THE ROLE OF DIFFUSIVE SHOCK ACCELERATION ON NON-EQUILIBRIUM IONIZATION IN SUPERNOVA REMNANTS

Daniel J. Patnaude1, Donald C. Ellison2, & Patrick Slane3

1Sm litheram Astrophysical Observatory, Cambridge, MA 02138
2Physics Department, N.C. State University, Box 8202, Raleigh, NC 27695; don_ellison@ncsu.edu

\textbf{ABSTRACT}

We present results of semi-analytic calculations which show clear evidence for changes in the non-equilibrium ionization behind a supernova remnant forward shock undergoing e-cient di+usive shock acceleration (DSA). The e-cient acceleration of particles (i.e., cosmic rays) lowers the shock temperature and raises the density of the shocked gas, thus altering the ionization state of the plasma in comparison to the test particle approximation where cosmic rays gain an insignificant fraction of the shock energy. The differences between the test particle and e-cient acceleration cases are substantial and occur for both slow and fast temperature equilibration rates: in cases of higher acceleration e-ciency, particular ion states are more populated at lower electron temperature. We also present results which show that, in the e-cient shock acceleration case, higher ionization fractions are reached noticeably closer to the shock front than in the test-particle case, clearly indicating that DSA may enhance the alX X-ray production. We attribute this to the higher postshock densities which lead to faster electron temperature equilibration and higher ionization rates. These spatial differences should be resolvable with current and future X-ray missions, and can be used as diagnostics in estimating the acceleration e-ciency in cosmic ray moded shocks.

\textbf{Subject headings:} cosmic rays \{ thermalem ionisation: ISM \} shock waves \{ supernova remnants \} X-rays: ISM

1. INTRODUCTION

In young supernova remnant (SNR) shocks, the acceleration of cosmic rays leads to a softening of the equation of state in the shocked plasma. This comes about because the di+usive shock acceleration (DSA) process turns some non-relativistic particles into relativistic ones and because some of the highest energy relativistic particles escape from the shock. Both of these effects lead to lower post-shock plasma temperatures as well as higher post-shock densities (e.g., Jones & Ellison 1999; Berezhko & Ellison 1999). The ionization state of shocked gas at a particular time is dependent upon both the gas density and the electron temperature. In light of this, DSA should leave its imprint on the ionization structure of the shocked gas. Toward this end, we present what we believe to be the first self-consistent model for SNR evolution which includes the hydrodynamics, the effects of electron shock acceleration, and a full treatment of the non-equilibrium ionization balance at the forward shock.

A number of young SNRs show both nonthermal and thermal emission in the region beyond the forward shock, including SN 10061 Vink et al. 2003, Bamba et al. 2003, Tycho2 Hwang et al. 2002, Cassam-Chena et al. 2007, and K eppler2 Reynolds et al. 2007. The thermal emission arises when the forward shock sweeps up the circumstellar medium (CSM) and heats it to X-ray emission temperatures. As pointed out in Ellison et al. (2007), the thermal emission is often considerably fainter than the nonthermal emission, but there are certain exceptions where the thermal emission is as bright or brighter than any nonthermal emission. Vink et al. 2004. In SNR RX J1713.7-3946, the lack of thermal X-ray emission is an important constraint on the ambient density and significantly impacts models for TeV emission (e.g., Slane et al. 1999; Ellison, Slane & Gaensler 2001; Aharonian et al. 2007; Katz & Waxman 2008).

If the di+usive shock acceleration process in young SNRs is as efficient as generally believed, with & 50% of the shock ram kinetic energy going into relativistic particles, nonlinear DSA will influence the SNR hydrodynamics and be important for non-equilibrium ionization (NEI) calculations (e.g., Decourchelle, Ellison & Baskill 2004; Ellison & Casam-Chena 2005). DCE07 took the first steps in self-consistently coupling nonlinear DSA with NEI by tracking the electron temperature (T\textsubscript{e}) and ionization age (\eta, w here \eta is the electron density and \tau is the time since the material was shocked) as a function of time in hydrodynamic simulations of SNRs where the forward shock was e-ciently producing cosmic rays (CRs) and, as a result, was substantially moded from test-particle results. They found that, while both T\textsubscript{e} and \eta did differ between the test-particle and CR moded cases, in the cases where DSA is highly e-cient, the synchrotron emission in the X-ray range is considerably stronger than the thermal alX ray spectrum, and any differences in the thermal alX rays as a result of CR moded cation are likely to be missed. In this paper, we extend the work of DCE07 by explicitly tracking the non-equilibrium ionization state in a CR moded shock. The lower shock temperature and higher density that result from e-cient DSA compone to shorten both the ionization equilibration and the ionization equilibration time scale, and we show that this can have a dramatic effect on the ionization structure between the forward shock (FS) and the contact discontinuity (CD). Athough we don’t calculate the thermal alX ray emission

1 Sm litheram Astrophysical Observatory, Cambridge, MA 02138
2 Physics Department, N.C. State University, Box 8202, Raleigh, NC 27695; don_ellison@ncsu.edu
here, the cases we study show that e cient DSA can increase the ionization fraction of inportant elem ents and possibly enhance them a1X-ray em ission.

In x 2, we outline the changes to our m od el rst presented in DCE07 and discuss several caveats to our approach. In x 3, we present our exam ples and discuss the quantit ativ e and qualitative e cts of e cient DSA on the ionization state and SNR structure. We also show how these e cts m ight m anifest them selves in current and future X-ray observations. In x 4, we summarize our results and outline our future enhancements to this m od el.

2. CR-HYDRO + NEIMODEL

Our spherically symmetric m od el uses the semi-analytic DSA calculation developed by Amato & Bisai (2005) and Bisai et al. (2005) and is similar to that used in DCE07, except that we now calculate the non-equilibrium ionization explicitly at every time step using plasma param eters that are continually updated as the SNR evolves. In DCE07, the NEI was calculated at the end of the simulation using average plasma param eters. We refer the reader to DCE07 for all details of the CR-hydro simulation apart for those discussed below detailing our dynamic NEI generalization.

The DSA m od el used here differs from that described in Ellison et al. (2007), Ellison & Cassam-Chena (2003), and previous papers, in two important ways. First, we replace the \(\left\{ \text{he effec tive gam m a} \right\} \) , approximation with a more realistic m od el of the e ect escaping particles have on the shock dynamics. We now explicitly remove from the shocked plasma the energy that escaping particles carry away from the forward shock. The ratio of spec c heat ratios of the shocked gas used in the simulations, \(x_k \), is determined directly from the particle distribution function including the correct \(x_k \) of relativistic and non-relativistic particles. While the old e efective gam m a had the range \(1 < x < 5,3 \), the ratio of spec c heat ratios \(x_k \) is constrained to lie between 4/3 and 5/3. These changes in the way escaping particles are treated, and is calculated, become important for later stages of the SNR evolution, but do not produce signi cant changes in times as short as 1000 yr. The results reported in Ellison et al. (2007) and others m odi ed signi cantly by these changes.

The second dierence is that instead of spec ing ying a xed injection param eters, \(n_j \) (this is in equation (25) in Bisai et al. (2009), which then detem ines the acceleration e ciency, \(D_\alpha \), and then detem ines \(n_j \) ac cordingly. This change m akes the param eterization of the acceleration e ciency m ore transparent but does not change the basic approxim ation that is m ade.

The semi-analytic DSA m od el we use does not calculate the acceleration e ciency self-consistently based upon the Mach number, the available acceleration time, and other relevant shock param eters; rather we param etize the e ciency by \(n_j \), and the m od el then detem ines the shock structure self-consistently. Fur thermore, the DSA m od el assumes that the th em al particles have a \(\text{M axwe ll-Boltz m ann } \) distribution with a superthermal tail. The actual shape of the quasi-thermal distribution, and the shape at the point where the superthermal tail joins it, are approximated since the semi-analytic calculation only self-consistently describes par-

\[
\frac{1}{n_e} \frac{D f(X)}{D t} = C \left(X^{i-1} ; T_e \right) E(X^{i-1}) + \left(X^{i+1} ; T_e \right) E(X^{i+1})
\]

Here, \(f(X) \) is the fraction of elem ent \(X \) in ion stage \(X^+ \) and \(C(X^{i-1}) \) and \(C(X^{i+1}) \) are the ionization and recombination rates out of and into \(X^+ \), respectively.

We calculate the electron tem perature by assum ing that the electrons are heated by Coulomb collisions with protons and helium (Spritzer 1965). We adopt this simple prescription, which gives a lower limit to the equilibrium tem perature, knowing that the heating of electrons may, in fact, be far more complicated. For instance, there is reason to believe that collisionless waves-impact particles with the magnetic turbulence will be in portant (e.g., Lam ind 2001), and recent work interpreting hydrogen line widths suggests that the electron-to-proton tem perature ratio behind son e SNR blast waves depends m ainly on the shock speed, a result implying a heating process substantially di erent from Coulomb collisions (e.g., Ghavam Ian et al. 2003, S kow skiet al. 2008). However, there remain large uncertainties in connecting the measured line widths to the electron-to-proton tem perature ratio (see Heng & Sunyaev 2008), and until particle-in-cell (PIC) sim ulations are able to m od el non-relativistic, electron-proton shocks with param eters typical of SNR s, the plasma physics of electron heating will remain uncertain (see Van der M ick, Bykov & Ellison 2008, for a discussion of the limitations of PIC sim ulations in this regard).

In order to m od el some of the complexity of electron heating, we scale the Coulomb equilibrium time w ith a param et er, \(t_{eq} \), de ned in Eq. (3) below.

At the start of the simulation, we assum e that the unshocked electrons and ions are in equilibrium at a tem perature \(T_0 = 10^4 \text{K} \). We also assum e that unshocked H and He are both 10% singly ionized and all heavier elem ents are initially neutral. W hile we note that this is not the precise equilibrium ionization state for \(10^4 \text{K} \), we emphasize that none of our results depend in any signi cant way on the ionization state of the unshocked m aterial as long as it is not fully neutral. In all of the results shown here we x the helium num ber density at 10% of the proton num ber density, \(n_e/p_0 \).

At each time step, we track the ionistic state \(X^+ \) w ithin each spherically symmetric xed elem ent by solving the
tim e-dependent ionization equations for each abundant element (H, He, C, N, O, Ne, Mg, Si, Ar, Ca, Fe, and Ni). We solve the coupled set of equations with atomic data extracted from Raymond & Sm0 (1973), as presented in Ge et al. (1988) and updated by Edgar (2003).

In Figure 1 we show an example of the time evolution of the ionization fraction, f(X), of high ionization states of oxygen (O{6+}, O{7+}, and O{8+}) in a mass shell that is crossed by the forward shock 100 yr after the explosion. For this example, as in all we show in this paper, we have used parameters typical of Type Ia supernovae, i.e., the kinetic energy in ejecta from the supernova explosion \(E_{\text{SN}} = 10^{51} \) erg, the mass of the ejecta \(M_{\text{ej}} = 1.4M_{\odot} \), and the density of the ejecta follows an exponential density profile as generally assumed for Type Ia supernovae (Dwarkadas 2000), and we assume the supernova explodes in a circumstellar medium (CSM) that is uniform with proton number density \(n_{p,0} \) and magnetic field strength \(B_{0} \). In all of the models shown here, we take \(B_{0} = 15 \) G. The figure shows that the density and proton temperature in the shell are dropping with time as the electron temperature increases due to Coulomb collisions. After 1000 yr, the material is close to ionization equilibrium for these ions.

Figure 1 also compares results for test-particle (TP) and e cient DSA. In all of the examples in this paper, we do not TP acceleration as being 1% e cient, i.e., 1% of the ram kinetic energy of the forward shock is placed into superthermal particles. For all of our e cient acceleration cases, we assume 75% of the shock ram kinetic energy is placed into superthermal particles, i.e., \(D_{\text{SA}} = 75 \). Figure 1 shows that e cient DSA produces a higher postshock density and lower postshock temperature, as expected. What is also clear is that the high ionization states of oxygen become populated sooner in the DSA = 75% case. This implies that, instead of suppressing them all by emission as has been suggested (e.g., Drury et al. 2003; Orlando, Amato & Basil 2003), e cient DSA can possibly enhance it.

We make the following approximations in the NEI calculation, noting that these are in addition to approximations made in the underlying CR-hydro model (as described in Ellison et al. 2007, and references therein):

We assume that only electrons from the thermal population contribute to the non-equilibrium ionization. In non-linear DSA, the energetic population emerges smoothly from the thermal population (a nice example from a relativistic PIC simulation is given in Spitzovksy 2008) and superthermal particles may contribute to ionization (see Porquet et al. 2007), for a test-particle calculation involving a Maxwell-Boltzmann distribution with nonthermal tails. As we discussed above, superthermal particles are expected to contribute to the ionization at some level. However, the signiﬁcant effect of the nonthermal ionization, in shock undergoing e cient particle acceleration, has not yet been determined and remains an area of active work. For the purposes of this work, we assume any nonthermal contribution is small.

We only model the interaction region between the forward shock and the contact discontinuity where we assume cosmic elemental abundances. One reason for emphasizing the forward shock is that it is not certain that signiﬁcant CR production occurs at the reverse shock in SNRs (e.g., E llenon, Decourchelle & Ballet 2003).

We only consider young SNRs and do not include the effects of radiative cooling. In the high-density limit, radiative losses could be significant and the cooling timescale could be comparable to other dynamical time-scales. We will investigate these effects in a subsequent paper.

3. Results

In the following examples, we investigate the effects and acceleration e ciency, DSA, and the CSM proton density, \(n_{p,0} \), has on the non-equilibrium ionization states of some selected elements.

3.1. Ionization vs. Position

In Figure 1 we show the ionization fractions of O{6+} and O{7+} and Si{12+} and Si{13+} in the two top panels as a function of position behind the forward shock (FS). In all panels, test-particle results \((D_{\text{SA}} = 1\%) \) are shown with dashed curves and e cient DSA results \((D_{\text{SA}} = 75\%) \) are shown with solid curves. The electron density and electron and ion temperature profiles are shown in the bottom two panels.

As the two top panels clearly show, higher ionization fractions are attainable closer to the shock front in the ef cient DSA cases, as compared to the TP cases. For instance, in the e cient case, the fraction of O{7+} peaks at a distance \(R = R_{0} \) of 0.98 behind the shock, while in the TP case, this fraction peaks at \(R = R_{0}/2 \) of 0.97. We attribute the increased ionization fractions closer to the shock as a direct result of higher postshock densities in the e cient DSA case. Note that the curves extend from the forward shock back to the contact discontinuity, indicating that the region between the forward shock and contact discontinuity is considerably narrower in the e cient acceleration case. This e cient produces important morphological consequences (e.g., Decourchelle, Ellison & Ballet 2003; Wazen et al. 2003; Cassam-Chena et al. 2003).

In Figure 4, we show the same quantities as in Figure 1, except that \(n_{p,0} = 0.1 \) cm{3}. The lower CSM density results in lower shock densities and in less rapid collisional ionization behind the FS. For the ions we show, higher ionization states (i.e., O{7+} and Si{13+}) are considerably less populated downstream from the FS when \(n_{p,0} \) is small. The differences resulting from DSA are less pronounced but still evident, e.g., with \(n_{p,0} = 0.1 \) cm {3}, O{6+} peaks behind the shock at \(R = R_{0}/2 \) of 0.98 for the e cient case, and at \(0.96 \) in the test particle case.

4 We refer the reader to Ellison et al. (2003) for a full discussion of the additional parameters required for the CR-hydro model.

4 This value for \(B_{0} \) is somewhat higher than the typically assumed 3 G and reects the possibility that magnetic amplification (MFA) may be taking place. We emphasize, however, that we do not include MFA in the DSA calculation performed here. A large upstream magnetic field, \(B_{0} \), will reduce the e ects of e cient DSA, as described in Benevento & Ellison (1999).

5 In all results shown, we assume that shocked protons and other ions have the same temperature.
To emphasize the importance of the different spatial structures of ionization with \(n_{\text{p,post}} \) and \(n_{\text{p,pre}} \), we show, in Figure 4, a close-up view of the shock fronts in Figures 2 and 3. Here, we have plotted the ionization fractions as functions of angular distance behind the shock, assuming a distance of 1 kpc. In the high density case \((n_{\text{p,post}} = 1 \text{ cm}^{-3}; \text{top panel}) \), the fraction of \(O^6+ \) peaks right behind the shock at \(2^\circ \) downstream, while it peaks \(5^\circ \) behind the shock in the test particle case. In the lower density case \((n_{\text{p,post}} = 0.1 \text{ cm}^{-3}; \text{lower panel}) \), \(O^6+ \) peaks \(30^\circ \) behind the shock in the e client case, but peaks well beyond \(50^\circ \) behind the shock in the test particle case. Similar results are found for silicon. While these models are not scaled to match any particular Galactic SNR, we believe the angular separations shown here would be easily resolvable in current and future space-based X-ray observatories even when line-of-sight effects are taken into account. Thus, measuring the relative fraction of H-like, He-like, and even Li-like charge states would provide a useful diagnostic in studies of Galactic SNRs undergoing e client shock acceleration.

Another interesting feature seen in Figures 2 and 3 is that the electron tem perature is at an ost independent of \(n_{\text{p,post}} \) and only varies by a factor of 2 between the \(n_{\text{p,pre}} = 1 \text{ cm}^{-3} \) and \(n_{\text{p,post}} = 0.1 \text{ cm}^{-3} \) cases. This is in contrast to the ion tem peratures, where generally lower ion tem peratures occur in the higher density models, due to the lower shock Mach number, and where the large \(n_{\text{p,pre}} \) cases have considerably lower ion tem peratures than the test-particle cases. The fact that lower postshock tem peratures occur in e client DSA is well known (e.g., Biscari 2000). The electron tem perature is in unison by this and by the higher densities that occur with e client DSA. The higher postshock densities imply more core collisions between electrons and ions, and thus a more rapid tem perature equilibration. The higher electron tem perature combined with the higher postshock density leads to a more rapid ionization, and thus higher charge states closer to the forward shock.

3.2 Ionization vs Equilibrium Time Scale

As is clear from Figures 2, 3, and 4, the ionization fraction for high charge state ions can increase with acceleration e cienty. Since the electron tem perature is at an ost independent of \(n_{\text{p,post}} \) in these cases, we attribute this effect mainly to the higher postshock densities. However, we have assumed a particular model for tem perature equilibration between protons and electrons, namely that electrons start cold and equilibrate with the hot protons occurs only through Coulombic collisions where the equilibrium time scale is given by (Spitzer 1968, Eq. 5-31):

\[
t_{\text{eq}} = \frac{3 m_p m_e \varepsilon k_{\text{B}}^{3/2}}{8(2) 1.642 Z^2 Z_{\text{H}}^{2/3} \ln \frac{T_p}{T_e} - 1} \quad \text{cm}^3 \text{g}^{-1}
\]

Equation (2) in terms of \(n_{\text{ion}} \) and \(n_e \) is given by (Spitzer 1968). It’s important to note that Eq. (2) places strict limits on how low the electron to proton tem perature ratio can be behind the shock (see Hughes, Rakowski, & D Ice (2007)) if the equilibrium mechanism is important, such as plasma as a wave interaction. Equilibration will occur more rapidly. To investigate the e ects of core rapid tem perature equilibration, we de ne a parameter \(\theta_{\text{eq}} = 1 \), and use the equilibration time \(t_{\text{eq}}^0 \) in our calculations where,

\[
t_{\text{eq}} = \theta_{\text{eq}} \tau_{\text{eq}}
\]

In the results shown in Figures 2, 3, and 4, we have assumed \(\theta_{\text{eq}} = 1 \).

In Figure 5, we compare the ionization fraction of \(O^{6+} \) for DSA = 1% and DSA = 75% calculated with \(\theta_{\text{eq}} = 1 \) (black curves in all panels) and \(\theta_{\text{eq}} = 0.1 \) (red curves in all panels). For both values of DSA, \(f(O^{6+}) \) is larger immediately behind the shock for rapid equilibration (\(\theta_{\text{eq}} = 0.1 \)) but drops below the \(\theta_{\text{eq}} = 1 \) value further downstream as \(O^{6+} \) becomes populated. The tem perature plots in the bottom two panels show that the electrons and protons have come into equilibrium for a range of radii (i.e., 0.86 × R = R_{FS} = 0.98) when DSA = 75% and \(\theta_{\text{eq}} = 0.1 \), but remain far from equilibrium for \(\theta_{\text{eq}} = 1 \) regardless of DSA. The equilibration time scales the ionization structure for this particular ion, producing changes that are plausible in scale to those produced by e client DSA.

To quantify these e ects further, we look at a point 25% up between the contact discontinuity and FS, i.e., at \(R = R_{FS} \) and \(R = 0.89 \) for DSA = 75% and \(R = R_{FS} \) = 0.83 for DSA = 1% in Figure 6. At these locations, the electron to proton tem perature ratios are: \(\left(T_e/T_p\right)_{FS} = 0.1 \) and \(\left(T_e/T_p\right)_{FS} = 0.36 \), for \(\theta_{\text{eq}} = 1 \), and \(\left(T_e/T_p\right)_{FS} = 0.03 \) and \(\left(T_e/T_p\right)_{FS} = 1 \) for \(\theta_{\text{eq}} = 0.1 \), i.e., the ratios are about 3 times larger with rapid equilibration. At these m dipoint locations, the ionization fractions of \(O^{6+} \) range from \(f(O^{6+}) = 0.05 \) for \(\theta_{\text{eq}} = 1 \) and DSA = 75%, to \(f(O^{6+}) = 0.23 \) for \(\theta_{\text{eq}} = 0.1 \) and DSA = 1%, i.e., about a factor of 5.

3.3 Emission Measure vs. Acceleration Efficiency

As seen in Figures 2, 3, and 3, the plasma density is greatest immediately behind the shock where the electron tem perature is lowest. Since the rate for electron tem perature equilibration depends on the proton tem perature and density and both the tem perature and density depend on DSA, the NEL calculation would depend in a complicated fashion on the forward shock dynamics and the evolution of the interaction region between the CD and FS. Of course, the import ant property is the em ission the plasma produces and this can be characterized by the em ission measure (EM) and the di rectional em ission measure (DEM).

In Figure 7 we plot the em ission measure for individual ions, \(\text{EM} = N_X f(X^{1+}) n_{\text{p}} dV \), and in Figure 8 we plot ion di rectional em ission measure, \(\text{DEM} = N_X f(X^{1+}) n_{\text{p}} dV d(\ln T_e) \), where \(\text{EM} \) is the abundance of element \(X \) relative to hydrogen, \(f(X^{1+}) \) is the ionization fraction for the \(X^+ \) at a distance \(R \) behind the shock, and \(dV \) is the volume of the shell where \(\text{EM} \) or \(\text{DEM} \) is determined. The \(\text{EM} \) plotted in Figure 7 is a line-of-sight projection normalized to 1 cm$^{-2}$ surface area,
and the DEM is obtained by summing over the region between the CD and FS.

Figure 4 clearly shows that the emission for these ions peaks much closer to the FS and is considerably stronger with e cient DSA than in the TP case. Figure 4 shows that the peak emission for these two ions shifts down in temperature by a factor of 2 (1 keV) when e cient DSA occurs. These two e ects are quite signi cant for individual ions and should be observable. Nevertheless, the emission from a full set of ions needs to be calculated and the results folded through a detectors’ response before the signature of e cient DSA can be quantitatively determined.

4. Discussion and Conclusions

We have presented a calculation of non-equilibrium ionization in a hydrodynamic simulation of SNRs undergoing e cient DSA. While we have only explored a limited range of parameters in this paper, it’s clear that the production of CRs by the outer blast wave and the SNR evolution and structure enough to produce signi cant changes in the ionization of the shocked material between the forward shock and contact discontinuity. In particular, higher ionization states are reached at lower electron temperature (com pared to the test particle case) because of the increase in post-shock density due to the increased shock compression. The calculation of them all X-ray line emission requires the additional step of coupling the resultant ionization state vectors to a plasma emission code, which is in progress. Nevertheless, our results clearly show that taking DSA into account and dynamically calculating the NEI produces changes in the ionization fractions of important elements that should translate into noticeable changes in the interpretation of X-ray line emission observed from young SNRs.

Our main results are the following:

Com pared to the test-particle case, the increase in ionization that accompanies DSA in our examples suggests that e cient DSA will result in an increase in the overall thermal X-ray emission (see Figure 4). We note that an increase in thermal emission with increasing acceleration e ciency is evident in our earlier results which explored a slightly di erent param eter space (i.e., Figures 7 and 8, Ellison et al. 2003). The actual increase may depend importantly on other model parameters, such as the CSM density, and it is important to explore a more expanded parameter space to determine how broadly valid our results are. This work is in progress. However, regardless of whether or not e cient DSA increases the integrated thermal emission over the test-particle case, the e cient thermal emission is expected because ionization is not suppressed when e cient DSA occurs. As Figure 4 shows, electrons reach X-ray emitting temperatures well before they come into equilibrium with protons and nearly as rapidly with or without e cient DSA. This occurs even if only Coulomb equilibration is assumed. This is in contrast to recent claims (e.g., Miorino, Amato & Bas (2003; Dury et al. 2008) that very weak thermal X-ray emission might result from e cient shock acceleration.

Com pared to the test-particle case, ionization occurs more rapidly and, therefore, closer to the FS, with e cient acceleration (see Figures 4 and 5). The di erences in spatial structure should be large enough to observe and may be used as a discriminator for the level of CR modulation, if a particular ion state is coupled to other known properties, such as the dynamical and ambient conditions.

E cient DSA leads to more e cient Coulomb heating of electrons and faster equilibration with ions, relative to the test particle case. This results because the shocked plasma temperature is lower and the shocked density is higher when e cient DSA occurs. We showed, with a simple parameterization of the thermal equilibrium time, that the signature of e cient DSA on the ionization state remains apparent for equilibration more rapid than occurs with just Coulomb collisions.

Using the di erential emission measure, we showed that the maximum emission from a particular ion state occurs at a signi cantly lower electron temperature with e cient DSA. For the ions shown in Figure 4, the di erence in T_e for peak emission is on the order of 1 keV while the maximum DEM remains in close agreement. A di erence this large will have an important impact on the interpretation of them all-X-ray emission from young SNRs.

Currently, we do not treat radiative or slow shocks, but these regimes are easily explored. For instance in a radiative shock, the cooling time might be comparable to the energy loss time in a cosmic-ray modi ed shock. Increases in the density will enhance the cooling to the point where radiative losses might rival losses from e cient DSA (Wagner et al. 2003). We intend to explore this regime in a forthcoming paper.

While we only considered shocked CSM here, we will consider shocked ejecta in future work. In the ejecta, the electron density can be higher and the temperature may be lower but, more importantly, the abundance structure is far more complicated than for SNR and calculations of X-ray emission are intrinsically more di cult. Further, simple arguments based on the expansion of the ejecta material suggest that the magnetic field may be too low to support DSA by the reverse shock. Nevertheless, there has been speculation that particles are accelerated there (e.g., Cotthelf et al. 2001; Uchiyama & Aharonian 2004; Heinz & Vink 2008) and if DSA is e cient at the reverse shock, it will likely alter the ionization balance of the shocked ejecta as much as shown here for the shocked CSM.

Finally, while we have limited our examples here to SNRs expanding into a uniform medium typical of Type Ia supernovae, we emphasize that a wider parameter space should be explored, in terms of both the structure of the ambient medium (i.e., pre-SN winds) and the parameters which determine the cosmic-ray acceleration e ciency. These cases will be addressed in a follow-up paper.

We would like to thank Dick Edgar, John Raymond, and Cara Rakowski for several useful discussions on how...
to thoughtfully display and interpret ionization fractions. This work was partially supported through a Smithsonian Endowment Grant. D. J. P. and P. O. S. acknowledge support from NASA contract NAS8-39073 and D.C.E acknowledge support from NASA grants NNH 04Zs001N-LTSA and 06-ATF-P6-21.

REFERENCES

Amato, E. & Basi, P. 2005, M N R A S, 364, L76
Edgar, R. J. 2008, private communication
Katz, B. & Wam an, E. 2008, JCAP, 1, 18
Fig. 1. Time evolution of a spherically symmetric Lagrangian mass shell which is crossed by the forward shock at 100 yr. The top panel shows the evolution of high ionization states of oxygen, the middle panel shows the electron number density, and the bottom panel shows the electron and proton temperatures, assuming Coulomb equilibrium. In all panels, the solid curves correspond to a model with 75% DSA efficiency, while the dashed curves are for a TP model with DSA = 1%. The CSM proton number density for this example is \(n_p \rho = 1 \text{ cm}^{-3} \). Here, and in all other examples, the unshocked CSM temperature is \(T_0 = 10^4 \text{ K} \), and the unshocked magnetic field is \(B_0 = 15 \text{ G} \).
Fig. 2.1 Spatial profiles of H- and He-like oxygen and silicon, electron density, and temperature as a function of distance behind the forward shock. In the bottom panel, the curves labeled T_i are ion (or proton) temperatures and those T_e are electron temperatures. Here, and in figures 3-5 that follow, we show values from spherically symmetric shells as a function of R or R_FS, not line-of-sight projections. In all panels, solid curves correspond to models with 75% e ciency, while the dashed lines correspond to TP models. These models are for a CSM proton density of $n_p = 1 \text{ cm}^{-3}$ and are calculated at $t_{\text{SNR}} = 1000 \text{ yr}$. In the model with 75% e ciency, the forward shock velocity is 1800 km s^{-1}, while in the test particle model, it is 2200 km s^{-1} at $t_{\text{SNR}} = 1000 \text{ yr}$.
Fig. 3.1 Spatial profiles of oxygen and silicon ions, electron density, and temperature as a function of distance behind the forward shock. In all panels, solid curves correspond to models with 75% e- ciency, while the dashed lines correspond to T P models. These models are for a CSM proton density \(n_{p0} = 0.1 \text{ cm}^{-3} \) and are calculated at \(t_{SNR} = 1000 \text{ yr} \). In the model with 75% e- ciency, the forward shock velocity is \(3200 \text{ km s}^{-1} \), while in the test particle model, it is \(3600 \text{ km s}^{-1} \) at \(t_{SNR} = 1000 \text{ yr} \).
Fig. 4.1 Top: Ionization fraction as a function of distance behind the forward shock for O^{6+} and O^{7+} with $n_{H,0} = 1 \text{ cm}^{-3}$. Bottom: Ionization fractions of O^{6+} and O^{7+} with $n_{H,0} = 0.1 \text{ cm}^{-3}$. In both panels, the solid curves are for $D_{SA} = 75\%$ and the dashed curves are for $D_{SA} = 1\%$. The angular scale is determined assuming the SNR is at a distance of 1 kpc and the results are calculated at $t_{SNR} = 1000 \text{ yr}$.
Fig. 5. Ionization fraction and temperature calculated between the contact discontinuity and FS. All calculations are at $\tau_{BR} = 1000$ yr and assume $n_{p,0} = 1$ cm$^{-3}$. In all panels, black curves assume $f_{eq} = 1$ and red curves assume $f_{eq} = 0.1$. In the bottom two panels, the solid curves are the shocked electron temperature, T_e, and the dashed curves are the shocked proton temperature, T_p. As in Figures 4 and 6, the left end of each curve is at the position of the CD.
Fig. 6.1 Line-of-sight projection of the emission measure (EM) for O$^{7+}$ and Si$^{12+}$ as labeled. The solid curves are for $\epsilon_{DSA} = 75\%$ and the dashed curves are for $\epsilon_{DSA} = 1\%$. The angular distance, R, from the FS is determined assuming the SNR is at 1 kpc and the results are calculated at $t_{SNR} = 1000$ yr with $n_{p,0} = 1$ cm$^{-3}$ and $t_{eq} = 1$.
Fig. 7.1 Differential emission measure (DEM) vs. electron temperature for O7+ and Si12+ as labeled. The solid curves are for $\epsilon_{\text{DSA}} = 75\%$ and the dashed curves are for $\epsilon_{\text{DSA}} = 1\%$. The results are calculated at $t_{\text{SNR}} = 1000\text{ yr}$ with $n_{p,0} = 1\text{ cm}^{-3}$ and $t_{\text{eq}} = 1$.

Solid: $\epsilon_{\text{DSA}} = 75\%$
Dashed: $\epsilon_{\text{DSA}} = 1\%$