears that, at variance with what happens in the uniform case, where both homogeneous and synchronized states simultaneously appear in correspondence of the abrupt phase transition, the Gaussian distribution drives the Kuramoto system along an HMF-like continuous transition without coexistence of different phases. In Fig. 4 we present several plots which capture this interesting feature. For a system of \(N = 20000 \) oscillators, we draw the temporal evolution of the order parameter \(r(t) \) for several single runs as a function of three values \(K = K_c \) near the phase transition, for both Gaussian (left column) and uniform (right column) distributions. It clearly appears that in the latter case (panels e) and (f)) stationary states with high and low asymptotic values of \(r \) coexist, while in the former case (panels a), (b) and (c)) only partially synchronized stationary states are visible. Such a result reinforces the distinction between the 1st-order-like and 2nd-order-like dynamical phase transitions, occurring in the Kuramoto model in correspondence of different 1st-order critical distributions, which seem to play a very crucial role. As already noticed in ref. [6], in some cases (see for example panels a) and (f)) a metastable state appears, for both Gaussian and Gaussian-like distributions, analogously to the appearance of metastable quasistationary states \((QSS) \) in the HMF model (when the system starts from out-of-equilibrium initial conditions), that the Gaussian distribution yields a phase transition and a chaotic behavior qualitatively analogous to that one found in the HMF model. Comparing Fig. 2 and Fig. 3, it clearly appears that, at variance with what happens in the uniform case, where both homogeneous and synchronized states simultaneously appear in correspondence of the abrupt phase transition, the Gaussian distribution drives the Kuramoto system along an HMF-like continuous transition without coexistence of different phases. In Fig. 4 we present several plots which capture this interesting feature. For a system of \(N = 20000 \) oscillators, we draw the temporal evolution of the order parameter \(r(t) \) for several single runs as a function of three values \(K = K_c \) near the phase transition, for both Gaussian (left column) and uniform (right column) distributions. It clearly appears that in the latter case (panels e) and (f)) stationary states with high and low asymptotic values of \(r \) coexist, while in the former case (panels a), (b) and (c)) only partially synchronized stationary states are visible. Such a result reinforces the distinction between the 1st-order-like and 2nd-order-like dynamical phase transitions, occurring in the Kuramoto model in correspondence of different 1st-order critical distributions, which seem to play a very crucial role. As already noticed in ref. [6], in some cases (see for example panels a) and (f)) a metastable state appears, for both Gaussian and Gaussian-like distributions, analogously to the appearance of metastable quasistationary states \((QSS) \) in the HMF model (when the system starts from out-of-equilibrium initial conditions),
in principle would strictly request \(e = 1 \). At the same time, the region of partial synchronization, which is mainly situated after the phase transition for small values of \(e \) (see Fig. 2), progressively shifts before the phase transition for increasing values of \(e \), approaching the 1st-order-like behavior shown in Fig. 3. This scenario is summarized in the plot of Fig. 6, where the synchronization phase diagram of K versus the Kuramoto model is shown. Please notice that this diagram is schematic and not universal since it depends on the range of \(g(!) \) and likely a scale also by unavoidable finite size effects. We report in the three insets examples of \(g(!) \) distributions for \(e = 1,3,5 \). The 2nd-order-like critical line, drawn as a full line, separates the incoherent phase, with vanishing values for both \(r \) and the LLE, from the fully synchronized one, characterized by a large value of the order parameter \(\langle r > 0.8 \rangle \) and, again, by a vanishing LLE. Just around the critical line, we found the partially synchronized regime, with positive LLE and values \(0 < r < 0.8 \). As a nomenclature, we notice that in Ref. [17] a similar phase diagram was shown for the HMF model. In that case the authors considered the plane \(U \) versus \(M_0 \), being the latter a parameter which specify the class of out-of-equilibrium initial conditions leading to metastable quasistationary states. Such a plane was separated into two parts by a critical line, indicating both 2nd-order and 1st-order phase transitions from a homogeneous QSS regime to a magnetized one. Despite the different context, we think that this analogy could be considered a further point of contact between the HMF and the Kuramoto scenarios.

Conclusions. We presented new numerical evidence of the presence of chaotic behavior in the Kuramoto model for very large system sizes, discussing the analogies with the Hamiltonian mean field (HMF) model. We studied the phase transition features and the LLE behavior for both models. The latter can be also regarded as the dissipative and the conservative version of a more general model of coupled driven/damped pendula. Our simulations confirm that two different kinds of dynamical phase transitions occur in the Kuramoto model, depending on the distribution of the natural frequencies adopted as driving terms. A uniform \(g(!) \) gives rise to a sharp 1st-order-like transition, while both homogenous and synchronized stationary states coexist. Instead, a Gaussian \(g(!) \) yields a continuous 2nd-order-like transition, very similar to the true thermodynamic phase transition observed in the HMF model. On the other hand, the presence of the Kuramoto model of a peak observed in the LLE corresponds to the critical region and regardless of the kind of distribution \(g(!) \) reenacts the fact that in this region the conpetition between locked and drifting oscillators activates a microscopic chaotic dynamics which is a good dynamical indicator of the phase transition. Again, such a chaotic behavior shows many analogies with the one observed in the HMF model, which exhibits as well a peak just before the critical point, where there are large fluctuations in the main thermodynamic quantities characterizing the macroscopic phase transition.

We thank M. Marcello Iacono Manzo for help in the preparation of the scripts and to run our codes on the TIGER platform. Useful discussions with Antonio Politi, Stefano Ruocco and Duccio Fanelli are acknowledged.

REFERENCES