Abstract We perform a study to describe motion of charged particles under the influence of electromagnetic and gravitational fields of a slowly rotating wormhole with nonvanishing magnetic moment. We present analytic expressions for potentials of electromagnetic fields for an axially symmetric slowly rotating magnetized wormholes. While addressing important issues regarding the subject, we compare our results of motion around black holes and wormholes in terms of the ratio of radii of event horizons of a black hole and of the throat of a wormhole. It is shown that both radial and circular motions of test bodies in the vicinity of a magnetized wormhole could give rise to a peculiar observational astrophysical phenomenon.

Key words: Magnetized wormholes, Electromagnetic fields, Charged particle motion

1 Introduction

Astronomical objects called wormholes link widely separated regions of a Universe or of two different Universes, joining two different spacetimes (Visser 1995).

The subject of strong electromagnetic fields due to highly magnetized rotating neutron stars like pulsars and magnetars is of great relevance for the physics of a wormhole (WH) and for the particle motion around it, specially around its throat.

In paper (Teo 1998) author in details considered solution for rotating WH and properly described emprogram, which surrounds the throat at the equator of WH. A wormhole may be a reason for gravitational lensing effects (Dev & Sen 2003) and may also create a black hole through accretion of matter (Kardashev et al. 2001). Thus, it is a subject of astrophysical importance. The motion of particles around a wormhole and a possible dragging of such moving particles towards its vicinity constitute a subject of physical reality. To make a Lorentzian wormhole traversable and stable, one uses exotic matter, which violates the well-known energy conditions according to the need of the geometric structure (Morris et al. 1988; Visser et al. 2003; Dadhich et al. 2002). Viable models for such a WH have recently been studied (Kuhitiong 2008; Bardo et al. 2008; Lobo 2005; Sushkov 2005; Lobo 2005b; Bohmer et al. 2006).

The rotation of a magnetized star in vacuum induces electric field (heuch 1955). General Relativity (GR) generates additional electric field (See, for example, Muslimov & Tsygan 1992; Konno & Komura 2000; Sezalla et al. 2001) through its role in the context of dragging of inertial frames and become very important in pulsar magnetosphere (Baskin 1990; Muslimov & Tsygan 1993). Under the framework of GR, slowly rotating wormholes have been a subject of study, particularly in the context of stress-energy tensor (Berglind & Hibberd 2000), scalar fields (Kashyap & Sushkov 2003; K in 2005) and electromagnetic fields (Jamil & Rashid 2008). The exact solutions of the wormhole with classical, minimally coupled, massless scalar field, and electric charge are discussed in the paper (Kim & Lee 2001). They concluded that the addition of electric charge might change the gravitational field of the WH but will not change the spacetime seriously.
Here, we focus on the motion of charged test particles in gravitational and electromagnetic field of slowly rotating wormhole with magnetic dipole moment. We use Hamilton-Jacobi equation to find in unce of both the effects on the effective potential due to radial rotation of test particles. In section 2, we calculate potential of electromagnetic field due to axially-symmetric slowly rotating magnetized wormhole.

We then consider the separation of variables in the Hamilton-Jacobi equation and derive the effective potential for the motion of charged particles around slowly rotating wormhole with dipolar electromagnetic field. In Section 3, we calculate stable circular orbits for charged particles in terms of the magnetic moment of the wormhole. We present the numerical results for periods of anharmonic oscillations of charged particles. Finally, we conclude our main findings and present some astrophysical applications of our results in section 4. Our present investigation of the motion of charged particles around a slowly rotating magnetized wormhole involving these potentials is carried out with the aim to nd astrophysical evidence for the existence of such objects and to explore its possible consequences with other class objects called black holes. Finally, on the contrary to the model presented in [Kardashev et al. 2007], for our W H model which has a magnetic dipole moment at the center, one can obtain the observable difference on circular motion of charged particle around WH and around compact object as stars, BH, etc.

Throughout the paper, we use a space-like signature (+; +; +; −) and a system of units in which $G = c = 1$ (Haw et al., for those expressions with an electromagnetic application we have written the speed of light explicitly). Greek indices are taken from 0 to 3 and Latin indices from 1 to 3; covariant derivatives are denoted with a semicolon and partial derivatives with a comma.

2 Potential of the Electromagnetic Field

Around a Wormhole

We may safely ignore quadratic term of the angular velocity (i.e.) of the free falling frame because of the slow rotation of the wormhole. Thus, the metric that describes spacetime around an axially symmetric slowly rotating wormhole may be written in the following form [Kardashev et al. 2006, Shatskiil 2007]:

$$ds^2 = e^{2(\beta)} dt^2 + \frac{b(r)}{r} \frac{1}{r} dr^2 + r^2 d\phi^2 + \sin^2 \theta d\theta^2$$

$$+ 2! (r)^2 \sin^2 \theta d\phi^2$$

(1)

Here, r is the radial coordinate, (r) is the so-called lapse function, $b(r)$ is the shape function. The $(r) = 2J = r^2$ is also known as Leonard-Thirring angular velocity, where J is the total angular momentum of the gravitating object. The neck of the wormhole corresponds to $m_{\text{in}} = m_0 = b(r_0)$, where we have $\Theta = 0$, 1. The presence of a horizon implies 1 or 0 such that is finite everywhere.

Solution of the Einstein equations for WH has been compared with Reissner-Nordstrom solution for compact objects with upper limit for magnetic charge in ref. [Kardashev et al. 2006], wherein components of the WH metric [1] have been written as

$$exp = 1 + \frac{r_0}{r}$$

and

$$b(r) = r_0 + 1 + \frac{r_0}{r}$$

(2)

The quantity j in the above expressions, (2) and (3), may be found from transcendental equation $b(r_0) = r_0$:

$$\ln \frac{r}{r_0} = \ln 1 + \frac{r_0}{r}$$

(4)

Common to considered model by Kardashev et al. 2006 is the assumption that the tunnel of magnetic WH is penetrated by an initial magnetic field, which should display a radial structure for an external observer in the spherically symmetric case; i.e., it should correspond to a magnetic monopole. It means that metric (1) with expressions (2) and (3) corresponds to the wormhole mode of the substance which is the monopole magnetic field and dipole electric field in slowly rotating approximation (equations (12) and (25) of the paper [Kardashev et al. 2006]):

$$B^x = \frac{q_0}{r^3};$$

$$E^x = \frac{2ar^2}{r^3}B^\phi(r_0) \cos \phi;$$

$$E^x = \frac{ar^2}{F}B^\phi(r_0) \sin \phi;$$

(5)

(6)

(7)

where q_0 can be interpreted as magnetic monopole of magnetic WH described with metric (1) (in addition with expressions (2) and (3)). Here = (hat) stands for orthonormal components of the electric and the magnetic fields:

$$E = F; u = \frac{1}{2} F; u;$$

(8)
that are measured by zero angular cm entum observer
(ZAM O) with four velocity

\[u = e (1;0;0;0) ; \quad u = e (1;0;0;0) ; \]

where

\[g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

is the Levi-Civita symbol.

Tensor of electric magnetic field in the presence of monopole magnetic charge \(q_m \) can be described as (Cabibbo & Ferrari 1962):

\[F = \kappa ; \quad \kappa ; \quad \kappa ^i ; \quad (9) \]

\[F' = \kappa ; \quad \kappa _i ; + \quad A ^i ; \quad (10) \]

which is included not only the 4-vector potential \(A \), but also a pseudovector \(\kappa \). Lagrangian of the system can be written as:

\[L = L_{\text{em}} + L_{\text{int}} + L_m = \]

\[\frac{1}{2} \ln (\kappa _i ; \kappa _i)^2 \quad \frac{1}{2} \ln (\kappa _i ; \kappa _i)^2 \]

\[\frac{1}{4} \quad \nu _n \kappa _i ; \nu _n \kappa _i ; \quad + \quad \frac{1}{4} \quad \nu _n \kappa _i ; \nu _n \kappa _i ; \quad (11) \]

where \(n \) is an arbitrary unit four-vector. Hamilton-Jacobi equation corresponding to this system can be written as:

\[g \frac{\partial S}{\partial x} + \epsilon q _m A = \frac{\partial S}{\partial x} + \epsilon q _m A = m^2 ; \quad (12) \]

The value of pseudovector \(\kappa \) being responsible for the electromagnetic field \([1] \) can be found using equations \([1] \) and \([10] \) as

\[\kappa = \frac{q_m}{r} \quad 0;0;0; \frac{1}{\sin \theta} \quad \]

(13)

having singularity at \(\theta = 0 \) which can be removed by coordinate transformations.

Using the variable separation technique one can easily nd equation of radial motion of charged particle around magnetic monopole in magnetic monopole:

\[f (r; \theta ; \phi) \quad \frac{dr}{d \tau } ^2 = E^2 \quad V_e (q_m ; \rho ; \theta ; \phi) \quad ; \]

(14)

where \(E \) is the angular momentum of the charged particle moving around magnetic monopole.

\[f (r; \theta ; \phi) \]

is a function which tends to \(\text{1}=\text{2} \) when space-time metric \([1] \) becomes at one and

\[V_e = \frac{L^2}{2m r^2} ; \quad (15) \]

Study of the influence of magnetic monopole to the motion of charged particles around W H can be not considered when the mass of H monopolar magnetic field in the monopole H mass of magnetic field is negligible (\(B , 10^9 G \) for object with total mass \(M = 10^5 M_\odot \), see table 1 and equation (12) of the paper (Kardashev et al. 2004), with comparison to the dipolar magnetic field \(B = 10^{12} G \) of magnetic object. This magnetic field can be created by the stellar azimuthalelectric currents). It is not difficult to show that the electromagnetic corrections created by the magnetic dipole being proportional to the electromagnetic energy density are rather small in monopole W H. Indeed, if \(m \) is the average rest mass density \(\rho \) of W H and radius of the throat \(r_h \) as measured at infinity, these corrections are at most

\[\frac{B^2}{8 \pi c^2} \]

(16)

\[6.7 \times 10^3 \quad \frac{B}{10^{12} G} \quad \frac{2}{M} \quad \frac{10^6 M_\odot}{M} \quad \frac{2}{10 \text{ km}} \]

The influence of electromagnetic field with W H m monopolar configuration on the test particles motion should be taken in account for lower mass W H, which can be studied in the future investigations.

W e may now consider the general form of Maxwell's equations written as:

\[3F (\phi ; \theta ; \phi) - 2F (\phi ; \theta ; \phi) = 0 ; \quad (17) \]

\[F (\phi ; \theta ; \phi) = 4 J ; \quad (18) \]

where \(F = A ; \quad A \) is the electromagnetic field tensor, \(A \) is the four potential of the electromagnetic field and \(J \) is the four-electric current.

Next, we describe a few assumptions that are going to be used hereafter. First, we assume there is no matter outside the W H so that the conductivity \(\sigma = 0 \) for outside. We also assume that the magnetic m onent of the W H does not vary in time by supposing very high conductivity of the W H matter, where magnetic field produced. However, the components of the electromagnetic field will change periodically due to m isalignment between the direction of magnetic dipole and axis of rotation.

In the presence of the magnetic dipole m onent of the worm hole, the four potential has two non-
vanishing components only:
\[A_0 = \frac{r^2}{3r^3} \cos 3 \cos^2 1 + 3 \sin \cos \sin \cos \), \] \[A_3 = \frac{2}{r} (\cos \sin \sin \cos \cos) \]; \[(19) \]
\[A_3 = \frac{2}{r} (\cos \sin \sin \cos \cos) \]; \[(20) \]

according to the expressions for the four potentials derived in paper [Rezzolla et al. 2001], for slowly rotating magnetized neutron star. For the solutions [13]-[20], the exact external solutions of the Maxwell equations [14]-[15], take the following form [Rezzolla et al. 2001a]
\[E^r = \frac{r^2 e}{r^2} \cos 3 \cos^2 1 + \frac{8M}{5r} \sin \cos \sin \cos \]
\[+ \sin \cos \frac{3}{2} \sin 2 \frac{8M}{5r} \cos \cos \quad ; \quad (21) \]
\[E^\theta = \frac{2}{r^2} \frac{r^2 e}{r^2} \cos \cos \sin \sin \cos \sin \cos \quad + 4M \frac{r}{5r} \sin \]
\[+ \sin \cos \frac{3}{2} \cos 2 + \frac{4M}{5r} \sin \cos \quad ; \quad (22) \]
\[E^\phi = \frac{r^2 \phi}{r^2} \cos \cos \sin \sin \cos \cos \quad + \cos \sin \sin \cos \quad ; \quad (23) \]
\[B^r = \frac{2}{r} \left(\sin \cos + \cos \cot \right) \); \[(24) \]
\[B^\theta = \frac{2}{r} \frac{b(r)}{r} \left(\sin \cos \cot \cos \cos \right) \}; \[(25) \]
\[B^\phi = \frac{2}{r} \sin \sin \cot \]; \[(26) \]

is the magnetic moment of the worm hole, is the angular velocity, \(M \) is the total mass (see, for example, [Kazlashev et al. 2001]), is the inclination angle of the magnetic moment relative to the rotation axis and \(t = t' \) is the instantaneous azimuthal position.

3 M motion of the Charged Particles A round Slowly Rotating M agnetized W orm hole

The Hamilton-Jacobi equation
\[g \frac{\partial S}{\partial x} + eA \frac{\partial S}{\partial x} + eA = m^2 \]; \[(27) \]

made separate provided action \(S \) is separable as
\[S = E + L + S_r \left(r; \right) \]; \[(28) \]

Using expressions, [19] and [10], equation [27] may be written in the following form:
\[E \left(\frac{r^2}{3r^3} \cos 3 \cos^2 1 + \frac{3}{2} \sin \cos \sin \cos \right) \]
\[\sin 2 \]
\[+ \frac{8M}{5r} \left(\frac{1}{r} - \frac{1}{r} \right) \]
\[+ \frac{r}{r} \left(\frac{1}{r} \right) \cos \sin \sin \cos \cos \]
\[= m^2 \]; \[(29) \]

It is not possible to separate variables in this equation for the general case but it may be made possible for the motion in the equatorial plane \(= -2 \). However this is not allowed as there are no particle orbits under the Lorentz force considered to the equatorial plane. For this reason we are forced hereafter to choose the inclination angle of the magnetic moment relative to the rotation axis \(= 0 \) in order to keep particles in equatorial plane. Indeed under this condition electromagnetic field of worm hole forces charged particle to move in the equatorial plane. This can be seen from solutions [21]-[24]: in the equatorial plane the \(E \) component of the electric field disappears and only \(B \) component of the magnetic field is nonvanishing. Then the equation for radial motion of charged particles takes the form
\[\frac{dr}{dt} = E^2 \left(\frac{r^2}{r^2} \right) \left(\frac{1}{r} \right) \left(\frac{r}{r} \right); \quad (30) \]

where quantity
\[\frac{r^2}{r^2} \left(\frac{1}{r} \right) \left(\frac{r}{r} \right); \quad (31) \]

may be thought of as the effective potential of the radial motion of charged particle, where is the proper time along the trajectory of the particle, and is a change quantity as \(E \right\} = \frac{1}{r} \right\} + \frac{2e}{r} \right\} + \frac{1}{r} \right\} \left(\frac{r}{r} \right); \quad (30) \]

\[\frac{1}{r^2} \left(\frac{L + \frac{2e}{r} \right); \quad (31) \]

Figure shows the radial dependence of the effective potential of the radial motion of the charged test
particle in the equatorial plane of the slowly rotating magnetized WH for different values of the parameter (a) and the magnetic dipole moment (b). From this dependence one can obtain radial motion of charged particle in the equatorial plane of the WH. As it is seen from the figure, the parameter changes the shape of effective potentials near the object. In the case of far distances from central object in presence of parameter is negligible, which means that one can see the difference between WH and black hole (or compact object with non-exotic matter) only near these objects.

Motion of charged particle in the presence of this kind of effective potential can be explained as follows: increasing of the magnitude of magnetic dipole moment of the WH may make circular objects to be more unstable and let particle go away to in nity. From the potential we can infer the qualitative structure of the particles orbits. As it is seen from the figure, the potential carries the repulsive character. It means that the particle coming from in nity and passing by the source will not be captured: it will be reected and will go to in nity again as it was in the case of black holes. For weak electromagnetic eld of the WH particles can follow bound orbits depending on their energy. As magnetic dipole moment increases following feature arises: the orbits start to be only parabolic or hyperbolic and no more circular or elliptical orbits exist.

From the equation, one can easily get equations describing the motion of the test particle what is done below.

Trajectory of the charged particle around slowly rotating magnetized WH can be drawn from the following equation:

\[
\frac{dr}{dt} = \frac{h}{nh} \left(\frac{nr_0 r_{1+}^{1+}}{1 + \frac{1}{r_{2+}^{1+}} - \frac{r_{2+}^{1+}}{r_{2+}^{1+}} - \frac{r_{2+}^{1+}}{r_{2+}^{1+}} + \frac{4e}{r} + E + 2L} \right)
\]

(32)

It is almost impossible to integrate equation (32) in general form. However one can get shape of the trajectory of the test particle by using basic assumptions and numerical integration. Figure illustrates the shape of...
the trajectory of charged particles starting from sufficiently far distances towards the slowly rotating central object for different values of small parameter and zero moment of the particle in infinity. From the presented figure one can see that increase of the parameter makes gravitational field of the central object more stronger which forces test particle approach closer to the central object.

Radial motion of the charged particles near the slowly rotating magnetized WH can be described using the following equation derived from (29):

$$\frac{dr}{dt}^2 = \frac{\sum E + L \pm 2e_1}{r h}$$

$$= \frac{e_2 r^2 - \sum 2r}{r h} + \frac{E + L}{r h}$$

$$= \frac{(L + \frac{2e_1}{r})^2 (E + \frac{e_2 r^2}{3r^5}) + 4e r^2}{r^3} + E + 2L$$

(33)

In paper (Novikov et al. 2007) it was shown from the solution of equation of radial motion of particle in spherical symmetric spacetime of nonmagnetized WH that particles can make radial harmonic oscillations. We obtain here from equation (33) in the case of magnetized slowly rotating WH, that charged particles make radial anharmonic oscillations. The periods of those oscillations are presented in the Table 1, for the different values of the magnetic parameter and the parameter.

Finally we study periods of the circulating charged particle around slowly rotating magnetized WH (stability of the circular orbits will be discussed later in the next subsections) by using the following equation derived from (29):

$$\frac{d^2 r}{dt^2} = \frac{\sum E + L \pm 2e_1}{r h}$$

$$= \frac{(L + \frac{2e_1}{r})^2 (E + \frac{e_2 r^2}{3r^5})}{r^3} + E + \frac{2e}{r} + L$$

(34)

Figure 3 shows the dependece of the period of the circulating particle from the magnetic dipole moment of the WH for different values of the small parameter. The graphs justify that increase of the parameter cause particles to approach closer to the central object.
3.1 Stable Circular Orbits for Charged Particles

Special interest for the accretion theory of test particles around a slowly rotating worm hole with a dipolar electromagnetic field is related to the study of circular orbits which are possible in the equatorial plane $= = 2$ when dr/dt is zero. Consequently the right hand side of equation (38) vanishes:

$$E^2 V^2_{\text{eff}}(r; t; t_0; r_h; C; L) = 0; \quad (35)$$

along with its first derivative with respect to r

$$\frac{dV_{\text{eff}}}{dr} = 0; \quad (36)$$

The radius of marginal stability, the associated energy and angular momentum of the circular orbits may be derived from the simultaneous solution of the condition:

$$\frac{d^2V_{\text{eff}}}{dr^2} = 0; \quad (37)$$

From equations (35) and (36), one may nd expression for energy

$$E = e C_0 (1 + t^3)$$

$$= e C_0 (t^3 + !r_h (1 + t)^2 + 1)$$

$$= (1 + t)^2 (1 + t_0)^2 + !r_h (1 + t) \quad (38)$$

and expression of momentum energy

$$L = eC_0 (1 + t^3) + h \quad (39)$$

of charged test particles. Here we have used the following notations:

$$\frac{r_h}{C_3} \quad \frac{t}{C_3} \quad \frac{1 + t}{1 + \ln t} \quad \frac{3t}{6t} \ln t; \quad C_3 = \frac{2e}{r_h};$$

and

$$4t^2 \ln t; \quad (37)$$

Now, inserting (35) and (36) into equation (37), one may obtain the basic equation

$$Lr^3 + 4C_3 + L (r^7) + \frac{r}{r_h}$$

$$r \frac{2C_1}{r_h} \quad + \frac{r^2}{r_h} (3 \quad r) \quad 4 \quad E \quad E \quad r_3 \quad 2 \quad L$$

$$2 \frac{2C_3}{r_h} \quad E \quad E \quad 4 \quad r \quad 4 \quad \frac{r^3}{r_h} \quad C_3 \quad r_2$$

$$+ \frac{r}{r_h} \quad C_1 \quad 13 \quad 5r \quad C_2 \quad \frac{r^6}{r_h} \quad + \quad + \quad 2 \quad \frac{E}{(5r^7)} \quad r^3 + 2 \quad L \quad (13 \quad 5r) \quad \frac{\ln r}{r}$$

$$Lr^3 + 4C_3 + L (r^7) + \frac{r}{r_h}$$

$$r \frac{2C_1}{r_h} \quad + \frac{r^2}{r_h} (3 \quad r) \quad 4 \quad E \quad E \quad r_3 \quad 2 \quad L$$

$$2 \frac{2C_3}{r_h} \quad E \quad E \quad 4 \quad r \quad 4 \quad \frac{r^3}{r_h} \quad C_3 \quad r_2$$

$$+ \frac{r}{r_h} \quad C_1 \quad 13 \quad 5r \quad C_2 \quad \frac{r^6}{r_h} \quad + \quad + \quad 2 \quad \frac{E}{(5r^7)} \quad r^3 + 2 \quad L \quad (13 \quad 5r) \quad \frac{\ln r}{r}$$

In this, we have used following additional notations:

$$r = r_h; \quad r^2 = 4M \quad \frac{\tilde{e}^2}{\tilde{e}} = 5; \quad C_0 = e \quad r_0^2 = 3r_h^2$$

$$\tilde{e} = 7r_h^2 \quad 8r_h \quad r + 2r^2 \quad C_1 = 2C_0 \quad \frac{E_0}{\tilde{e}^2};$$

The numerical solutions of the equation (30) will determine the radii of marginally stable circular orbits for slowly rotating worm holes with magnetic dipole moment as functions of the parameter \tilde{e}, the angular velocity, ω, as well as of the magnetic dipole of the source. In the Table 3(a), we have numerical solutions for the radii of the stable circular orbits of charged test particles for different values of the parameter \tilde{e} and magnetic dipole moment of the worm hole. With the increase of the \tilde{e}, radii of stable circular orbits shift to observer at infinity, while existence of magnetic dipole moment and a possible increase in it displace the orbits to the gravitational source.
4 A strophysical Applications and Conclusions

In this paper we consider electromagnetic field of slowly rotating W H i.e. neglecting quadratic and higher order terms of angular velocity we can deduce exact vacuum solutions of Maxwell equations in spacetime of slowly rotating magnetized W H. In the paper (Kim 2005) it has been justed that electric charge could exist in W H and did not change the structure of the spacetime around W H seriously, which gives us the right to consider the existence of magnetic dipole moment of the W H due to possible motion of the electric charge.

A strophysical processes and effects around black hole and W H i.e. external models are distinguishable such as absence of event horizon on W H, passage of radiation and particles through W H, appearance of blueshift effect in additional to the gravitational redshift effect near W H etc. (see for the details [Karashev et al. 2003; Shatkai 2007]). In Ref. [Karashev et al. 2008] circular orbits of test particles around a W H and their periods were studied. Here we extended these results to motion of charged particles and have shown the strong dependence of particle motion from W H shape parameter and magnetic field strength.

Here we address two basic questions: are there any differences between astrophysical processes around W H and standard models for compact objects? If there are so, how can we distinguish W H from other compact objects using observational data? To answer these questions we consider magnetic dipole moment of the W H and develop the existing W H model constructed by [Karashev et al. 2008]. For such models we perform a charged particle motion analysis around magnetized W H. Finally we can conclude that from astrophysical point of view the following differences between W H and standard compact objects can be detected observationally:

1. Oscillations of bodies in the vicinity of a W H throat (radial orbits) could give rise to a peculiar observational phenomenon. Signals from such sources detected by an external observer will display a characteristic periodicity in their spectra. All objects (stars, B Hs) other than W Hs absorb bodies falling onto them irrecoverably. Periodic radial oscillations are a characteristic feature of magnetized W Hs as it was rst shown by [Karashev et al. 2007] for other W H models.

2. As it was shown by [Karashev et al. 2007] the difference of the circular motion of particles around Reissner Nordstrom black hole and around the charged W H models described by [Karashev et al. 2008] is negligible at r = 2 nh (r.m one). Thus all conclusions about circular orbit around a W H are the same as in the limiting Reissner Nordstrom geometry at the corresponding distances. However, on the contrary for our W H model which has a magnetic dipole moment one can easily obtain the difference on circular motion of charged particle around W H and compact object as stars, B H etc. As we have shown in subsection 3.3 with the increase of the , radii of stable circular orbits shift from central object (W H) to observer at the infinity. From the numerical results given in Table 2, one can easily see that the increase of parameter on particle motion depends on the strength of magnetic field of W H: radii of the stable circular orbits increase about 2 times bigger when = 21, while this increasing almost disappears when magnetic field of W H is margin.

Table 2: Radii of the stable circular orbits of test particles near the slowly rotating magnetized W H with respect to .

<table>
<thead>
<tr>
<th></th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.3</td>
<td>7.81538</td>
<td>9.31114</td>
<td>10.3082</td>
<td>11.0739</td>
</tr>
<tr>
<td>r</td>
<td>0.7</td>
<td>6.31054</td>
<td>7.52564</td>
<td>8.34287</td>
<td>8.97572</td>
</tr>
<tr>
<td>r</td>
<td>2</td>
<td>4.86001</td>
<td>5.79180</td>
<td>6.41939</td>
<td>6.90621</td>
</tr>
<tr>
<td>r</td>
<td>5</td>
<td>3.90299</td>
<td>4.64910</td>
<td>5.15093</td>
<td>5.53995</td>
</tr>
<tr>
<td>r</td>
<td>13</td>
<td>3.18162</td>
<td>3.79127</td>
<td>4.19940</td>
<td>4.51495</td>
</tr>
<tr>
<td>r</td>
<td>21</td>
<td>2.93889</td>
<td>3.50249</td>
<td>3.87818</td>
<td>4.16793</td>
</tr>
</tbody>
</table>

4 Acknowledgments

AAA and BJA thank the IUCAA for warm hospitality during their stay in Pune and AS-ICTP for the travel support through BIPTUN (NET-53) program. Authors also thank Dr A. Anisul Alam for useful comments and correcting the text of paper. This research is supported in part by the U2FFR (projects 5-08 and 29-08) and projects FA-F2-F079, FA-F2-F061 of the UAS and by the ICTP through the OEA-PRJ-29 project and the Regular Associateship grant.
References

Berglia a, P. & Hibberd, K. E. 2000, gr-qc/0006041
Dadhich, N. & Turakulov, Z. Ya. 2002, Class. Quantum Grav., 19, 2765
Dew s, A. J. 1955, Ann. Astrophys., 1, 1
Kardashev, N. S., Novikov, I. D., & Shatskii, A. A. 2006, Astronomy Reports, 50, 601
Kim, S. W. 2005, Nuovo Cimento B, 120, 1235
Kuhlig, P. K. F. 2008, gr-qc/0806119v1
Muslinov, A. & Tsygan A. T. 1990, Soviet Astron., 34, 133
Novikov, I. D., Kardashev, N. S., & Shatskii A. A. 2007, Physics Uspelki, 50, 965
Rezzolla, L., Ahmedov, B. J., & Miller J. C. 2001b, Found. of Phys., 31, 1051
Shatskii, A. A. 2007, Astronomy Reports, 51, 81
Teo, E. 1998, Phys. Rev. D, 58, 024014
Visser, M. 1995: Lorentzian wormholes: from Einstein to Hawking (American Institute of Physics, Woodbury)

This manuscript was prepared with the AAS LATEX macros v5.2.