Precise Predictions for $W + 3$ Jet Production at Hadron Colliders

C. F. Bergera, Z. Bernb, L. J. Dixonc, F. Febres Corderob, D. Forded, T. G. lesiake, H. Itaf, D. A. Kosowerg and D. M. \\
aCenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA \\
bDepartment of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547, USA \\
cSLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA \\
dIstitut de Physique Théorique, CEA (Saclay, F-91191 Gif-sur-Yvette cedex, France \\
eDepartment of Physics, University of Durham, DH1 3LE, UK

We report on the first next-to-leading order QCD computation of $W + 3$-jet production in hadronic collisions including all partonic subprocesses. We compare the results with CDF data from the Tevatron, and nd excellent agreement. The renormalization and factorization scale dependence is reduced substantially compared to leading-order calculations. The required one-loop matrix elements are computed using on-shell methods, in plenent in a numecral program, BlackHat. We use the SHERPA package to generate the real-emission contributions and to integrate the various contributions over phase space. We use a leading-color (N_f) approximation for the virtual part, which we com in $W + 1$-jet production to be valid to within three percent. The present calculation demonstrates the utility of on-shell methods for computing next-to-leading-order corrections to processes important to physics analyses at the Large Hadron Collider.

PACS numbers: 12.38.-t, 12.38.Bx, 13.87.-e, 14.70.-f, 11.15.q, 11.15.Bt, 11.55.m
D-dimensional generalized unitarity within the OPP formalism was described in ref. [14]. Our numerical programs along similar lines are presented in refs. [14,15].

To speed up the evaluation of the virtual cross section, we make use of a leading-color (large-N_c) approximation for the nine parts of the one-loop amplitudes, keeping the exact color dependence in all other parts of the calculation. Such approximations have been known to be excellent for the four-jet rate in e+e− annihilation [20]. A similar approximation was used recently for an investigation of W+3-jet production [21], which, however, also omitted many partonic subprocesses. Our study retains all subprocesses. In addition, we keep all subleading-color terms in the real emission contributions. In the n virtual terms s of each subprocess we drop certain subleading-color contributions. "Finite" refers to the term in the Laurent expansion of the infrared-divergent one-loop amplitudes in

\[
\mathcal{C} = (4 \, \mathcal{D})^2,\text{after extracting a multiplicative factor of}
\]

\[
\text{\textit{Subleading-color}}\text{refers to the part of the ratio of the virtual term s to tree cross section that is suppressed by at least one power of either } 1 = N_c^2 \text{ or } 2 = N_c \text{ (virtual quark loops). } \text{W e m u l ti ply the surviving, leading-color term s in this ratio back by the tree cross section, with its full color dependence.}
\]

For this approximation, we need only the color-ordered (primitive) amplitudes in which the W boson is adjacent to the two external quarks forming the quark line to which it attaches. Representative Feynman diagram s for these primitive amplitudes are shown in g. Other primitive amplitudes have external gluons (or a gluon splitting to a QQ pair) attached between the W boson and the two above-mentioned external quarks; they only contribute [22] to the subleading-color terms that we drop. As discussed below, we have con fi rmed that for W+1;2-jet production this leading-color approximation is valid to within three percent, so we expect corrections to the W+3-jet cross sections from subleading-color terms also to be small.

In addition to the virtual connections to the cross section provided by BlackHat, the NLO result also requires the real-emission corrections to the LO process. The latter arise from tree-level amplitudes with one additional parton, either an additional gluon, or a quark–antiquark pair replacing a gluon. Infrared singularities develop when the extra parton comes into a gluon squared over unresolved phase-space regions. They cancel against singular terms in the virtual corrections, and against counterterm s associated with the evolution of parton distributions. We use the program AMEGIC++ [23] to implement these cancellations via the Catani-Seymour dipole subtraction method [24]. The SHERPA framework [23] incorporates AMEGIC++, making it easy to analyze the results and construct a wide variety of distributions. For other automated implementations of the dipole subtraction method, see refs. [23].

The CDF analysis [19] employs the JETCLU cone algorithm [25] with a cone radius \(R = \frac{1}{2} \). Subleading-color refers to the part of the ratio of the virtual term s to tree cross section that is suppressed by at least one power of either \(1 = N_c^2 \) or \(2 = N_c \) (virtual quark loops). W e m u l ti ply the surviving, leading-color term s in this ratio back by the tree cross section, with its full color dependence.

Both electron and positron final states are considered, and the following cuts are imposed: \(E_T^e > 20 \text{ GeV} \), \(j^e < 1.1, E_T^j > 30 \text{ GeV}, M_{jj}^e > 20 \text{ GeV}, \) and \(E_T^{\text{jet}} > 20 \text{ GeV} \). Here \(E_T^e \) is the transverse energy, \(E_T^j \) is the transverse energy, \(M_{jj}^e \) the transverse mass of the e pair and the pseudorapidity. Jets are ordered by \(E_T \), and are required to have \(j^e < 2 \). Total cross sections are quoted with a tighter jet cut, \(E_T^{\text{jet}} = 25 \text{ GeV} \). CDF also imposes a minimum \(R \) between the charged decay lepton and any jet; the exact value of this cut, however, is set by the acceptance corrections.

CDF compared [23] their measured \(W+n \)-jet cross sections to LO (matched to partons showers [31]) and the then-available NLO theoretical predictions. The LO calculations differ substantially from the data, especially at lower \(E_T \), and have large scale-dependence bands. In contrast, the NLO calculations for \(n=2 \) jets (using the MCFM code [31], with the V+4-parton one-loop matrix elements from ref. [24]) show much better agreement, and

<table>
<thead>
<tr>
<th>Number of Jets</th>
<th>CDF</th>
<th>LC NLO</th>
<th>NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>535</td>
<td>583 ± 9</td>
<td>578 ± 9</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
<td>781 ± 9</td>
<td>782 ± 9</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>0.08 ± 0.08</td>
<td>0.08 ± 0.08</td>
</tr>
</tbody>
</table>

Figure 1: Sample diagrams for the seven-point amplitudes qq' e+gg and qQ e+ggQ. The e pair couples to the quarks via a W boson.

Our aim in this Letter is to extend this comparison to \(n = 3 \) jets. We apply the same lepton and jet cuts as CDF, replacing the \(E_T \) cut by one on the neutrino \(E_T \), and ignoring the lepton (jet) \(R \) cut removed by acceptance. We approximate the Cabibbo-Kobayashi-Maskawa matrix by the unit matrix, express the \(W \) coupling to fermions using the Standard Model parameters \(\theta_{\text{ED}} = 1.128 \pm 0.02 \) and \(\sin^2 \theta_W = 0.230 \), and use \(m_W = 80.19 \text{ GeV} \) and \(W = 246 \text{ GeV} \). We use the CTEQ6M [23] parton distribution functions (PDFs) and an event-by-event, common renormalization and factorization scale, \(\mu_F = \mu_R (W) \). To estimate the scale dependence, we choose values in the range \((1/2, 2) \). The numerical integration errors are on the order of a half percent. We do not include PDF uncertainties. For \(W + 1/2 \) jet production these uncertainties have been estimated in ref. [2]. In general, they are smaller than the scale uncertainties at low \(E_T \) but larger at high \(E_T \). The LO calculation uses the CTEQ6L1 PDF set. For \(n = 1/2 \) jets, NLO total cross sections agree with those from MCFM [23], for various cuts. As our calculation is a parton-level one, we do not apply corrections due to non-perturbative effects such as induced by the underlying event or hadronization. Such corrections are expected to be under ten percent [2].

In Table 1, we collect the results for the total cross section, comparing CDF data to the NLO theoretical predictions computed using BlackHat and SHERPA. The columns labeled \(\text{LC NLO} \) and \(\text{NLO} \) show respectively the results for our leading-color approximation to NLO, and for the full NLO calculation. The leading-color NLO and full NLO cross sections for \(W + 1 \) and \(W + 2 \) jets production agree to within three percent. We thus expect only a small change in the results for \(W + 3 \) jets once the missing subleading-color contributions are incorporated.

We have also compared the \(E_T \) distribution of the \(n \)th jet in CDF data to the NLO predictions for \(W + 1/2/3 \)-jet production. For \(W + 2/3 \)-jets these comparisons are shown in Fig. 2, including scale-dependence bands obtained as described above. For reference, we also show the LO distributions and corresponding scale-dependence band. (The calculations matching to parton showers [23] used in ref. [2] make different choices for the scale variation and are not directly comparable to the parton-level predictions shown here.) The NLO predictions match the data very well, and uniformly in all but the highest \(E_T \) bin. The central values of the LO predictions, in contrast, have different shapes from the data. The scale dependence of the NLO predictions is substantially smaller than that of the LO ones. In the \(W + 2 \) jet case, we also show the ratio of the leading-color approximation to the full-color result within the NLO calculation: the two results differ by less than three percent over the entire transverse energy range, considerably smaller than
the scale dependence (and experimental uncertainties).

In Fig. 3, we show the distribution for the total transverse-energy H_T, given by the scalar sum of the jet and lepton transverse energies, $H_T = \sum E_T^j + E_T^e + E_T^*$. We show the NLO and LO predictions, along with their scale-uncertainty bands. As in the E_T^* distributions, the NLO band is much narrower; and the shape of the distribution is altered at NLO from the LO prediction.

In summary, we have presented the first phenomenologically useful NLO study of $W + 3$-jet production, and compared the total cross section and the jet E_T distribution to Tevatron data. The results demystify the utility of the on-shell method and its numerical implementation in the BlackHat code for NLO computations of parton showers at leading order processes at the LHC.

We thank Jay Hauser, W. Arens Mier, Sasha Pronko and Rainer Wally for helpful discussions. This research was supported by the U.S. Department of Energy under contracts DE FG03 91ER 40662, DE AC 02 76SF 00515 and DE FC 02 94ER 40818. D.A.K's research is supported by the Agence Nationale de la Recherche of France under a grant ANR 05 BLAN 0073 01, and by the European Research Council under Advanced Investigator Grant ERC Advanced Grant (228301). This research used resources of a cadet in Technology Services at UCLA and of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC 02 05 CH 11231.

Fig. 3: The theoretical prediction for the H_T distribution in $W + 3$-jet production. The curves and bands are labeled as in g.4.