The Gluonic Operator Matrix Elements at $O(\frac{2}{s})$ for DIS Heavy Flavor Production

Isabella Bierenbaum, Johannes Blumlein and Sebastian Klein

Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany

Abstract

We calculate the $O(\frac{2}{s})$ gluonic operator matrix elements for the twist(2) operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region $Q^2 > m^2$, up to the linear terms in the dimensional parameter ϵ, ($D = 4+\epsilon$). These quantities are required for the description of parton distribution functions in the variable flavor number scheme (VFNS). The $O(\frac{2}{s})$ terms contribute at the level of the $O(\frac{3}{s})$ corrections through renormalization. We also comment on additional terms, which have to be considered in the fixed (FFNV) and variable flavor number scheme, adopting the MS scheme for the running coupling constant.

1Present address: Instituto de Física Corpuscular, CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia, Spain.
1 Introduction

Both unpolarized and polarized deep-inelastic structure functions receive contributions from light partons and heavy quarks. In the unpolarized case, the charm quark contribution may amount to 25-35% in the small x region, [1]. Since the scaling violations in case of the heavy quark contributions are larger significantly from those of the light partons in a rather wide range starting from lower values of Q^2, a detailed description of the heavy quark contributions is required. In the FFNS the corresponding Wilson coefficients were calculated to next-to-leading order (NLO) in a semi-analytic approach in [2]. Consistent QCD analyzes to 3-loop order require the description of both the light and the heavy quark contributions at this level to allow for an accurate measurement of the QCD scale α_{QCD} in singlet analyses [3] and the measurement of the parton distribution functions. The calculation of the 3-loop heavy quark Wilson coefficients in the whole Q^2 region is currently not within reach. However, as noticed in [6], a very precise description of the heavy quark Wilson coefficients contributing to the structure function $F_2(x,Q^2)$ is obtained for $Q^2 > 10 m_0^2$, disregarding the power corrections / $(m_0^2 \sim Q^2)^k k \sim 1$, which covers the main region for deep-inelastic physics at HERA. In this case, the Wilson coefficient are even obtained in analytic form. The heavy quark Wilson coefficients factorize into universal massive operator matrix elements (OMEs) $A_{ij}(m_0^2)$ and the light quark Wilson coefficients $c_j(Q^2 = 2)$ [7] in this limit,

$$H_i(Q^2 = m_0^2 = 2 ;z) = A_{ij}(m_0^2 = 2 ;z) \quad d(Q^2 = 2 ;z) ; \ i = 2;L : \ (1)$$

Here, d denotes the factorization scale and z the longitudinal momentum fraction of the parton in the hadron.

In the strict sense, only massless particles can be interpreted as partons in hard scattering processes since the lifetime of these quantum fluctuations of the hadronic background $\mu_{\text{had}} / \mu_{\text{int}} = (k_t^2 + m_0^2)$ must be large against the interaction time $\mu_{\text{int}} / \mu_{\text{had}} = Q^2$ in the in-nucleon frame, [8]. In the massive case, μ_{had} is necessarily finite and there exists a larger scale Q_0^2 below which any partonic description fails. From this it follows, that the heavy quark effects are genuinely described by the process dependent Wilson coefficients. Since parton-densities are process independent quantities, only those densities out of the Wilson coefficients can be used to deduce them for heavy quarks at all. Clearly this is possible in the region close to threshold but requires $Q^2 = m_0^2 = r - 1$, with $r > 10$ in case of $F_2(x,Q^2)$. For $F_L(x,Q^2)$ the corresponding ratio even turns out to be $r > 800$, [6,9,10]. Heavy quark parton distributions can then be constructed for $Q^2 = 2 m_0^2$. Their use in observables is restricted to a region in which the power corrections can be safely neglected. This range may strongly depend on the observable considered as the example ples of F_2 and F_L show.

For processes in the high p_t region at the LHC, in which the above conditions are fulfilled, one may use heavy quark parton distributions by proceeding as follows. In the region $Q^2 > 10 m_0^2$ the heavy quark contributions to the $F_2(x;Q^2)$ (world data) are well described by the asymptotic representation in the FFNS. For large scales one can then form a variable quark representation including one heavy quark distribution, [11]. This process can be iterated towards the next heavier quark, provided the universal representation holds and all power corrections can be safely neglected. One has to take special care of the fact, that the matching scale in the coupling

\footnote{For a fast implementation of these corrections in Mellin space see [3].

\footnote{For a determination of α_{QCD} effectively analyzing the scaling violations of the non-singlet world data to $O(a_s^4), (a_s = 4 \Lambda)$, cf. Ref. [5].}
constant, at which the transition $N_f + 1$ is to be performed, often differs rather significantly from m_0, cf. [12].

For the procedure outlined above, besides the quarkonic heavy flavor OMEs [6, 13], the gluonic matrix elements are required. These have been calculated to $O(a_s^2)$ in Ref. [11]. Here we verify this calculation and extend it to the terms of $O(a_s^n)$, which enter the $O(a_s^3)$ matrix elements through renormalization. The corresponding contributions for the quarkonic matrix elements were calculated in [14].

The paper is organized as follows. In Section 2 we summarize the relations needed to describe heavy flavor parton densities out of parton densities of only light flavors in terms of massive operator matrix elements. Furthermore, we point out terms to be added to the FFNS description in the \overline{MS} scheme compared to [2, 6], which are of numerical relevance, cf. [16]. We also comment on the question of the effective number of flavors considering the renormalization of the process. In Section 3 the massive gluonic 2-loop operator matrix elements are presented and Section 4 contains the conclusions.

2 Heavy Flavor Parton Densities

In the asymptotic region $Q^2 > m_0^2$ one may define heavy flavor parton densities. This is done under the further assumption that for the other heavy flavors the masses m_{Q_i} form a hierarchy $m_{Q_1}^2 > m_{Q_2}^2 > \ldots$, allowing for one heavy quark of mass m_Q and N_f light quarks one obtains the following light and heavy-quark parton distribution functions in Mellin space, [11],

$$f_k(N_f + 1; \frac{2}{N}; ^\frac{2}{N}) = A_{Q(\bar{Q})}^{NS} N_f \left(\frac{2}{m_Q^2} \right) N_f \left(\frac{2}{m_Q^2} \right) \left(N_f + 1; ^\frac{2}{N} \right) + A_{Q(\bar{Q})}^{PS} N_f \left(\frac{2}{m_Q^2} \right) N_f \left(\frac{2}{m_Q^2} \right) \left(N_f + 1; ^\frac{2}{N} \right) G(N; ^\frac{2}{N}) \right).$$

For the first few values of the Mellin moment N the pure-singlet and non-singlet quarkonic OMEs were calculated to $O(a_s^2)$ in Refs. [15].
only be maintained within a certain approximation by legs stating expectation values. However, it is convenient to choose the relative factors such that the non-perturbative nucleon-state expectation values, \((N_f; 2; N) \) and \(G(N_f; 2; N) \), obey

\[
(N_f; 2; N) = \frac{f_k(N_f + 1; 2; N) + f_{\bar{k}}(N_f + 1; 2; N)}{N_f + 1}
\]

\[
G(N_f + 1; 2; N) = A_{N_f, 2}^0 \left(\sum_{m_2} \right) G(N_f; 2; N)
\]

Here,

\[
A_{1j}^{N_S(P_S)} = \hbar j \delta_{1j}^{N_S(P_S)}, \quad ji = \sum_{i=1}^{X} a_i^1 A_{1j}^{N_S(P_S)}
\]

are the operator matrix elements of the local twist(2 non-singlet (NS), pure singlet (PS) and singlet (S) operators \(\gamma_j^{N_S(P_S)} \)) between (shell partonic states \(ji; j = quark and

\[
A_{1j} = N_f A_{1j}^0
\]

Note that in the pure-singlet case the term \(1_j \) in (7) is absent. The normalization of the quarkonic and gluonic operators obtained in the light cone expansion can be chosen arbitrarily. It is, however, convenient to choose the relative factor such that the non-perturbative nucleon-state expectation values, \((N_f; 2; N) \) and \(G(N_f; 2; N) \), obey

\[
(N_f; 2; N) = \frac{f_k(N_f + 1; 2; N) + f_{\bar{k}}(N_f + 1; 2; N)}{N_f + 1}
\]

\[
G(N_f + 1; 2; N) = A_{N_f, 2}^0 \left(\sum_{m_2} \right) G(N_f; 2; N)
\]

due to 4-mom entum conservation. As a consequence, the OMEs fulfill the relations

\[
A_{N_f, 2}^{N_S} (N_f; N = 2) + A_{N_f, 2}^{PS} (N_f; N = 2) + A_{N_f, 2}^{PS} (N_f; N = 2) + A_{N_f, 2}^{S} (N_f; N = 2) = 1 \quad \text{(10)}
\]

\[
N_f A_{N_f, 2}^{N_S} (N_f; N = 2) + A_{N_f, 2}^{PS} (N_f; N = 2) + A_{N_f, 2}^{PS} (N_f; N = 2) = 1 \quad \text{(11)}
\]

The above scenario can be easily followed up to 2-loop order. Also, here diagrams contribute which carry two different heavy quark flavors. At this level, the heavy degree of freedom may be absorbed into the coupling constant and thus being decoupled temporarily. Beginning with 3-loop order the situation becomes more involved since there are graphs in which two different heavy quark flavors occur in nested topologies, i.e. the corresponding diagrams depend on the ratio \(m_c^2/m_b^2 \) yielding power corrections in \(\log \) There is no strong hierarchy between these two masses. The above picture, leading to heavy flavor parton distributions whenever \(Q^2 \sim m_b^2 \) will not hold anymore, since one cannot decide immediately in case of the two-flavor graphs, whether they belong to the c-flavor or the b-quark flavor. Hence, the partonic description can only be maintained within a certain approximation by assuming \(1 \).

At this point we would like to add some remarks directed to readers who are not acquainted with the details of the calculation of heavy flavor Wilson coefficients. In Refs. \([2,6]\) the calculation to \(O(a_s^2) \) was performed in a scheme in which the heavy quark insertion in the external gluon legs are absorbed into the strong coupling constant through the relation

\[
a_s = a_s(2) = 1 + a_s(2) a_s(2m_0^2)
\]

\[
a_s(2m_0^2) = S_m + \frac{2}{m_0^2} + \frac{2}{m_0^2} + \frac{m_0^2}{2} + 1 + \frac{2}{8} n^2 + \frac{3}{24} n^3 \quad \text{; (13)}
\]

5 In the present case, these are the terms \(T_f^2 \).
for N_f light and one heavyavor. Here a_s denotes the bare coupling constant $a_s = g_s^2/(16\pi^2)$,
\[\begin{align*}
0(N_f) &= (11-3)C_A (4-3)\pi T_F N_f; \quad 0_Q = (4-3)\pi T_F; \quad C_A = 3; \quad T_F = 1 \text{ for } SU(3) \text{.}
\end{align*} \]
The spherical factor $S_+ = \exp\left(\frac{4}{3} \right)(1 + \ln(4))$ is set to one in the \overline{MS} scheme. The bare coupling constant is thus given by

\[a_s = a_s(2) + a_s(2)b_0(N_f + 1) \quad \frac{g_s^2}{\alpha_s} \ln \frac{z}{m_0^2} + O(\alpha^2) \quad (14) \]

If the above scheme is applied, cf. [6], the renormalized OMEs do not contain terms \(T_\pi^2 \). However, to express a_s in the \overline{MS} scheme, only the first term in Eq. (14) has to be used, while the second remains as a prefactor of the $1(\text{loop contributions})$. Hence, as has been lined out in [11] later, the latter term appears e.g. in $A_{0 g}^{(2)}$ in front of $A_{0 g}^{(1)}$ in the case $Q^2 \gg m_0^2$. This is encountered as well in the present paper for $A_{0 g}^{(2)}$. Additionally, one has to do the same for the complete heavyavor Wilson coefficients, leading to the extra terms

\[a_s^2 = a_s^2(2) \quad \frac{g_s^2}{\alpha_s} \ln \frac{z}{m_0^2} \quad \frac{H_{F_1}^{(1)}}{Q^2} \quad (15) \]

in the scattering cross section in the \overline{MS} scheme. Here,

\[\begin{align*}
H_{F_2}^{(1)} &= \frac{m_0^2}{Q^2} \frac{g_s^2}{\alpha_s} \ln \frac{z}{m_0^2} \quad H_{F_2}^{(1)} \quad \frac{m_0^2}{Q^2} \quad z \quad (16)
\end{align*} \]

\[\begin{align*}
H_{F_L}^{(1)} &= \frac{m_0^2}{Q^2} \frac{g_s^2}{\alpha_s} \ln \frac{z}{m_0^2} \quad \frac{1}{1 + z} \quad \frac{m_0^2}{Q^2} \quad z \quad (17)
\end{align*} \]

\[\begin{align*}
&= 1 \quad \frac{4m_0^2}{Q^2} \quad z \quad (18)
\end{align*} \]

de note the leading order Wilson coefficients for massive quarks with the strong coupling constant taken out. In the same manner the contributions / T_π^2 in the non-$1PI$ contribution in $A_{0 q}$, Ref. [11], have to be removed, to avoid double counting if the asymptotical representation for the heavyavor Wilson coefficients is referred to. Since the lightavor Wilson coefficients are calculated in the \overline{MS} scheme, the same scheme has to be used for the massive OMEs. It should also be thoroughly used for renormalization, as the case for lightavors, to derive consistent results in QCD analyses of deep-inelastic scattering data.

In Refs. [2,6,11] another contribution, which belongs to the inclusive heavyavor contributions to the structure functions $F_{2,\ell}(x,Q^2)$, was not dealt with. To $O(a_s^2)$ these are heavy quark loop insertions on the initial state gluon line for the 1st order lightavor Wilson coefficient $C_{2(\ell),I}^{(1)}(x,Q^2)$. The corresponding contribution is

\[a_s^2(2) \quad \frac{g_s^2}{\alpha_s} \ln \frac{z}{m_0^2} \quad \frac{H_{F_{1,I}}^{(1)}}{Q^2} \quad (19) \]

\[^{6} \text{The running coupling constant including heavyavors in the MOM (scheme was presented in [17]) to } O(a_s^2) \text{ recently, showing Applequist} \text{-Carazzone [18] decoupling of the heavy quark contributions.} \]
see also [19]. We also note that virtual corrections to $A_{gq\rho}^{(2)HS}$, resp. $H^{(2)HS}_{gg\rho}$, and $A_{gq\rho}^{(2)}$ need to be accounted for. In the asymptotic case $Q^2 \gg m_2^2$, they lead to + -functions, which regularize the soft singularity, cf. [6,11,13,14]. Here we always considered only one heavy quark contribution.

The above expressions are derived for the FFNS. Charge and mass renormalization are performed multiplicatively for the observables. As evident from Eq. (13), $a_0 (2)$ has to be calculated for $N_f + 1$ avors upon passing the $N_f + 1$ st avor threshold. In the FFNS the structure functions contain separate contributions of the strictly light and heavy avors. The corresponding expressions for the Wilson coefficient contain anomalous dimensions which partly depend on N_f. In the case of the heavy avor contributions to $O (a_s^2)$, [6,11,13,14], (2{6), no closed light fermion lines contribute, however. The evolution of the three light avors proceeds with $N_f = 3$. Due to this, there is no arbitrariness in the choice of N_f as sometimes anticipated in the literature.

3 The Gluonic Operator Matrix Elements

The description of heavy quark parton densities, Eqs. (2{6), requires the massless operator matrix elements given by the partonic on-shell expectation values $\hat{p}^{(2)} \hat{p}_i; p = q; g$, of the operators, cf. [20],

$$O_{1;\cdots; n}^{(1)} = f \left[D_1 \cdots D_n \right] \text{ trace terms} \quad (20)$$

$$O_{1;\cdots; n}^{(2)} = 2f^2 S^{(2)} \left[F_1 D_2 \cdots D_n F_n \right] \text{ trace terms} \quad (21)$$

Here $D = \partial \bar{q}_a A^a$ denotes the covariant derivative, $a = 1, \cdots, 8$ are the generators of $SU (3)_c$, the quark fields, A^a the gluon fields, F the gluonic field strength tensors, Sp the color trace, and S the operator which symmetrizes the Lorentz indices. The corresponding quarkonic operator matrix elements were calculated in Refs. [6,13] to $O (a_s^2)$ and $O (a_s^3)$ in [14], respectively.

The renormalized gluonic operator matrix elements $A_{gq\rho}$ and $A_{gg\rho}$ to $O (a_s^2)$ are given by

$$A_{gq\rho} = a_s^2 A_{gq\rho}^{(2)} + Z_{gq}^{1/2}(N_f + 1) \quad Z_{gq}^{1/2}(N_f) \quad (22)$$

$$A_{gg\rho} = a_s A_{gg\rho}^{(1)} + Z_{gg}^{1/2}(N_f + 1) \quad Z_{gg}^{1/2}(N_f) \quad (23)$$

Here A_{ij}^{ρ} are the operator matrix elements after mass renormalization has been carried out. The Z factors $Z_{ij}(N_f)$ renormalize the ultraviolet singularities of the operators and $Z_{ij}(N_f)$ remain...
the collinear singularities, cf. [6,11,13,14]. The terms \(Z_{gg}^1 (N_f + 1) \) are equal to

\[
Z_{gg}^1 (N_f + 1) = a_g \frac{1}{n} (0) + a_g^2 \frac{1}{n} \quad + O (a_g^3)
\]

(24)

\[
Z_{gg}^1 (N_f + 1) = 1 + a_g \frac{1}{n} (0) + a_g^2 \frac{1}{n} \quad + O (a_g^3)
\]

(25)

In Eqs. (24,25), \((i,j)\) are the O \((a_s^2)\) anomalous dimensions and have to be taken as well as \(0\) at \(N_f + 1\) avors. We adopt the notation \((i,j) = (N_f + 1) (N_f)\) and define for later use

\[
f (\eta) = \frac{m_0^2}{2} \eta^{\frac{2}{n}} \exp \left[\frac{\eta^{\frac{2}{n}}}{k} \right]
\]

(26)

To the operator matrix element \(\hat{A}_{gg}^{(1)} \) necessarily only non-1PI diagram s contribute. The unrenormalized O M E \(\hat{A}_{gg}^{(2)} \) is given by\(^7\)

\[
\hat{A}_{gg}^{(2)} = \frac{m_0^2}{2} \eta^{\frac{2}{n}} \left[a_{gg}^{(2)} + a_{gg}^{(2)} \right] + O (\eta^2)
\]

(27)

The constant and \(O (\eta)\) contributions \(a_{gg}^{(2)}\) and \(a_{gg}^{(2)}\) read

\[
a_{gg}^{(2)} = T_F C_F \left[\begin{array}{c} 4 \frac{N^2 + N + 2}{3 (N - 1) N (N + 1)} \quad 2 S_2 + S_1^2 \quad 8) 8N^3 + 13N^2 + 27N + 16 \quad S_1 \\ + \frac{N}{2} \frac{9}{N - 1) N (N + 1)} \quad \end{array} \right]
\]

(28)

\[
a_{gg}^{(2)} = T_F C_F \left[\begin{array}{c} 2 \frac{N^2 + N + 2}{9 (N - 1) N (N + 1)} \quad 2 S_2 + S_1^2 \quad 4 \quad \frac{P_1 S_1}{27 (N - 1) N (N + 1)} \\ + \frac{2}{9} \frac{8N^3 + 13N^2 + 27N + 16}{(N - 1) N (N + 1)} \quad \end{array} \right]
\]

(29)

with

\[
P_1 = 43N^4 + 105N^3 + 224N^2 + 230N + 86
\]

(30)

\[
P_2 = 248N^5 + 863N^4 + 1927N^3 + 2582N^2 + 1820N + 496
\]

(31)

\(^7\)In the following we drop the overall factor \(1 + \eta\) in the operator matrix elements.
Here \(S_\alpha \) denote the (nested) harmonic sum \(s_\alpha \) [21],

\[
S_{b\alpha} (N) = \frac{\chi^k}{k^{b\alpha}} S_\alpha (k); \quad (32)
\]

The renormalized operator matrix element is given by

\[
A_{ggQ} = a^{(0)}_{gq} \left(\frac{8}{N + 1} \ln^2 \frac{m_0^2}{2} + \frac{\lambda^{(1)}_{gq}}{N^2} \ln \frac{m_0^2}{2} + a^{(2)}_{ggQ} \left(\frac{0}{gq} \right) \right) \left(\frac{2}{S_{k+1}} \right) + O \left(a^{(3)}_g \right); \quad (33)
\]

Here the anomalous dimensions \(^{(0)}_{gg} \) and \(^{(0)}_{gq} \) are

\[
^{(0)}_{gq} = 4C_F \frac{N^2 + N + 2}{(N + 1)N(N + 1)}; \quad (34)
\]

\[
^{(0)}_{gg} = 8C_A S_1 \left(2 \frac{N^2 + N + 1}{(N + 1)N(N + 1)(N + 2)} \right) 2_0(N_1); \quad (35)
\]

\[
\lambda^{(1)}_{gq} = C_F T_F \left(\frac{32}{3} \frac{N^2 + N + 2}{(N + 1)N(N + 1)} S_1 + \frac{32}{9} \frac{8N^3 + 13N^2 + 27N + 16}{(N + 1)(N + 1)} \right); \quad (36)
\]

\[
\lambda^{(1)}_{gg} = 8C_F T_F \left(4 \frac{1}{3N} + 16 \frac{6}{N^2} + 4 \frac{8}{N^3} + 10 \frac{1}{(N + 1)^2} + \frac{4}{3N + 2} \right)
\]

\[
+ \frac{16}{3} C_A T_F \left(2 + \frac{23}{3N} \right) \left(\frac{19}{3N} \right) \left(\frac{2}{3} \right) \left(\frac{23}{3N + 2} \right) \left(\frac{10}{3S_1} \right); \quad (37)
\]

\[
\lambda^{(0)}_{gg} = (8=3)T_F. \quad (38)
\]

A closer look at Eqs. (33, 40) reveals, that the terms \(a^{(2)}_{ggQ} \) cancel. The coefficients of the un-renormalized OME \(A_{ggQ} \) are given by

\[
A_{ggQ}^{(1)} = \frac{2}{N} f^{(n)}; \quad (39)
\]

\[
A_{ggQ}^{(2)} = \frac{m_0^2}{2} \left(\frac{1}{n^2} \right) ^{(0)}_{gg} + 2 \frac{\lambda^{(0)}_{gg}}{gq} + 2 \frac{\lambda^{(0)}_{gg}}{gq} + \frac{\lambda^{(1)}_{gg}}{gq} + a^{(2)}_{ggQ} + a^{(2)}_{ggQ} + \frac{a^{(2)}_{ggQ}}{n^2} + O \left(\lambda^{(0)}_{gg} \right) ; \quad (40)
\]

The constant and \(O \left(\lambda^{(0)}_{gg} \right) \) contributions \(a^{(2)}_{ggQ} \) and \(a^{(2)}_{ggQ} \) are

\[
a^{(2)}_{ggQ} = T_F C_A \left(\frac{8}{3} \frac{26N + 47}{27(N + 1)} \right) + \frac{2P_3}{27(N + 1)N^3(N + 1)^3(N + 2)} + \frac{4(N^2 + N + 2)^2}{(N + 1)N^2(N + 1)^2(N + 2)} \left(\frac{P_4}{N(N + 1)^4(N + 1)^2(N + 2)} \right); \quad (41)
\]
\(\tilde{a}^{(2)}_{gg, Q} = T_F C_A \left(\frac{8}{9} s_1 + \frac{20}{9} s_1 + \frac{16(N^2 + N + 1)}{9N(N + 1)(N + 2)} \frac{S_1}{3(N + 1)} \right) \)

\[+ \frac{4P_{2, 2}}{9(N - 1)N^2(N + 1)^2(N + 2)} \]

\[+ \frac{328N^4 + 256N^3}{81(N - 1)N(N + 1)} \frac{S_1}{S_1} \]

\[+ \frac{28N^2 + 29N + 170}{81(N - 1)N^4(N + 1)^2(N + 2)} \]

\[+ \frac{4N}{3(N - 1)N^5(N + 1)^2(N + 2)} \]

\[; \]

\[\left(\begin{array}{c} \end{array} \right) \]

\[+ T_F C_F \left(\frac{4(N^2 + N + 2)^2}{3(N - 1)N^2(N + 1)^2(N + 2)} \right) \]

\[+ \frac{P_{7, 2}}{(N - 1)N^3(N + 1)^2(N + 2)} \]

\[+ \frac{P_8}{4(N - 1)N^5(N + 1)^2(N + 2)} \]

where

\[\begin{align*}
P_3 &= 15N^8 + 60N^7 + 517N^6 + 1470N^5 + 2135N^4 + 1794N^3 + 722N^2 + 24N + 72 ; \\
P_4 &= 15N^{10} + 75N^9 + 112N^8 + 14N^7 + 61N^6 + 107N^5 + 170N^4 + 36N^3 \\
P_5 &= 3N^6 + 29N^5 + 41N^4 + 28N + 6 ; \\
P_6 &= 3N^10 + 15N^9 + 3316N^8 + 12778N^7 + 22951N^6 + 238156N^5 + 14212N^4 + 3556N^3 \\
P_7 &= N^8 + 4N^7 + 8N^6 + 6N^5 + 3N^4 + 22N^3 + 10N^2 + 8N + 8 ; \\
P_8 &= 31N^{12} + 186N^{11} + 438N^{10} + 123N^8 + 1170N^7 + 1527N^6 + 654N^5 \\
&+ 88N^4 + 136N^2 + 96N + 32 ; \\
\end{align*} \]

The renormalized operator matrix element \(A_{gg, Q} \) reads

\[A_{gg, Q} = a_3 \left(\begin{array}{c} a_{3}T_F \ln \frac{m^2}{2} + \frac{1}{8} \sum_{0, 0}^{0, 0} a_{gg, Q} + \frac{1}{2} \sum_{0, 0}^{0, 0} a_{gg, Q} + \frac{1}{2} \sum_{0, 0}^{0, 0} a_{gg, Q} \right) \]

\[+ \frac{h}{2} \sum_{0, 0}^{0, 0} a_{gg, Q} + \frac{1}{2} \sum_{0, 0}^{0, 0} a_{gg, Q} + \frac{1}{2} \sum_{0, 0}^{0, 0} a_{gg, Q} + O(a_3^3) ; \]

where we agree with the results for \(a_{gg, Q} \) and \(a_{gg, Q}^{(2)} \) given in [11], which we presented in (28,40). The new terms \(\tilde{a}_{gg, Q}^{(2)} \) and \(\tilde{a}_{gg, Q}^{(2)} \) (29, 41), contribute to all OMEs \(A_{i, j}^{(3)} \) through renormalization. With respect to the mathematical structure, \(a_{gg, Q}^{(2)} \) and \(a_{gg, Q}^{(2)} \) (28,40,29,41), belong to the class being observed for two-loop corrections before, [22]. In the present case even single hadronic sum contributes. We checked our results for the moment \(N = 2, \ldots, 8 \) using the code MATAD, [23]. An additional check is provided by the sum rules in Eqs. (10,11), which are fulfilled by the renormalized OMEs presented here and in Refs. [6,11,13]. Moreover, we observe that these rules are obeyed on the unrenormalized level as well, even up to O ("), [14].

To describe the evolution of the parton distributions, Eqs. (2,6), the OMEs (33,48) have to
be supplemented by the corresponding 1PR terms

\begin{align}
A_{Qg}^{(2)} &= A_{Qg}^{(2)} + a_s^2 \frac{4}{6} T_F \frac{N^2 + N + 2}{N(N + 1)(N + 2)} \ln^2 + \frac{2}{m_0^2} \\
A_{ggQ}^{(2)} &= A_{ggQ}^{(2)} + a_s^2 \frac{4}{6} \ln^2 \frac{2}{m_0^2}
\end{align}

Eqs. (49,50) agree with the results presented in Ref. [11]. In applying these parton densities in other hard scattering processes this modification also affects part of the massless hard scattering cross sections there, as outlined above.

4 Conclusions

We calculated the massive gluonic operator matrix elements A_{Qg} and A_{ggQ}, being required in the description of heavy flavor parton densities at scales sufficiently above threshold, to $O(\alpha_s^n)$. We confirmed previous results given in [11] for the constant terms and obtained newly the $O(\alpha_s^n)$ terms which enter the 3-loop corrections to A_{ij} via renormalization. We remind of details of the charge renormalization and clarified that additional terms at $O(\alpha_s^n)$ are to be included in the data analysis in the FFNS and VFNS using the MS scheme.

Acknowledgments. We would like to thank S. Alekhin and E. Laenen for useful discussions. This work was supported in part by DFG Sonderforschungsbereich Transregio 9, Computational Theoretische Teilchenphysik, Studienstiftung des Deutschen Volkes, the European Commission MRTN HEPTOOLS under Contract No. MRTN-CT-2006-035505, the Ministerio de Ciencia e Innovacion under Grant No. FPA 2007-60323-C02-01, CPAN (Grant No. CSD 2007-00042), the Generalitat Valenciana under Grant No. PROMETEO/2008/069, and by the European Commission MRTN FLAVIA net under Contract No. MRTN-CT-2006-035482.
References

