The main goal of modern high energy physics is to expand and explore phenomena beyond the Standard Model (SM). There are exciting New Physics (NP) hints such as neutrino oscillations and dark matter. Nevertheless, no experiment has shown so far direct and conclusive evidence in favor of any particular NP scenario. Instead, currently available data play a role of constraints for different SM extensions. Despite some of these constraints are rather tight, it is fair to say that any reasonable TeV-scale NP scenarios discussed in the literature are still far from being rejected.

I. INTRODUCTION

The main goal of modern high energy physics is to expand and explore phenomena beyond the Standard Model (SM). There are exciting New Physics (NP) hints such as neutrino oscillations and dark matter. Nevertheless, no experiment has shown so far direct and conclusive evidence in favor of any particular NP scenario. Instead, currently available data play a role of constraints for different SM extensions. Despite some of these constraints are rather tight, it is fair to say that any reasonable TeV-scale NP scenarios discussed in the literature are still far from being rejected.

In a broad phenomenological perspective almost all NP scenarios can be divided into two large groups. The first one consists of the models which extend particle content of the SM by adding some new particles, according to this or that dynamical principle. The best known example of this kind is supersymmetric extension of the SM. The corresponding phenomenology is well studied, at least in case of MSSM. A dynamical evolution of states in all models of this type takes place on the standard Riemannian (3+1)-dimensional space-time manifold of general relativity, whose internal dynamics is believed to be governed by the genuine Planck scale $L_P = 1.6 \times 10^{-35}$ m.

The second group of models suggests much more radical extension of the SM. It is assumed that the picture of our familiar space-time as a smooth four-dimensional manifold is applicable only at low energies, and becomes inadequate below some distance scale L (which can be much larger than L_P and perhaps of $\sim 1-2$ TeV) range).

The so-called small extra dimensions and TeV-gravity scenarios ([1,2,3,4]) are well known examples of the theories of this kind. The most attractive feature of these models is the emergent nature of the Planck scale L_P.

Another line of reasoning, having its roots in seminal papers [5] and [6], is to consider space-time geometry in terms of discontinuous or of fractal type at small distances. This idea has been explored from many different points of view: conventional wisdom of Planck-scale quantum gravity fuzziness [7], space-time foam [8], spin-networks in loop quantum gravity [9], dynamical triangulations [10], fractal space-time structure in asymptotically safe gravity [11], noncommutative geometry [12,13], moduli space relations [14,15,16,17], moduli space dimension relations in the context of string theory [18], and in all length phenomenology [19,20], curved moduli space [21] and other approaches. We refer the interested reader to [22] for bibliographical review devoted to the models of short-distance space-time structure.

In most of these approaches one associates with the corresponding NP length scale L with the Planck length L_P, despite nothing prevents to think about L as being different from L_P (e.g., much larger).

The distinctive feature of all these extra approaches is the fact that effective number of space-time dimensions felt by the propagating particle depends on its energy/virtuality. One can think of different signs of this dependence. While in versions of extra dimensions scenarios which allow the SM fields to propagate in extra dimensions they "open up" with the increase of particle momentum, in fractal scenarios one can imagine how the dimensionalities in the ultraviolet (UV) limit, and (3+1)-dimensional infrared description as an emergent phenomenon.

Taking space-time dimensions as a free parameter it is legitimate to ask a question about experimental measurement of this quantity. In this way the quantity $(d-4)$ is to be constrained by observations. There is an extensive list of references on the subject starting from [23,24]. If d is understood as just a scale-independent constant devoid of any dynamics (as it is done in the cited papers), the constraints come both from celestial physics (Newton gravitational force law, perihelion precession etc) and from atomic physics (Coulomb law, hydrogen spectra etc, see e.g. [25]) as well as elementary particle physics (muon $g-2$ etc). It is worth stressing that since any experiment actually deals with finite energy-momentum entanglement, one never has access, strictly speaking, to the true UV dimension of a given space-time and in this sense physical dimension always has to be understood as resolution-dependent quantity.
Needless to remind that the idea of d being different from 4 and non-integer is a very appealing one from the theoretical point of view. As is known since the advent of dimensional regularization \cite{22,27} and dimensional reduction \cite{28} methods, the loop amplitudes which are divergent at integer values of d (in particular, for $d = 4$) can be analytically continued and self-consistently defined as the quantities for non-integer values of d. Usually understood as a convenient m athem atical regularization trick, this property may have a deeper meaning, signaling the preference for interacting quantum field theories to live in non-integer dimensional orbifolds. Moreover, despite it is common practice in models quantum field theory to understand the regularization procedure as being formal, this is not the case for some of the scenarios mentioned above, where space-time dynamics or new particles can play a role of regulators for field-theoretical amplitudes. For example, in all known minimal models in space-time dimension,

$$
Z = \int d^4 p \, g(p^2) \prod_{i=1}^{2} (1 - p^2_i)
$$

such that $g(p^2_i)$ is a polynomial in p^2_i. On the other hand, at large p^2_i the function $g(p^2_i)$ is such that the integral becomes convergent. The best known example of this pattern is given by cancelation of divergiciencies in supersymmetric theories. As is well known, m independent length and additional scalars also provide UV-mass cancellation of the mass measure (often process-independent) leading to convergence of loop amplitudes.

In the present paper the question about the phenomenon of dimensional constraints on space-time dimension at short scales is addressed, taking the latter to be scale-dependent in a particular way.

The concept of scale-dependent dimension was thoroughly analyzed in studies of dynamical quantum field theories \cite{29}. In the present paper we explore some phenomenological consequences of this picture being applied to experimental data on B-meson oscillations and m wam anomalous magnetic moment data. The oscillations phenomena are genuine quantum field effects dominated by loop diagrams and therefore they put into test, as any loop process does, the overall integrity of quantum field theory. In particular, the oscillations constrain extentions of conventional quantum mechanics caused by effective non-trivial interactions \cite{30,31}. Speaking in a broad sense we are analyzing the sum of phenomena in open intervals between zero and quantum mechanics of m-field, but our concrete model is very different from the one considered in \cite{31,32} and subsequent papers.

The organization of the paper is as follows. In the next Section II we present our Ansatz and briefly discuss general features of the corresponding phenomenology. In Section III the B_s mixing rate is analyzed and the exclusion plots of interest are given. We compare the corresponding constraints with the ones provided by m wam anomalous magnetic moment data. The conclusions are presented in Section IV. There is an Appendix in the paper, where relevant formulas used in the main text are collected.

Since we are always interested in real parts of the amplitudes we end up convenient to work in Euclidean metric and leave aside an interesting question about Wick rotation in the context of non-integrable dimensional theories.

II. THE MODEL

As is well known a typical expression for an amplitude in perturbative quantum field theory has the following form:

$$
A = A^{(0)}(q_1, m_1; e_1) + \int d^4 p \, g(p^2) \prod_{i=1}^{2} (1 - p^2_i) \frac{X_i}{Z_i}
$$

where $A^{(0)}(q_1, m_1; e_1)$ is the tree amplitude, $q_1, m_1; e_1$ stay for external momenta, masses and couplings of interacting particles, while loop amplitudes are given by

$$
A^{(j)}(q_1, m_1; e_1) = \int d^4 p_k \, P(p_k; q_1, m_1; e_1)
$$

where p_k are loop momenta being integrated over and in the course of renormalization procedure and P is normal scale entering the list of m-dimensional quantities. In principle, many different strategies to continue \cite{24} to $d \neq 4$ can be chosen. We adopt the picture of dimensional reduction \cite{28}. The main feature which makes this approach distinct from the standard dimensional regularization is the following: one analytically continues in the number of components of all loop momenta, but keeps the number of all tensor and spinor components fixed. Notice that all known problems of dimensional regularization, notably a suspicion to have their roots in the fact that non-trivial number of relevant degrees of freedom is contrary to the number of space-time dimension minus an intrinsic integer quantity.

One immediate consequence of this prescription is that there are amplitudes $A^{(0)}$ never gets modified (notice that this is in contrast with m other approaches to non-integrable dimensional schemes, \cite{23,24}). An incoming and outgoing particles by definition live in $d = 4$, and only the effective element of $A^{(0)}$ is the loop integration measure.

From physical point of view there is some analogy with the weak field expansion in gravity where one integrates the factor $exp(S) = \int d^4 p \, L(g, \ldots)$ over small metric fluctuations $h(x)$ with respect to background $g(x)$ and $h(x)$. In this case there is no question about dimensional in the bulk space, which always coincides with 4. Alternatively
one can think of eli theory action de ned on a fractal set \(K \) \((23), \text{see also } 22\) and references therein): \(S^{K} = \int_{x} d_{x}L[(x)] \) and a partition function \(Z \) given by quantum average over superposition of subsets \(K \) of di erent and in general non-integer dimensions \(d \):
\[Z = \exp(\frac{S^{K}}{\hbar}) \]

Then the crucial point is how such theory couples to external currents. One has a choice - to take the coupling factor as \(\exp(\frac{1}{\hbar} d_{x}J(x)(x)) \) or to keep bulk expression \(\exp(\frac{1}{\hbar} d^{2}J(z)(z)) \), where \(K \) \(\text{R} \). It is important to stress that these options would describe two different kinds of physics. In the former case there is an interference already of tree level processes mediated by particles propagating over di erent \(K \). One has to integrate over \(d \)-dimensional external momenta and from photon enological point of view this brings us back to the constraints discussed earlier in \(22,24,25 \).

In terms of the theory of measure ent this situation corresponds to emitters and detectors being in coherent superposition with the different states \(K \). Another approach (the one we actually explore) corresponds to external currents always living in \((3+1) \) dimensional world. Extremal \(M \) on ena are also four-dimensional tree processes receive no corrections. In words, no macroscopic detectors are decelerated with respect to the space-time quantum fluctuations and hence detect only four-dimensional particles, four-dimensional momenta etc. This option seems to be physically more reasonable and we have chosen it in the rest of the paper.

For phenomenological applications of interest here we cannot ne to one-loop processes. Introducing additional integration over proper-time one can always rewrite the expression for \(A^{(1)} \) as follows:
\[A^{(1)} = \frac{\int \frac{d}{d_{x}}Z^{d}}{\int \frac{d}{d_{x}}Z^{d}} = \exp(\frac{d}{\hbar} F^{d}(\gamma;\gamma_{1};\gamma_{2})) \]

where the parameter \(s \) controls the degrees of divergence.

In coordinate space this is replaced by corresponding expression for one-loop effective action
\[Z = \int \frac{d}{d_{x}}Z^{d} x h x j(x) \exp(\frac{1}{\hbar} d_{x} j(x)) \]

where the operator \(O[\cdot] \) encodes all information about dynamics of the theory and Green’s functions can be extracted from \(4 \) by the standard technique. In case of \(K = R^{d} \) we have conventional theory in \(d \)-dimensional Euclidean space with the measure \(d_{x} = d^{d}x \). If the space \(K \) is curved or has boundaries, one is to apply Schwinger-Dyson technique \(33 \) to get answer in terms of expansion in powers of \(\hbar \) with the leading term given by
\[h x j(x) \exp(\frac{d}{\hbar} F^{d}(\gamma) \gamma^{1} F^{d}(\gamma)^{1}) \]

where \(d = d(x) \) is Hausdor dimension of \(K \) at the point \(x \), \(d \) \(\text{d} \)-dimensional Euclidean Laplace operator, and the intrinsic dimension of random walk on \(K \) is taken to be equal to \(2 \), as for the standard Brownian motion (see detailed analysis in \(34 \)). The value of \(d = d(x) \) is de ned by
\[\lim_{r \to 0} \frac{L}{\hbar} \frac{d}{\hbar} \frac{d}{\hbar} Z = \frac{d^{d}}{\hbar^{d-2}} \]

where \(B_{r} K \) is a ball of radius \(r \) centered at the point \(x \) and \(L \text{-d} \)imensional scale, characterizing the set \(K \). Notice that \(4, 7 \) are valid even for fractal set \(K \) having no di erentiable \(R \)iemannian structure.

It is very interesting that the integration measure in \(4 \) given for \(K = R^{d} \) by \(d = d^{d+1} \), \(d^{d}x \) can be understood \(33 \) as corresponding to curved space \(A_{d} \) \(d \) \(\text{d} \)-dimensional with the coordinates \((x; i) \). If \(h(x) \) is a metric tensor on \(K \), the \(d + 1 \)-dimensional metric can be chosen as \(d = \frac{1}{2} d^{2 + \hbar} h(x; k, k) \) \(dx \) with the condition \(h(x; 0) = h(x) \) (notice that trivial choice \(h(x; i) = h(x) \) h(x) would not be a solution of Einstein’s equations). Thus if one tries to keep the above geometric interpretation, the properties of the space \(K \) become dependent and factorization of the measure is lost, while the Riemannian structure of the manifold is kept intact.

In the present paper we relax the latter condition and investigate a particular deformation of \(4 \) and \(5 \) corresponding to dimension of \(K \) being dependent: \(d = d(x) \). At the same time the space \(K \) is taken as homogenous in the sense that \(d \) does not depend on \(x \). We assume the following natural asymptotic conditions: \(d(1) = 4, d(0) = 2 \) where \(d \) is some “true” ultraviolet space-time dimension. A typical scale where the transition takes place is taken as a free parameter of the model \(L^{2} \). The corresponding physics is illustrated in the introduction: at small virtuality, corresponding to much larger than \(= L^{2} \), one has the standard 4-dimensional dynamics, \(d = 4 \). This condition is of prime importance for the approach to preserve unitarity. It guarantees that virtual particles on-shell are indistinguishable from real ones and propagate in the same four-dimensional space-time. The situation is analogous to that in dimension reduction method (see discussion in \(23 \)).

Unfortunately we have no guiding physical principle to \(x d(\cdot) \) dependence. One might appeal to numerical simulations from \(8, 13 \) or analytical results from recent papers \(13, 35 \). However since our attitude here is mostly phenomenological, we find it convenient to choose a particular Ansatz for this function, which allows to proceed with analytical computations. We have chosen the following one:
\[Z = \int \frac{d}{d_{x}} \exp(\frac{\hbar}{\hbar} F^{d}(\gamma)) \frac{1}{4} = f(w; \gamma) \]

where \(w = c(x) \) and the measure deformation corresponds to \(f(w; \gamma) \in \frac{1}{4} 1:
\[f(w; \gamma) = g(w) + (1 - g(w))w^{3} \]

(9)
The function \(g(w) \) must obey obvious asymptotic conditions \(g(0) = 0, g(1) = 1 \). We have studied two particular choices for \(g(w) \) making analytical calculations possible:

\[
g_1(w) = 1 + \frac{1}{w} + \frac{1}{2w^2} \exp(-1/w) \quad (10)
\]

\[
g_2(w) = 1 \quad \frac{1}{\cosh(w)} \quad (11)
\]

The latter function approaches \(w = 1 \) asymptotically exponentially and \(w = 0 \) polynomially, while the former one does it in the opposite way (the chosen pre-exponential factor for \(g_1(w) \) makes large-\(w \) convergence faster). Certainly, we expect the results to depend on gross features of the weight functions and not on the details how they approach their asymptotic limits, and indeed this is what has been found.

One can see that the function \(f(w) \) switches between 4-dimensionally dynamics in the infrared (large \(w \)) and 3-dimensional dynamics in the ultraviolet (small \(w \)). One can interpret \(f \) by saying that at typical virtuality \(1 = \) particles propagate as if effective dimension of space-time would be

\[
d(w) = 4 \quad \frac{\log f^2(\omega \cdot \bar{d})}{\log \omega} \quad (12)
\]

The character of this transition is controlled by the choice of \(g(w) \). We plot the functions \(d_1(r), d_2(r), r \) corresponding to two choices \(10,11 \) in Fig. 1, taking by way of example \(d = 2 \). We have adjusted scales in such a way that \(L_1 = L_2 = 2L_{1,2} \), where \(L_{1,2} \) correspond to the choices \(g_{1,2}(w) \). This allows s to have roughly the same transition region for two different functions \(10,11 \). Notice that for \(d = 4 \) the function \(d(\omega) \) does not depend on \(L \), since the scale \(L \) has been chosen as a scale where dimensionless reduction \(d = 4 \) happens.

At formal level phenomenology the expression \(f \) leads to is in close correspondence with the one discussed in [33]. Notice that we do not constrain \(d \) to be larger than 4, or to be integer with the increase of massless scale, while the approach of [33] adopts the extra-dimensional logic, where effective dimensionality of space-time always increases at all distances by integer steps. A mother, one technical thing is that our approach preserves manifest \(O(4) \) symmetry and gauge invariance. Indeed, the general structure of one-loop effective action is such that the integrand for the proper time integral is proportional to the trace of the corresponding Wilson loop and is gauge-invariant by itself, hence gauge invariance cannot be broken by any measure deformation \(d \) ! \(d f(\omega) \).

Since the phenomenology of \(f \) corresponds to changes of ultraviolet behavior of the Green's functions, it poses a question about validity of the whole approach in eik theoretical framework. This issue will be addressed elsewhere, here we only notice that since deviation of \(f(w) \) from unity parameterizes the NP features as small corrections to the SM answers, we are actually never in the regime where the effects caused by \(d \leq 4 \) become dominant. Speaking differently, the loop integrals for SM observables we look at are always saturated by the values of much larger than \(L^2 \).

In the next section we apply the Ansatz \(f \) to the weak (\(B \)-oscillations) and electron magnetic (muon anomalous magnetic moment) loop processes.

III. APPLICATIONS

Loop mediated processes have always played important role in exploration of not yet discovered degrees of freedom. We are interested to check the sensitivity of the selected electroweak and electron magnetic observables to the UV/IR measure deformation suggested above. Recent experimental observation of oscillations of neutral \(B \) mesons confirmed the well known result for \(B_d \) oscillations, and the current number is [33]:

\[
M = (17.78\pm0.12)\text{ps}^{-1} \quad (13)
\]

This result is consistent with the SM expectations. For the models we are discussing there is no principal difference between \(B_d \) and \(B_s \) cases. We consider \(M \) in what follows because theoretical uncertainty is slightly smaller for this quantity.

In SM the mass difference between "heavy" and "light" mass eigenstates, determining the oscillation frequency, is given by [33]:

\[
M = \frac{G_F^2 M_{B_s}^2}{6\pi} (V_{ts}V_{tb})^2 M_{B_s} \cdot \Delta B_{B_s} \cdot \epsilon_{B_s}^2 \cdot \delta_{B_s}(x_t) \quad (14)
\]

where the short-distance part in \(\text{m s} \) is from this expression is represented by QCD correction \(\Delta B = 0.552 \) and the function \(S_0(x_t) = M_{B_s}^2 \cdot m_{W}^2 \), first computed in [36,44], whose exact form can be found in Appendix A. The status of this theoretical prediction and space left for NP is reviewed in [42]. The quantities entering \((14) \) are measured or theoretically computed with uncertainties, whose budget is conservatively summarized in the table below:

<table>
<thead>
<tr>
<th>(M)</th>
<th>(\Delta M)</th>
<th>(\delta M)</th>
<th>(\delta \text{m} \text{s})</th>
<th>(\delta \text{m} \text{e})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7%</td>
<td>8-12%</td>
<td>2.6%</td>
<td>2.0%</td>
<td></td>
</tr>
</tbody>
</table>

The uncertainties in \(G_F \) and in the mass parameters are negligible. Notice that to get independent prediction for \(M \), one has to consider CKM factors \((V_{ts}V_{tb})^2 \) as input parameters, to be determined by some other observables. The uncertainty indicated above corresponds to unitarity-based determination of \((V_{ts}V_{tb})^2 \).
result with the R \(> 600 \) GeV bound on 3 \(m_{1,2} \) universal extra dimensional radius R from B \(\rightarrow X_{\alpha} \) data recently obtained in [44].

It is interesting to reconcile the above results with the constraints coming from non-anomalous physics, namely from QED. Of prime interest in this respect is the anomalous muon magnetic moment. The reader is referred to the reviews [45,46], recent updates [47,49,48], and references therein for introduction into the subject. Current experimental value for

\[
\alpha = \frac{1}{2}(g - 2) = F_{2}^{SM}(k^2 = 0) \tag{17}
\]

is given by (see [48] and references therein):

\[
a = 116592028(6.3) \times 10^{-10} \tag{18}
\]

There is strong interest on this subject since some discrepancy between theoretical SM prediction for this quantity and the experimental result [18] is seen. The form factor, however, suffers from hadronic uncertainties at the level about 0.5 ppm, i.e., compared with experimental accuracy, therefore it is very difficult if not impossible to deduce solid positive statement about the meaning of such discrepancy. But regardless the status of the SM theoretical prediction it is obvious that no NP scenario may bring corrections to the SM which are in contradiction with the experimental result [18]. The unprecedented accuracy of current experimental value \(a = a = 0.54 \) ppm makes this requirement especially challenging. It is clear, that in our case the dominant correction comes from the one-loop term, which is proportional to \(m \). Thus we must require the correction already at the 1st loop to be smaller than combined experimental uncertainty \(a = 6 \times 10^{-10} \):

\[
w(\mu ; d) = \frac{F_{2}(\mu ; d)}{a} \approx \frac{F_{2}^{SM}}{a} \times 1
\]

where \(F_{2}(\mu ; d) \) is the new short-distance function, while the SM answer is given at one loop by the classic Schwinger result \(F_{2}^{SM}(10) = \frac{2}{6} \). The corresponding Feynman integral can be found in Appendix A. The results are presented on Figs. 4, 5. We observe again expected similarity between the gauges. It is seen that despite unprecedented experimental accuracy the muon anomalous magnetic moment data cannot be compared to electroweak loop observables in the discussed respect.

IV. CONCLUSION

We have studied some elements of non-anomalous physics, namely from QED. Of prime interest in this respect is the anomalous muon magnetic moment. The reader is referred to the reviews [45,46], recent updates [47,49,48], and references therein for introduction into the subject. Current experimental value for

\[
\alpha = \frac{1}{2}(g - 2) = F_{2}^{SM}(k^2 = 0) \tag{17}
\]

is given by (see [48] and references therein):

\[
a = 116592028(6.3) \times 10^{-10} \tag{18}
\]

There is strong interest on this subject since some...
M indirectly measures space-time dimension d at this scale we could not expect good sensitivity of our observables to d(L) for M L 1 if not for special reasons. In case of muon (g -2) data the reason obviously is unprecedented accuracy of experimental result, which partly compensates smallness of M L . Anyway we find it remains askable that roughly speaking any number of dimensions between 5 and 2 at a scale as small as 350 GeV is compatible with experimental data. This is to be compared with 10 - 10 5 bounds on = j 4 j from [23,24].

It seems, this is rather general situation, as can be seen comparing our results with that of [54,55]. Having just two-dimensional infrared avorviolating NP parameter space is enough to open up possibilities for rather low energy scale of New Physics.

Acknowledgments

The author acknowledges discussions with R. Fleischer and V. Orlovsky. The work is supported by the INTAS-CERN fellowship 06-1000014-6576 and partly by the grant for support of scientific schools NS-4961.2008.2. and RFBR Grant 08-02-91008.

Appendix A

To be self-contained we collect here explicit formulas used in the main text to compute the contour plots of interest.

1. The basic integrals are given by

\[I(s; \Delta y; \gamma) = \int_0^\gamma f(=\gamma; \exp(y)) \] \hspace{1cm} (A1)

and can be expressed in terms of Bessel functions of the second kind and functions in case of f(=\gamma; \) and it terms of and functions for f(=\gamma; \). The full expressions are rather cumbersome.

2. The short-distance function S 0 = S 0 W + S 0 H is given by

\[S_0^W = 16 m^2_w^2 Z \frac{d^4 p}{(2\pi)^4} \frac{1}{(p^2 + m^2_w)^2} \]

\[S_0^H = 4 \frac{m^2_w}{m^2_z} Z \frac{d^4 p}{(2\pi)^4} \frac{1}{(p^2 + m^2_w)^2} \]

with the result

\[S_0 = \frac{4x_t 11x_t^2 + x_t^3}{4(x_t 1 + 1)^2 \log x_t} \] \hspace{1cm} (A2)

where x t = m^2_z/m^2_w .

3. The SM one-loop contribution to the muon anomalous magnetic moment is given by the following Feynman integral

\[F_2^{SM} = 8e^2 x^2(1 + x) \frac{d^4 p}{(2\pi)^4} \frac{1}{(p^2 + x^2)^2} \] \hspace{1cm} (A3)

The function F 2 (L, \gamma) corresponds to the replacement \[\text{(6)} \] in this integral with the proper account of the loop momenta rescaling p = m p .

FIG. 1: Scale-dependent space-time dimension as a function of distance r in units of L, thin (red) line corresponds to the choice \(\text{(10)} \), thick (blue) line corresponds to the choice \(\text{(11)} \).

FIG. 2: Contour plot for the function \(s(L;d) \) with the choice \(\text{(10)} \). Contours correspond to \(s(L;d) = 1 \) 0.5 (dashed), \(s(L;d) = 1 \) 0.05 (thin) and \(s(L;d) = 1 \) (thick).
FIG. 3: The same as Fig. 2, for the choice (11).

FIG. 4: Contour plot for the function $w(L;d)$ with the choice (11). Contours correspond to $w(L;d) = 1$ (dashed), $w(L;d) = 0$ (thin) and $w(L;d) = 0$ (thick).

FIG. 5: The same as Fig. 4, for the choice (11).