induced multiparticle emissions of medium mass nuclei at intermediate energies

Tapan Mukhopadhyay1 and D. N. Basu2

Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064, India 1

(Dated: June 8, 2013)

A comprehensive analysis of multiparticle emissions following photon induced reactions at intermediate energies is provided. Photon induced reaction is described in the energy range of 30 – 140 MeV with an approach based on the quasidual nuclear photoabsorption model followed by the process of compound light particle evaporation and fission for the excited nucleus. The evaporation-fission process of the compound nucleus is simulated in a Monte-Carlo framework. The study shows almost no fission events for the medium mass nuclei and reproduces the available experimental data of photonuclear reaction cross sections satisfactorily at energies 30 – 140 MeV.

Keywords: Photonuclear reactions; Photo absorption; Nuclear stability; Monte-Carlo

PACS numbers: 25.20.-x, 25.20.Dc, 25.85.Jg, 24.10.Lx

With energetic incident photon it is possible to induce photonuclear reactions including single in most elements. Photonuclear reactions in different energy ranges, like giant dipole resonance (GDR) and quasidual (QD) energy regions, have been studied in the past as they provide a wide range of information either on the initial nuclear excitation mechanism or on characteristics of the compound nucleus decay channels. In fact photonuclear cross sections in the GDR energy region have been compiled for most of the nuclei in the periodic table, while measurements in the QD region were mainly focussed on heavy nuclei, thus leading to a lack of study on intermediate nuclei. For heavier nuclei, particularly for actinides and preactinides, with high enough energy of incident photons, the dominant reaction mechanism is fission where photonuclear cross sections are quite large. With decreasing stability (Z<2A) of the target nucleus and energy of incident photon, the absorption probability decreases, whereas other reaction channels such as (xn) and (xynyp) type become more important. Thus it is more in portant to study the photonuclear reactions in the intermediate energy range for medium mass elements. Investigations of such multiparticle emissions following photon induced reactions in the intermediate energy region in medium mass elements may reveal important features of the nature of the photoabsorption mechanism as well as the decay channel characteristics.

The aim of the present work is to investigate photonuclear reactions of the type (xn) and (xynyp). The present study is restricted to the QD region which is above the GDR or the isovector giant quadrupole resonance (IVGQR) regions and is below the pion threshold. The different photonuclear reactions for V, Zn, Sn, Ce, Sm, Yb, Ta, Au, Pb and Bi are consistently described as a two step process. In the rapid stage of a photonuclear reaction, the incoming photon is assumed to be absorbed by a neutron-proton (n-p) pair inside the nucleus. The rapid stage is then followed by a subsequent de-excitation of the compound nucleus (CN) via evaporation. Such a statistical decay of the CN is the slow stage of a photonuclear reaction. The quantitative description of the process is based on the liquid drop model (LDM) for nuclear fission by Bohr and Wheeler and the statistical model of nuclear evaporation developed by Weisshaupl. For this slow stage, an evaporation Monte-Carlo routine, based on the Weisshaupl statistical theory, is used to address the de-excitation of the CN in terms of the compound nucleus decay channel.

The dominant mechanism for nuclear photoabsorption at intermediate energies is described by the QD model which is employed to access the total photoabsorption cross section in nuclei. It is based on the assumption that the incident photon is absorbed by a correlated n-p pair inside the nucleus, leaving the remaining nucleus as a spectator. Such an assumption is enforced when wavelength of the incident photon is small compared to nuclear dimensions but not too small, where the wavelength becomes smaller than the average inter nuclear spacing in the nucleus. The total nuclear photoabsorption cross section $\sigma_a(E)$ is then proportional to the available number of n-p pairs inside the nucleus and also to the free deuteron photodisintegration cross section $\sigma_d(E)$:

$$\sigma_a(E) = \frac{L}{A} N Z \sigma_d(E) e^{-D/E}$$

where N, Z, and A are the neutron, proton, and mass numbers respectively, L/A factor represents the fraction of correlated n-p pairs and the function $e^{-D/E}$ accounts for the reduction of the n-p phase space due to the Pauli exclusion principle. A systematic study of total nuclear photoabsorption cross section data in the intermediate energy range shows that $D = 0.72A^{1/3}$ MeV. The free deuteron photodisintegration cross section $\sigma_d(E)$ is given by

$$\sigma_d(E) = \frac{512}{E^3} B^{3/2} \text{ in mb}$$
where B (=2.224 MeV) is the binding energy of the deuteron. The QD model [5,6] of nuclear photoabsorption is used together with modern mass radius data to obtain Levering's constant \(I = 6.8 \) for 2+ and 5.7A for 4+ of nuclei throughout the Periodic Table and is in good agreement with those obtained from the experimentally measured values.

At the QD energy range, as a consequence of the primary photon interaction, \((n+p)! \rightarrow n^*p^*! \), most of the cases excited compound nucleus is formed with the same composition as the target nucleus where both neutron and proton are retained inside the nucleus and the probabilities that either the neutron or the proton or both escape from the nucleus are extremely low. Hence, the recoiling nucleus can be viewed as a compound nucleus having the same composition as the target nucleus but with excitation energy \(E = 2E - 2m_c^2 \). The excitation energy of the emitted neutron and \(m_c \) is the rest mass of the nucleus before photon absorption. This excited compound nucleus then undergoes successive evaporation of neutrons, protons and light particles or \(\alpha \) decay. Hence the photonic nuclear reaction cross section \(\sigma \) is a product of the nuclear photoabsorption cross section \(\sigma_{\text{abs}} \) and the statistical decay probability \(p \) for a reaction channel and \(k \), therefore, given by

\[
\sigma(E) = \frac{\sigma_{\text{abs}}(E)}{p} \quad (3)
\]

The evaporation stage is calculated by applying the statistical theory [2]. The decay of the CN takes into account all accessible channels, with the related branching calculated in terms of the nuclear level densities of the daughter nucleus. The basic steps are the calculations of the relative probabilities between the competing channels (particle evaporation and nuclear \(\alpha \) decay). The probability of \(\alpha \) decay relative to neutron emission is calculated using Vandenbosch-Hutzenga's equation [13], given by

\[
\frac{\sigma}{\sigma_n} = \frac{K_0 a_n [2(a_E E_{\alpha})^2 - 1]}{4A \pi a_n E_n} \exp \left[2(a_E E_{\alpha})^2 (a_n E_n)^2 \right]
\]

where \(E_n = E - B_n \) and \(E_{\alpha} = E - B_{\alpha} \) are the nuclear excitation energies after the emission of a neutron and after \(\alpha \) decay, respectively, where \(B_n \) is the binding energy of the emitted neutron, \(a_n \) and \(a_{\alpha} \) are the partial widths for the decay of the excited compound nucleus via neutron emission and \(\alpha \) decay, respectively, and the parameters of \(a_n \) and \(a_{\alpha} \) are the level density parameters for the neutron emission and for the \(\alpha \) decay, respectively.

Each calculation is performed with 40000 events using a Monte Carlo technique for the evaporation-\(\alpha \) decay calculation. This provides a reasonably good computational statistics. However, possible contributions from the direct reactions are omitted from the present calculations. The cross section \(\sigma(E) \) for any particular reaction channel \(r \) is then calculated using the equation

\[
\sigma(E) = \sum_{r=1}^{\infty} \sigma_{\text{abs}}(E) n_r = \sum_{r=1}^{\infty} \sigma_{\text{abs}}(E) n_r
\]

where \(n_r \) is the number of events in a particular reaction channel \(r \) and \(N \) is total number of events that is the number of the incident photons.

Each calculation is performed with 40000 events using a Monte Carlo technique for the evaporation-\(\alpha \)-decay calculation. This provides a reasonably good computational statistics. However, possible contributions from the direct reactions are omitted from the present calculations. The cross section \(\sigma(E) \) for any particular reaction channel \(r \) is then calculated using the equation

\[
\sigma(E) = \sum_{r=1}^{\infty} \sigma_{\text{abs}}(E) n_r = \sum_{r=1}^{\infty} \sigma_{\text{abs}}(E) n_r
\]

where \(n_r \) is the number of events in a particular reaction channel \(r \) and \(N \) is total number of events that is the number of the incident photons.

![Figure 1: The plots of cross sections \(\sigma_k \) as a function of mass number \(A_k \) of the evaporation residues resulting from (\(jxn \)) and (\(jxynp \)) types of reactions for \({^{64}}Zn \) at \(E = 30; 40 \) MeV.](image)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M b °</td>
<td>°</td>
<td>°</td>
<td>°</td>
<td>°</td>
<td>°</td>
<td>°</td>
<td>°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51V</td>
<td>10.37</td>
<td>7.67</td>
<td>7.97</td>
<td>8.57</td>
<td>8.66</td>
<td>8.66</td>
<td>5.37</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122Sn</td>
<td>14.06</td>
<td>12.84</td>
<td>12.84</td>
<td>12.84</td>
<td>12.84</td>
<td>12.84</td>
<td>12.84</td>
<td>12.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174Yb</td>
<td>28.16</td>
<td>18.67</td>
<td>18.67</td>
<td>18.67</td>
<td>18.67</td>
<td>18.67</td>
<td>18.67</td>
<td>18.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181Ta</td>
<td>29.44</td>
<td>18.50</td>
<td>18.50</td>
<td>18.50</td>
<td>18.50</td>
<td>18.50</td>
<td>18.50</td>
<td>18.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197Au</td>
<td>31.68</td>
<td>17.97</td>
<td>17.97</td>
<td>17.97</td>
<td>17.97</td>
<td>17.97</td>
<td>17.97</td>
<td>17.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208Pb</td>
<td>32.33</td>
<td>17.48</td>
<td>17.48</td>
<td>17.48</td>
<td>17.48</td>
<td>17.48</td>
<td>17.48</td>
<td>17.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209Bi</td>
<td>32.96</td>
<td>17.49</td>
<td>17.49</td>
<td>17.49</td>
<td>17.49</td>
<td>17.49</td>
<td>17.49</td>
<td>17.49</td>
</tr>
</tbody>
</table>

TABLE I: Photo saion cross section and three largest photonuclear reaction cross sections in (pxnyp) decay channels. The num ber of evaporated neutrons x and protons y are provided as (x,y) adjacent to each reaction cross sections.
The continuous lines represent the average neutron multiplicities from the present calculation for discrete isotopes 118Sn, 140Ce, 181Ta and 208Pb whereas the data points are those corresponding to the measured values [15] for natural targets of Sn, Ce, Ta and Pb.

The agreement of the present theoretical calculations according to the QD model with the experimental data for photoabsorption cross sections from the present calculation for discrete isotopes 118Sn, 140Ce, 181Ta and 208Pb whereas the data points are those corresponding to the measured values [15] for natural targets of Sn, Ce, Ta and Pb.

In Fig.1 the plots of cross sections of evaporation residues resulting from (γn) and (γnp) type of reactions for 64Zn for $E = 30$ MeV and 40 MeV are shown as typical cases. In Fig.2 the plots of total photoabsorption cross sections for Sn, Ce, Ta and Pb from the present calculations whereas the points with error bars are the experimental data [15]. Fig.3 shows the plots of average neutron multiplicities $\langle \gamma \rangle$ for 118Sn, 140Ce, 181Ta and 208Pb whereas the data points are those corresponding to the measured values [15] for natural targets of Sn, Ce, Ta and Pb.

The agreement of the present theoretical calculations according to the QD model with the experimental data for photoabsorption cross sections for Sn, Ce, Ta and Pb from the present calculations whereas the points with error bars are the experimental data [15]. Considering the fact that the present calculations for photoabsorption cross sections are for discrete isotopes 118Sn, 140Ce, 181Ta and 208Pb whereas the data points are those corresponding to the measured values [15] for natural targets of Sn, Ce, Ta and Pb.
In summary, the cross sections for the fission and the evaporation residues are calculated for photon-induced nuclear reactions at intermediate energies. Monte-Carlo calculations for the evaporation-fission competition are performed assuming 40,000 incident photons for each calculation which provides a reasonably good statistics for computationally stable results. Present calculations provide good estimates of cross sections for the reaction channels (x;xn) and (x;xnyp) for nuclei 51V, 62Zn, 118Sn, 140Ce, 154Sm, 174Yb, 181Ta, 197Au, 204Pb and 209Bi at $E = 30$ M eV to 140 M eV. No fission event has been observed below 40 M eV for these nuclei except few events in cases of 209Bi and 208Pb. Additional experiments may be necessary for more precise measurements of neutron multiplicities.