An Exact Hairy Black Hole Solution for AdS/CFT Superconductors

Ding-fang Zeng

Institute of Theoretical Physics, Beijing University of Technology
(Dated: June 23, 2013)

We provide an exact hairy black hole solution to an n + 1 dimensional gravity-coupled complex scalar model. The solution has translational invariant horizon and tunable temperature. Free energy calculations indicate that, there are always temperature ranges in which the hairy black hole is thermodynamically stable against decaying into its no-hair counterpart. Using this solution as an AdS/CFT superconductor model, we get potentially useful critical temperature vs. dimensionless order parameter operator and conductivity-frequency relations typical of other similar models.

PACS numbers: 11.25.Tq, 11.10.Kk, 74.25.Fy, 04.20.Jb, 04.70.Dy

Studies in applied holographic theories, such as - nine temperature AdS/QCD models' building [1,2,3], AdS/CFT superconductor's description [4,5], or other quantum phase transitions' exploration [6,7,8], all call for solutions to the scalar model coupled with gravity,

\[S = \frac{1}{16 \pi G_N} \int d^{n+1}x \sqrt{g} \left(R - 2\Lambda \right) + \cdots \]

of the form

\[ds^2 = e^{2A} \left(dt - e^{\phi} \sqrt{g} \right)^2 + d\bar{z}^2 = u(t) \]

where, to this day people still have no exact analytical solutions of the desired form, even for the simplest potential \(V = m^2 \phi^2 \). As we know, the best known solutions in this area are [9] and [10]. The form can be derived out of higher dimensional AdS–Schwarzschild solutions through compactification. At the desired dimension its asymptotic is not AdS type. The latter's horizon has special topologies and the asymptotic is only locally AdS type [11]. Few days before this work is finished, we note [11] in the axi+, which provides nine temperature solutions to a soft-wall AdS/QCD model, but its temperature cannot be tuned freely for scalable potentials.

Differences to nd analytical solutions in this model is due to the non-linearity of the equations of motion, which follows by minimizing the action [11]

\[\nabla^2 A = 0 \quad \nabla^2 \phi = 0 \]

Hence, we still have to explore phase solutions since any non-trivial phase profile will cause the action deviate from minimum configuration. We checked that the scalar field equation of motion can be derived out of the three components of the Einstein equation. So only the first three of the above four equations are independent. Of them, the first one can be integrated once to give

\[A = \frac{1}{n} \ln |h^0| + \text{const.} \]

Usually given form of the potential function, even of the simplest quadratic type, to integrate equations (5)-(7) is in most cases, when we write down expressions for \(h \) with some asymptotics, substitute into eq(5) and get \(A \), into eq(6) and get \(\phi \), integrate and get \(\phi \), combining these things into eq(7), and V(u), we could only nd the potential function's form explicitly? or we may have different gains.

In most cases, when we write down expressions for \(h \) with some asymptotics, substitute into eq(5) and get \(A \), into eq(6) and get \(\phi \), integrate and get \(\phi \), combining these things into eq(7), and V(u), we could only nd the potential function's form explicitly? or we may have different gains.

\[h[u] = e^{\frac{u}{n}} \left(1 + \frac{n}{n+k} \right)^{\frac{k}{n+k}} \]

\[A[u] = \int \frac{1}{n} \ln \left(1 + \frac{n}{n+k} \right)^{\frac{u}{n+k}} \]

\[\Phi[u] = \int \frac{1}{n} \left(\begin{array}{c} \arctan \left(\frac{u}{n+k} \right) \\ n=1 \end{array} \right) \]

\[V[u] = \frac{n}{n+k} \left(\begin{array}{c} k^2 \sin^2 \left(\frac{\phi}{n+k} \right) + 2k \sin \left(\frac{\phi}{n+k} \right) \\ k \sin \left(\frac{\phi}{n+k} \right) \end{array} \right) \]

This means that we nd exact hairy black hole solutions to the complex scalar model featured by the potential [12]. Obviously, these solutions have tunable temperature and the same singularity structure as the usual AdS–Schwarzschild black holes with spatial–at-horizons. Although the potential function here is not so easily looking, the fact that it is periodical function of the main ar-
For small k, our potential has similar features as the standard model Higgs field does. The difference is, in the standard model, the Higgs field will uniformly sit at the global minimum of the potential, while the scalar field here has non-trivial spatial profile. From the black hole horizon to infinity, the field tries its best to climb up the local maximum of the potential, see Fig. 1. This constitutes a non-trivial hair of the black hole. Asymptotically, $V[\phi,\kappa] = \left(n \frac{1}{2}\right) + m_{eff}^2 \phi^2$.

$$m_{eff}^2 = \left(\frac{2}{n}\right)n(n-1)k^2$$

(15)

So near the AdS boundary, our model has little difference from the simple gravity-coupled scalar field theory with quadratic potentials. When $k < 2n$, the effective mass parameter (mass square) of the potential is negative. But if at the same time

$$\frac{r}{n} = \frac{n=4}{1} = \frac{n=4}{1} = \frac{n=4}{1}$$

(16)

this negative mass square will not lead to instabilities. Because in this case, the Breitenlohner-Freedman bound $m_{eff}^2 < r^2/4$ is always satisfied. When $k > 2n$, the effective mass square is positive. So for large k, $\phi = 0$ is a metastable point of the potential, see also Fig. 1.

Since the hair of the black hole breaks symmetries of the model associated with the phase rotation of the scalar field, coupling this scalar field to some $SU(1)$ gauge field will give us an ideal model of AdS/CFT superconductors. But before tuning to that topic, let us examine the thermodynamics of this solution further. Following reference[15], we calculate the entropy, temperature and energy of the solutions as follows:

$$S = \frac{V_n}{4G_N} \left(\frac{V_n^{1/4}}{u_0} - \frac{V_n^{1/4}}{u_0} \right), n = n$$

(17)

$$T = \frac{e^A h^0}{4 \cdot u_0} = \frac{n + k e^{-\pi}}{2n + k}$$

(18)

$$E = \frac{V_n}{8G_N} \left(\frac{V_n^{1/4}}{u_0} - \frac{V_n^{1/4}}{u_0} \right)e^{\pi A_0}$$

(19)

By adding boundary term and counter term to the action (16), and make strict holographic renormalization treatment, we will get similar results. It can be checked that, $\delta E = 6T_D S_{baryon; u_0}$. This is not a catastrophic. For example, in reference[16] the same question happens. In that reference, violation of the first law is attributed to some chemical potential associated with the scalar particle numbers, i.e. $\delta E = T_D + \delta N_{baryon; u_0}$. In the current paper, we think the same expansion helps.

$$E = \frac{V_n n}{8G_N} \left(\frac{V_n^{1/4}}{u_0} - \frac{V_n^{1/4}}{u_0} \right)e^{\pi A_0}$$

(20)

As a result, the free energy $F = E - TS$ of system reads

$$F = \frac{V_n n}{8G_N} \left(\frac{V_n^{1/4}}{u_0} - \frac{V_n^{1/4}}{u_0} \right)e^{\pi A_0}$$

(21)

Comparing this result with that of the no-hair counterpart, we see that, for $k < n$ case, referring to the right part of figure 2, the hairy black hole at lower temperature has lower free energy than their no-hair partners so the former is favored them dynamically at low temperatures; for $k > n$ case, referring to the right part the same goes, the hairy black hole at higher temperature have lower free energy so is favored them dynamically at high temperatures.
For $k < n$ models, if at high temperatures the system lies at the no-hair phase in which it is symmetric with respect to the U(1) phase rotation of the scalar ϕ, as the temperature lowers, it will undergo a phase transition and break the symmetry spontaneously, i.e., the scalar ϕ attains non-trivial profiles with specific phases. The phase transition temperature depends on n and k. Figure 3 displays this dependence explicitly, from which we easily see that increasing m_{ϕ} will increase the phase transition temperature. When translated into the dual ϕ theories, this may be a potentially useful result for looking for superconductors with higher critical temperatures. Of course, it should be noted that, m_{ϕ} in AdS/CFT models corresponds to the scaling dimension of order parameter operators in the Ginzburg-Landau superconductor models. For $k > n$ models, from the near horizon of the black hole, causality requires the perturbing field ϕ satisfy falling boundary condition,

$$a_x < e^{i\tau} \frac{\sin(\frac{\pi}{2} + \mu)}{\mu} \ln(u - \mu);$$

while in the asymptotically in time region, from the background field expressions and the perturbation, we can show that

$$a_x = a_x(0) + a_x(1)e^{(n + 1)u} + \cdots.$$

A condition according to the AdS/CFT dictionary, in the dual CFT side, $a_x(0)$ and $a_x(1)$ correspond to external field strength and the resulting current respectively, so the conductivity there can be calculated through

$$\frac{1}{E_x} = \frac{i}{a_x(1) a_x(0)}.$$

In the normal phase, 0, eq (24) can be changed into

$$\frac{d^2}{du^2} a_x + \frac{1}{2} e^{(2n + 1)u} a_x = 0; \quad d^2 \gamma = du = [he^{(2n + 1)u}]^2$$

where h and A should be given by setting $k = 0$ in eqs (10) and (11). For $n = 3$, this equation can be solved exactly

$$a_x = e^{i\gamma} \quad ; \quad \gamma = \frac{de^{2n u}}{e^{2n u} + 1}.$$

This solution is selected from two possibilities by the falling boundary condition. Expanding it into the form of (26) around $u = 1$, we find that for $n = 3$ case, the normal phase conductivity reads

$$\frac{(1/2)}{1} = 1.$$

For $n > 4$, we do not know how to solve eq (28) analytically. But numerics tell us that $1/2$ is not a solution.

In the superconducting phase, $E \neq 0$. In this phase even for $n = 3$, eq (24) cannot be solved analytically. But we can solve it numerically and get the conductivity approximately as

$$\frac{1}{E_x} = \frac{i}{a_x(1) a_x(0)}.$$

Figure 4 displays our numerical results of conductivities for some specific n, k and q values. Two features of the figure should be noted here. The first is, there is a function peak in the real part of the conductivities as the result of the same k and q values relation

$$\frac{1}{2} Re[(1/2)] = \frac{1}{2} - \frac{\pi}{2} dL.$$

\[^1\text{We thank very much to Dr/P. Professor C. P. Herzog to provide us his notebook on numerical details of the work } \text{from which we learned this technique.}\]
and the fact that imaginary part of the conductivity has a pole of the form $\text{Im} [(\omega / T)^n]$. This is just the usual definition of superconductivity, i.e., in finite DC conductivity. Note this infinity cannot be attributed to translation invariance, since in the calculation we used the background geometry. As results, the translation invariance is broken in principle, see reference [5]. The second is that, conductivities of different dimensional models behave hierarchically, $T_c^1 = T_c^2 = T_c^3$. Note to plot the conductivity curves of different dimensional models in the same figure and make them look clear enough, we multiply different numerical factors on the conductivities. On the other hand, our $n = 3$ result coincides with those based on AdS abelian-higgs models, such as [6,16,19,20,21], where is 4 result is similar to those based on D 3/5 brane models [22], see also reference [19]. On the second feature, our results for 4 dimensional models are similar to that of reference [19] so can be supported by that paper.

A little summary: we construct exact analytical solutions to an $n + 1$ dimensional gravity-coupled complex scalar field model, when the scalar field in this model is coupled to U (1) gauge field, the resulting system provides holographic descriptions for superconductors. We calculate conductivities in this model and find results typical of other holographic superconductors. But the superconducting mechanism in our model is not totally the same as that proposed by Gubser [4] in which the scalar field condensates due to its coupling with the gauge field. Our scalar field condensates due to its self-interaction, the potentials of which have the typical M exican hat shape. It is worth to note that existence of hairy black hole solutions as we provide in this paper does not violate the no hair theorem [23] as red by Hertog. The main reason is that our solutions do not satisfy the positive energy condition. Few months after the first version of this paper, reference [24] and [25] appears on arXiv. [24] used a method similar to us and construct a more hairy black hole solutions. While [25] proposed a new version of no hair theorem in which the existence of our solutions can be understood naturally.