Heavy-quark contributions to the ratio F_L/F_2 at low values of the Bjorken variable x

A. Yu. Ilarionov, B. A. Kniehl, A. V. Kotikov

1SISSA, via Beirut, 2-4, 34014 Trieste and INFN, Sezione di Trieste, Trieste, Italy
2II. Institut für Theoretische Physik, Universität Hamburg, 22761 Hamburg, Germany
3BLTPh, JINR, 141980 Dubna (Moscow region), Russia

We study the heavy-quark contributions to the proton structure functions $F_i^2(x;Q^2)$ and $F_i^L(x;Q^2)$, with $i = c, b$, for small values of Bjorken’s x variable and provide compact formulas for their ratios $R_i = F_i^L/F_i^2$ that are useful to extract $F_i^L(x;Q^2)$ from measurements of the doubly differential cross section of inclusive deep-inelastic scattering at DESY HERA. Our approach naturally explains why R_i is approximately independent of x and the details of the parton distribution functions in the low-x regime.

1 Introduction

The totally inclusive cross section of deep-inelastic lepton-proton scattering (DIS) depends on the square s of the centre-of-mass energy, Bjorken’s variable $x = Q^2/(2pq)$, and the inelasticity variable $y = Q^2/(xs)$, where p and q are the four-momenta of the proton and the virtual photon, respectively, and $Q^2 = q^2 > 0$. The doubly differential cross section is parameterized in terms of the structure function F_2 and the longitudinal structure function F_L, as

$$\frac{d^2}{dx dy} = \frac{2}{xQ^4} F_2(1 \ y^2 F_2(x;Q^2) \ y^2 F_L(x;Q^2) y)$$

where α is Sommerfeld’s fine-structure constant. At small values of x, F_L becomes non-negligible and its contribution should be properly taken into account when the F_2 is extracted from the measured cross section. The same is true also for the contributions F_i^L and F_i^2 of F_2 and F_L due to the heavy quarks $i = c, b$.

Recently, the H1 [1,2,3] and ZEUS [4,5,6] Collaborations at HERA presented new data on F_c^2 and F_b^2. At small x values, of order 10^{-4}, F_c^2 was found to be around 25% of F_2, which is considerably larger than what was observed by the European Muon Collaboration (EMC) at CERN [7] at larger x values, where it was only around 1% of F_2. Extensive theoretical analyses in recent years have generally served to establish that the F_i^2 data can be described through the perturbative generation of charm within QCD (see, for example, the review in Ref. [8] and references cited therein).

In the framework of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) dynamics [9], there are two basic methods to study heavy-quark physics. One of them [10] is based on the massless evolution of parton distribution functions (PDF) and the other one on the photon-gluon fusion (PGF) process [11]. There are also some interpolating schemes (see Ref. [12] and references cited therein). The present HERA data on F_c^2 [2,3,5,6] are in good agreement with the modern theoretical predictions.
In earlier HERA analyses [1,2], \(F_L^C \) and \(F_T^C \) were taken to be zero for simplicity. Four years ago, the situation changed: in the papers [2,3,5,6], the \(F_L^C \) contribution at next-to-leading order (NLO) was subtracted from the data.

In this paper, we present compact low-\(x \) approximation formulae [13] for the ratio \(R_1 = \frac{F_L^1}{F_T^1} \) at leading order (LO) and NLO, which greatly simplify the extraction of \(F_L^1 \) from measurements of \(d^2 \sigma/(dx dy) \).

\section{Parton distribution functions at small \(x \)}

The standard program to study the small \(x \) behavior of quarks and gluons is carried out by comparison of the data with the numerical solution of the DGLAP equations, fitting the parameters of the \(x \) profile of partons at some initial \(Q^2 \) and the QCD energy scale (see, for instance, [14,15]). However, in analyzing exclusively the small \(x \) region (\(x \ll 0.1 \)), there is the alternative of doing a simpler analysis by using some of the existing analytical solutions of DGLAP in the small \(x \) limit (see [16] for review). It was done in Refs. [17]-[19], where it was pointed out that the HERA small \(x \) data can be interpreted in the so-called doubled asymptotic scaling (DAS) approximation related to the asymptotic behavior of the DGLAP evolution discovered in [20] many years ago.

Here we illustrate results obtained in [18,19]; the small \(x \) asymptotic PDF form in the framework of the DGLAP equation starting at some \(Q_0^2 \) with the ansatz function:

\[
xf_a(x;Q_0^2) = A_a \quad \text{(hereafter } a = q,g); \tag{2}
\]

where \(xf_a \) are the leading-twist PDF parts and \(A_a \) are unknown parameters that have to be determined from data. We neglect the non-singlet quark component at small \(x \).

We would like to note that HERA data [21] show a rise of \(F_2 \) at low \(Q^2 \) values (\(Q^2 < 1 \text{ GeV}^2 \)) when \(x \approx 0 \). This rise can be explained naturally by incorporation of higher-twist terms in the analysis (see [19] and Fig.1).

We shortly compile the LO results (the NLO ones may be found in [18,19]), which are:

\[
f_q(x;Q^2) = f_q^+(x;Q^2) + f_q(x;Q^2) \tag{3};
\]

\[
f_q^+(x;Q^2) = A_q + \frac{4}{9}A_q \times I_0(\) e^{-\frac{1}{2}} + O(\) \tag{4};
\]

\[
f_q(x;Q^2) = \frac{f}{9}A_q e^{d(1)} + O(x) \tag{5};
\]

\[
f_q(x;Q^2) = A_q e^{d(1)} + O(x) \tag{6};
\]

\[
f_q(x;Q^2) = A_q e^{d(1)} + O(x) \tag{7};
\]

where where \(e = \left(\begin{array}{c} f \\
\frac{e^2}{1} \end{array} \right) \) is the average charge square and \(d(1) = 1 + 20f = (27,0) \) and \(d(1) = 16f = (27,0) \) are the regular parts of \(d \) and \(\text{d anomalous dimensions, respectively, in the limit } n \rightarrow 1 \). The functions I (= 0, 1) are the modified Bessel functions I and the

\footnote{For a quantity \(k(n) \) we use the notation \(\tilde{k}(n) \) for the singular part when \(n = 1 \) and \(\tilde{k}(n) \) for the corresponding regular part.}
variables and are given by
\[q = 2 \hat{d}_s \ln(x); \quad s = \frac{\hat{d}_s}{\ln(x)} = \frac{12}{\ln(1-x)}; \quad \hat{d}_s = \frac{12}{s_0}, \quad (8) \]
where \(s_0 \) is the first coefficient of the QCD beta function and \(s = \ln[a_s(Q_0)/a_s(Q)] \), with \(Q_0 \) being the initial scale of the DGLAP evolution, and \(a_s(4) = s(-) = (4) \) is the coupling with the renormalization scale.

3 Master formula

We now derive our master formula for \(R_i(x; Q^2) \) appropriate for small values of \(x \), which has the advantage of being independent of the PDFs \(f_i(x; Q^2) \). In the low-\(x \) range, where only the gluon and quark-singlet contributions matter, while the non-singlet contributions are negligibly
where $l =$ labels the usual $+$ and $-$ linear combinations of the gluon contributions, $C_{k,k_P}^1(x;Q^2)$ are the DIS coefficient functions, which can be calculated perturbatively in the parton model of QCD, and the symbol \sim denotes convolution according to the usual prescription, $f(x) g(x) = \int_x^1 (dy/y) f(y) g(xy)$. In order to continue the Mellin transform, which is useful for practical applications, we assume for the time being that $M_{k,\mu}(1;Q^2)$ are void of singularities in the limit $\mu \to 1$, which is to be analytically continued from integer values of n to real values $1 \pm \epsilon$.

In the DAS approach \cite{25}, one has $M_{k,\mu}(1;Q^2) = M_{k,\mu}(1;Q^2)$ if $M_{k,\mu}(n;Q^2)$ are devoid of singularities in the limit $\mu \to 1$, as we assume for the time being. Such singularities actually occur at NLO, leading to modifications to be discussed in Section 5. Defining $M_{k,\mu}(1;Q^2) = M_{k,\mu}(1;Q^2)$ and using Θ, Eq. (13) may be simplified to become

$$F^1_k(x;Q^2) \equiv \frac{M_{k,\mu}(1;Q^2)}{M_{2,k,\mu}(1;Q^2)} x F^1_k(x;Q^2);$$

In fact, the non-perturbative input $F^1_k(x;Q^2)$ does cancel in the ratio

$$R_1(x;Q^2) = \frac{M_{1,k,\mu}(1;Q^2)}{M_{2,k,\mu}(1;Q^2)};$$

which is very useful for practical applications. Through NLO, $M_{k,\mu}(1;Q^2)$ exhibits the structure

$$M_{k,\mu}(1;Q^2) = \epsilon_k a_3() M^{(0)}_{k,\mu}(1;\lambda_1) + a_3() M^{(1)}_{k,\mu}(1;\lambda_1) + M^{(2)}_{k,\mu}(1;\lambda_1) \ln \frac{2}{m_1} + O(a_3^2);$$

where inserting Eq. (15) into Eq. (14), we arrive at our master formula

$$R_1(x;Q^2) = \frac{M^{(0)}_{1,k,\mu}(1;\lambda_1) + a_3() M^{(1)}_{k,\mu}(1;\lambda_1) + M^{(2)}_{k,\mu}(1;\lambda_1) \ln \frac{2}{m_1} + O(a_3^2)}{M^{(0)}_{2,k,\mu}(1;\lambda_1) + a_3() M^{(1)}_{k,\mu}(1;\lambda_1) + M^{(2)}_{k,\mu}(1;\lambda_1) \ln \frac{2}{m_1} + O(a_3^2)};$$

Here and in the following, we suppress the variables m_1 in the argument lists of the structure and coefficient functions for the sake of notation. Moreover, a further simplification is obtained by neglecting the contributions due to incoming light quarks and antiquarks in Eq. (16), which is justified because they vanish at LO and are numerically suppressed at NLO for small values of x. One is thus left with the PDF contribution.

\footnote{The singular PDF behavior has been considered recently in \cite{26}.}
We observe that the right-hand side of Eq. (16) is approximately independent of \(x \), a remarkable feature that is automatically exposed by our procedure. In the next two sections, we present compact analytic results for the LO \((j = 0)\) and NLO \((j = 1; 2)\) coefficients \(M^{(j)}_{kj}(1; a) \), respectively.

4 LO results

The LO coefficient functions of PGF can be obtained from the QED case [27] by adjusting coupling constants and colour factors, and they read [28,29]

\[
\begin{align*}
C^{(0)}_{2;j}(x; a) & = 2x[f(1 - 4x(2 - a)(1 - x)) + (1 + 2a)(1 - 2x + 2a)] + 4ax^4 \ln(1 + x); \\
C^{(0)}_{L;j}(x; a) & = 8x^2[(1 - x) \ln(1 + x) - 2axL(1)];
\end{align*}
\]

where

\[
(x) = \frac{4ax}{1 - x}; \quad L(1) = \ln\left(\frac{1 + x}{1 - x}\right);
\]

Performing the Mellin transformation in Eq. (12), we find (see details in [13])

\[
M^{(0)}_{2;j}(1; a) = \frac{2}{3}[1 + 2(1 - a)J(a)]; \quad M^{(0)}_{L;j}(1; a) = \frac{2}{3}b[1 + 6a - 4a(1 + 3a)J(a)];
\]

At LO, the low-\(x \) approximation formula thus reads

\[
R_{1;j}^{(1)}(1; a) = 2\left[\frac{1 + 6a - 4a(1 + 3a)J(a)}{1 + 6a - 4a(1 + 3a)J(a)}\right];
\]

5 NLO results

The NLO coefficient functions of PGF are rather lengthy and not published in print; they are only available as computer codes [30]. For the purpose of this letter, it is sufficient to work in the high-energy regime, defined by \(x \rightarrow 1 \), where they assume the compact form [31]

\[
C^{(j)}_{kj}(x; a) = R_{kj}^{(j)}(1; a);
\]

with

\[
\begin{align*}
R_{2;j}^{(1)}(1; a) & = \frac{8}{9}C_A [5 + (13 - 10a)J(a) + 6(1 - a)I(a)]; \quad R_{2;j}^{(2)}(1; a) = 4C_A M^{(0)}_{kj}(1; a); \\
R_{L;j}^{(1)}(1; a) & = \frac{16}{9}C_A [5 + (3 - 4a)(1 - 6a)]J(a) + 12a(1 + 3a)I(a)];
\end{align*}
\]

where \(C_A = N \) for the colour gauge group SU\((N)\), \(J(a) \) is defined by Eq. [20], and

\[
I(a) = \frac{P}{B}(2) + \frac{1}{2} \ln^2 t + \ln(ab) \ln t + 2L_1(t);
\]
Here, \((2) = 2^6 \) and \(L_k(x) = \int_0^1 (dy/y) \ln(1-xy) \) is the dilogarithm function.

As already mentioned in Section 3, the Mellin transforms of \(C_{k,\nu}^{(j)}(x;\nu) \) exhibit singularities in the limit \(n! \to \infty \), which lead to modifications in our formalism, namely in Eqs. (13) and (16). As was shown in Refs. [24,13,19], the terms involving \(l = 1 \) depend on the exact form of the subasymptotic low-\(x \) behaviour encoded in \(f_{g,\nu}^i(x;\nu^2) \), as

\[
\frac{1}{1} = \frac{1}{f_{g,\nu}^i(\tilde{x};\nu^2)} \int \frac{Z^1 \, dy}{x} f_{g,\nu}^i(y;\nu^2); \tag{25}
\]

where \(\tilde{x} = x-b \). In the generalized DAS regime, given by Eqs. (3)-(7), we have

\[
\frac{1}{1} = \frac{1}{I_0(\tilde{x})} \int \frac{Z^1 \, dy}{x} \frac{x}{y} I_0(y) \frac{1}{1} \ln(\alpha) \frac{J(\alpha)}{B}; \tag{26}
\]

Because the ratio \(f_{g,\nu}^i(x;\nu^2) = f_{g,\nu}^j(x;\nu^2) \) is rather small at the \(\nu^2 \) values considered, Eq. (13) is modified to become

\[
F_{g,\nu}^i(x;\nu^2) = M_{k,\nu}^{(j)}(x;\nu^2) I_{g,\nu}^i(x;\nu^2); \tag{27}
\]

where \(M_{k,\nu}^{(j)}(1;\nu^2) \) is obtained from \(M_{k,\nu}^{(j)}(n;\nu^2) \) by taking the limit \(n! \to \infty \) and replacing \(1 = (n+1)! \). Consequently, one needs to substitute

\[
M_{k,\nu}^{(j)}(1;\nu^2) = M_{k,\nu}^{(j)}(1;\nu^2) \quad (j = 1;2) \tag{28}
\]

in the NLO part of Eq. (16). Using the identity

\[
\frac{1}{I_0(\tilde{x})} \int \frac{Z^1 \, dy}{x} \frac{x}{y} I_0(y) \frac{1}{1} \ln(\alpha) \frac{J(\alpha)}{B}; \tag{29}
\]

we find the Mellin transform (12) of Eq. (22) to be

\[
M_{k,\nu}^{(j)}(1;\nu^2) = \frac{1}{1} \ln(\alpha) \frac{J(\alpha)}{B} R_{k,\nu}^{(j)}(1;\nu^2) \quad (j = 1;2); \tag{30}
\]

The rise of the NLO terms as \(x \to 0 \) is in agreement with earlier investigations [22].

6 Results

As for our input parameters, we choose \(Q^2_0 = 0.306 \text{ GeV}^2 \), \(m_c = 1.25 \text{ GeV} \), and \(m_b = 4.7 \text{ GeV} \). While the LO result for \(R_1 \) in Eq. (21) is independent of the unphysical mass scale \(\mu \), the NLO formula (16) does depend on \(\mu \) due to an incomplete compensation of the dependence of \(a_2(\mu) \) by the term proportional to \(\ln(2-Q^2) \), the residual dependence being from \(a_2(\mu) \). In order to estimate the theoretical uncertainty resulting from this, in Ref. [13] we put \(Q^2 = Q^2_0 \) and vary \(a_2(\mu) \). Besides our default choice \(a_2(\mu) = 1 + 4 a_2(\mu) \), we also considered the extreme case \(a_2(\mu) = 100 \), which is motivated by the observation that NLO corrections are usually large and negative at small \(x \) values. A large \(a_2(\mu) \) value is also advocated in Ref. [54], where the choice \(a_2(\mu) = 10 \), with \(0.5 < \mu < 1 \), is proposed.

We now extract \(F_{g,\nu}^i(x;\nu^2) \) (i = c/p) from the H1 measurements of the cross sections in Eq. (16) at low \((12 < Q^2 < 60 \text{ GeV}^2) \) and high \((Q^2 > 150 \text{ GeV}^2) \) values of \(Q^2 \) using
the LO and NLO results for R_1 derived in Sections 2 and 3, respectively. Our NLO results for $Q^2 = Q^2_{LO}$ with $= 1 + 4a_i$ are presented for $i = c, b$ in Table I, where they are compared with the values determined by H1. We refrain from showing our results for other popular choices, such as $Q^2 = 4m_F^2Q^2$ and even $Q^2 = 1000Q^2$ because they are very similar. We observe that the theoretical uncertainty related to the freedom in the choice of Q^2 is negligibly small and good agreement with the results obtained by the H1 Collaboration using a more accurate, but rather cumbersome procedure [2,3].

In order to assess the sign and the size of the theoretical uncertainties in the NLO corrections to R_1, we show in Fig. 4 the Q^2 dependences of R_c, R_p, and R_c evaluated at LO from Eq. (24) and at NLO from Eq. (16) with $Q^2 = 4m_F^2Q^2 + 4m_t^2$. We observe from Fig. 4 that the NLO predictions are rather stable under scale variations and practically coincident with the LO ones in the lower Q^2 regime. On the other hand, for $Q^2 = 4m_F^2$, the NLO predictions overshoot the LO ones and exhibit a strong scale dependence. We encounter the notion that the xed-aversion number scheme used here for convenience is bound to break down in the large-Q^2 regime due to unresummed large logarithms of the form $\ln(Q^2-m_1^2)$. In our case, such logarithms do appear linearly at LO and quadratically at NLO. In the standard massless factorization, such terms are responsible for the Q^2 evolution of the PDFs and do not contribute to the coe cient functions. In fact, in the variable-aversion number scheme, they are MS-subtracted from the coe cient functions and absorbed into the Q^2 evolution of the PDFs. Thereafter, the asymptotic large-Q^2 dependences of R_c at NLO should be proportional to $s(Q^2)$ and thus decreasing. This is familiar from the Callan-Gross ratio $R = F_2 = F_1$, as may be seen from its Q^2 parameterizations in Ref. [15]. Fortunately, this large-Q^2 problem does not affect our results in Table I, because the bulk of the H1 data is located in the range of moderate Q^2 values.

The ratio R_c was previously studied in the framework of the β-factorization approach [29] and found to weakly depend on the choice of unIntegrated gluon PDF and to be approximately x independent in the low-x regime (see Fig. 8 in Ref. [29]). Both features are inherent in our approach, as may be seen at one glance from Eq. (16). The prediction for R_c from Ref. [29], which is included in Fig. 4 for comparison, agrees well with our results in the lower Q^2 range.
which supports the notion that the k_t-factorization approach partially accounts for the higher-order contributions in the low-x regime.

7 Conclusions

In this paper, we observed a compact formula \[R_1 = F_1^2 = F_L^2 \] for the ratio R_1 of the heavy-quark contributions to the proton structure functions F_2 and F_L valid through NLO at small values of Bjorken’s x variable. We demonstrated the usefulness of this formula by extracting F_2^2 and F_L^2 from the doubly differential cross section of DIS recently measured by the H1 Collaboration \[2,3\] at HERA. These results agree with those extracted in Refs. \[2,3\] well within errors. In the Q^2 range probed by the H1 data, NLO predictions agree very well with the LO ones and are rather stable under scale variations. Since we worked in the fixed-numerical scheme, our results are bound to break down for $Q^2 \rightarrow 4m_i^2$, which manifests itself by appreciable QCD correction factors and scale dependences. As is well known, this problem is conveniently solved by adopting the variable-numerical scheme, which we leave for future work. Our approach also simply explains the feeble dependence of R_1 on x and the details of the PDFs in the low-x
regime.

Acknowledgments. One of the authors (A.V.K.) would like to express his sincere thanks to the Organizing Committee for the kind invitation. He was supported in part, by Heisenberg-Landau program and by the Russian Foundation for Basic Research (Grant N 08-02-00896-a).

References

