MOLECULAR HYDROGEN DEFICIENCY IN HI-POOR GALAXIES AND ITS IMPLICATIONS FOR STAR FORMATION

Michele Fumagalli1, Marco R.Krumholz1, J.Xavier Prochaska1,2, Giuseppe Gavazzi3 and Alessandro Boselli4

Draft version June 24, 2013

ABSTRACT

We use a sample of 47 homogenized and high sensitivity CO in ages taken from the N.Obeyama a and BMA surveys to demonstrate that, contrary to common belief, a signifiant number (40\%) of HI-decient nearby spiral galaxies are also de cient in molecular hydrogen. While HI-decient galaxies by itself is not a su cient condition for molecular gas depletion, we nd that H\textsubscript{2} reduction is associated with the rem oval of HI inside the galaxy optical disk. Those HI-de cient galaxies with normal H\textsubscript{2} content have lost H\textsubscript{I} mainly from outside their optical disks, where the H\textsubscript{2} content is low in all galaxies. This finding is consistent with theoretical models in which the molecular fraction in a galaxy is de termined primarily by its gas column density. Our result is supported by indirect evidence that molecular de cient galaxies form stars at a lower rate or have dim er far infrared uxes than gas rich galaxies, as expected if the star formation rate is de termined by the molecular hydrogen content. Our result is consistent with a scenario in which, when the atomic gas column density is lowered inside the optical disk below the critical value required to form molecular hydrogen and stars, spirals become quiescent and passive evolving systems. We speculate that this process would act on the time scale set by the gas depletion rate and might be a rst step for the transition between the blue and red sequence observed in the color-magnitude diagram.

Subject headings: Galaxies: evolution / galaxies: ISM / galaxies: spiral / ISM: molecules / stars: formation

1. INTRODUCTION

A complete and coherent description of the detailed connection between a galaxy’s gaseous phase and its star formation is still lacking. This poses a signifiant limitation for studying galaxy evolution, even in the local universe. From an observational point of view, two different approaches have been adopted to address this fundamental topic. The rst takes advantage of high spatial resolution in ages to com pare directly the molecular and atomic phases of the interstellar medium (ISM) with recent star formation activities. The results (Wong & Blitz 2002, Kennicutt et al. 2003, Fumagalli & Gavazzi 2003, Bregel et al. 2003) suggest that stars form preferentially in molecular regions, as traced by di use CO emission. The second approach is more indirect, but relies on estimators for the star formation rate and atomic gas that can be easily collected for large samples. These projects statistically study the e ects of the atomic gas rem oval on star formation in cluster galaxies compared with elder galaxies. Results (Kennicutt & Kent 1983, Gavazzi et al. 2002, Koopmann & Kennicutt 2004, Gavazzi et al. 2005, Gavazzi et al. in prep.) show a signifi cant correlation between the atomic gas and the star formation: the latter is quenched in those galaxies which are HI de cient due to environ mental e ects.

Although this result can be interpreted in terms of HI feeding star formation (Boselli et al. 2001), it is possible that molecular hydrogen (H\textsubscript{2}) depletion also plays a critical role.

However, observations to date suggest that molecular hydrogen, which dominates the mass of the interstellar medium in the center of spiral galaxies, is not strongly a ected by environmental perturbations. Galaxies in rich clusters appear to have on average the same molecular content as elder galaxies (Stark et al. 1983; Kennicutt & Young 1983; Casoli et al. 1991; Boselli et al. 1997, 2002). This result is consistent with a simple theoretical argument based on the assumption that ram-pressure stripping is the dominant environmental process, a fact that, although not yet proved, is likely to be the correct interpretation for HI observations in the Virgo and Coma clusters (see a review by Boselli & Gavazzi 2003). According to this picture, a galaxy which travels at a velocity \(v_{\text{rel}}\) relative to the dense intergalactic medium (IGM) or intracluster medium (ICM) characterised by a density \(\rho_{\text{ICM}}\) looses its ISM at the escape velocity \(v_{\text{esc}}\) and density only if

\[
\rho_{\text{ICM}} v_{\text{rel}}^2 > \rho_{\text{ISM}} v_{\text{esc}}^2.
\]

This condition is not easily satis ed for gas in molecular hydrogen phase, which has densities up to \(10^5 \text{ cm}^{-3}\), and is usually strongly bound to the galaxy due to its proximity to the galactic center.

This theoretical argument seems to agree with observations of the CO abundance in member of the Virgo and Coma clusters. Using a sample of 47 Virgo and Coma galaxies, Stark et al. (1983) showed that the molecular fraction CO/H I increases towards the center of the clus-
ter, identified by the position of M 87. This is consistent with the removal of atomic hydrogen only from inner cluster galaxies, with no corresponding change in the molecular hydrogen content. With independent CO measurements, the same conclusion was reached by Kenney & Young (1986, 1988), who studied molecular hydrogen deficiency in datasets of 23 and 41 Virgo galaxies. Their analysis shows that the molecular content has not responded to the HI removal on time scales of 10^7 yr, i.e., it is unperturbed within the Virgo crossing time. Further, Casoli et al. (1993) pointed out that even in the Coma cluster, where the ram pressure is stronger than in Virgo, there is no correlation between the H2 mass and the atomic hydrogen content of individual spirals. Surprisingly, using the data collected by Kenney & Young (1986) with updated distances, Rengarajan & Iye (1993) found from a comparison of normalized H2 masses that some of the deficiency of molecular hydrogen holds among Virgo galaxies, as compared to the field. This result is in contrast with a series of papers by Boselli et al. (1997, 2002), who did not find any correlation between the HI and H2 deficiency on a large sample of 250 Virgo and Coma galaxies. Except some extreme cases of galaxies which have their molecular gas depleted and displaced (e.g., Vollmer et al. 2008), there is no strong evidence that cluster member galaxies have statistically less molecular gas than field galaxies.

This seems in contradiction with a coherent picture of the star formation in spirals. If stars really do form primarily in molecular gas, one might expect the quenching in the star formation activity to be connected with...
a molecular gas deficiency in H I poor galaxies. This hypothesis is partially supported by \cite{Fumagalli2008}, who, using a small sample of 28 images from the Nobeyama a CO survey \cite{Kuno2007}, nd so we hints of a possible depletion in the molecular content (see their Fig. 4 and 6). The aim of this paper is test for \(H_2 \) (de ciency by using homogeneous and high sensiti

\[L \text{H}_2 = L \text{H}_1 \leq 10^{11} \]

molecular hydrogen deficiency in \(\text{HI} \) poor galaxies. We have limited our galaxy sample to the subset with single dish data. Even for these galaxies, the reconstruction algorithm is biased against large scales \cite{Heffer2003,appA}; however, a comparison between the Nobeyama a and BIMA data indicates that the missing \(L \text{H}_2 \) is negligible compared to the total \(L \), i.e. the BIMA survey provides a reliable estimate of the integrated molecular hydrogen mass. When a galaxy is imaged in both the surveys, we use the Nobeyama a data.

For our analysis we will also compare the spatial distribution of molecular and atomic hydrogen; therefore we collect spatially resolved \(\text{HI} \) images from the THINGS survey \cite{Walter2008} and the VIVA survey \cite{Chung2008}. Since spatially resolved images are not available for all the galaxies in our sample, while studying surface density profiles we restrict our analysis to a subsample of 20 galaxies (see Table 1).

\subsection{A multifrequency analysis}

The comparison between the molecular distribution, the atomic hydrogen content and the star formation activity requires some preliminary transformation actions from observed to physical quantities. In this section we describe this issue.

\subsection{The molecular hydrogen}

The \(H_2 \) molecule has no permanent dipole so we must infer its abundance indirectly by assuming that the conditions of the ISM where the \(H_2 \) forms are similar to those in which other molecules are synthesized. A good tracer for \(H_2 \) is CO because the intensities of its rotational transitions are correlated to the molecular column density. This is based on a simple argument which relates the velocity inferred from the line profile with the virial velocity of molecular clouds \cite{Dickman1987,Solomon1987}.

The Nobeyama a and BIMA surveys image the CO J = 1, 0 transition at 115 GHz, which is excited above 5.5 K in cold gas at moderate density. We infer the molecular hydrogen column density by adopting a conversion factor \(X \) (cm\(^{-2}\)) (K km/s\(^{-1}\))

\[\log X = 0.38 \log L_\text{H}_2 + 24.23 \]

where \(L_\text{H}_2 \) is the \(H_2 \) (band luminosity) and \(L_\text{H}_1 \) is retrieved from GOLDMine \cite{Gavazzi2003} and SIMBAD.
This calibration accounts for the dependence of X on themetal abundance because the H band luminosity correlates with galaxy metallicity (e.g. Boselli et al. 2002). The systematic uncertainty on the X factor derived using eq. (2) ranges from 0.65 to 0.70 dex for the luminosity interval 10^{10} to 10^{11} L. Other unknown dependencies can increase this error. The nominal conversion for the molecular hydrogen surface density is:

$$H_2 \left[\text{M}_{\odot} \text{cm}^{-2} \right] = 2 m_p X F_{CO}; \quad (3)$$

where m_p is the proton mass in M$_{\odot}$ and F_{CO} is the CO ux in K km/s. This conversion does not include the mass of helium, but its contribution may be included trivially by multiplying the derived surface density by 1.36. The integrated CO ux (F_{CO} in Jy km/s) is converted into a total H_2 mass (M_{H_2} in M$_{\odot}$) using (Helfer et al. 2003):

$$M_{H_2} = 3.92 \times 10^{-17} F_{CO} D^2; \quad (4)$$

where D is the galaxy distance in Mpc from GOLDMine and Tully (1994).

2.2.2. The atomic hydrogen

We estimate the atomic hydrogen content via 21 cm emission lines. Single-dish H I surveys, including the ALFALFA (Cignoni et al. 2005) or the PASS (Meyer et al. 2004) surveys, do provide the H I integrated ux for all the galaxies in our sample. Collecting different H I data for a single galaxy, we notice a significant dispersion in the measured H I ux, even up to a factor of 2. Because we are interested in a relative comparison between galaxies rather than an accurate determination of the absolute H I mass, we retrieve all the H I uxes from the HyperLeda database (Paturel et al. 2003). Even if more recent ux measurements have better sensitivity and provide a more accurate determination of the total H I abundance, this approach gives an homogeneous dataset (Paturel et al. 2003). As discussed in Appendix A, a particular choice for the observed ux does not affect our analysis.

The integrated H I ux (F_{HI} in Jy km/s) is converted into a total mass (M_{HI} in M$_{\odot}$) using

$$M_{HI} = 2.36 \times 10^{5} F_{HI} D^2; \quad (5)$$

where D is the galaxy distance in Mpc from GOLDMine and Tully (1994). The H I surface density profile is computed from THINGS and VLA in ages according to the conversion

$$H I \left[\text{M}_{\odot} \text{cm}^{-2} \right] = m_p N_{HI}; \quad (6)$$

where N_{HI} is the column density in cm$^{-2}$ derived from the ux F_{HI} (Jy/beam km/s) using the following calibration (e.g. Walter et al. 2003):

$$N_{HI}[10^{18} \text{cm}^{-2}] = 1104 \times 10^2 \frac{F_{HI}}{B_{min}} \frac{B_{max}}{B_{min}} \quad (7)$$

with B the beam FWHM in arcsec. As with H_2, these surface densities do not include the mass of helium.

2.2.3. The star formation activity

In the ISM of galaxies, the H emission line is caused by the recombination of atomic hydrogen which is ionized by the UV radiation of O and B stars. Therefore H_1 is a tracer of recent, massive ($M > 10^8 M_\odot$) star formation activity on time scales of 4 10^6 yr (Kennicutt 1998). For all but the objects, we retrieve from the literature (GOLDmine; Kennicutt & Kent 1983; Jam es et al. 2014) the H equivalent width (EW), a tracer of the specific star formation rate (Kennicutt 1983).

Since the narrow band Hα used to image the H emission line is large enough to collect the ux from the [N II] line, the measured EW overestimates the H ux. Unfortunately, the ratio [N II] = H_1 is not available for all of the galaxies in our sample and we can only apply the average correction [N II] = H_1 = 0.53, as suggested by Kennicutt (1993). However, this value underestimate the [N II] ux from the bulges of galaxies that host active galactic nuclei (AGN), where the nuclear [N II] can be even stronger than the H_1. In addition, even if the nuclear emission were corrected using a suitable factor, it would not be possible to disentangle between the H_1 ux due to star formation from that due to AGN ionization. Our sample, composed of massive spirals, is likely to be affected by this contamination (Decarli et al. 2003).

Another effect to consider is dust absorption. In principle one can estimate the extinction by measuring the H_1 to H_2 $uxes$ (case B recombination). These values, however, are unknown for the majority of our galaxies. One could apply a standard dust extinction (e.g. A = 1.0 mag, Kennicutt & Kent 1983) but this would not change the relative distribution of the measured ux. Instead, we simply keep the measured $H_1 + [N II]$ EW as an approximation for the specific star formation rate. The reader should keep in mind that a large uncertainty is associated with these measurements, in addition to the error in the ux measurement.

2.3. Global uxes and surface brightness profiles

We compute total CO uxes from the Nobeyama images using the IRAF task qphot by integrating the emission in an aperture which encloses the entire galaxy. Fluxes from the BIMA survey are retrieved from (Helfer et al. 2003), who list values computed within a square region. We retrieve the H I ux from HyperLeda, as previously discussed. We compute the surface brightness profiles for CO and HI using an IDL procedure that averages the ux into elliptical annuli characterized by three parameters (the galaxy center, the eccentricity and the position angle); we adopt a step along the major axis of 0.5 arcsec, roughly 1/3 of the spatial resolution of the CO images from the Nobeyama survey. All the profiles are corrected for the projection effect using the galaxy inclination (HyperLeda) on the plane of the sky. For each galaxy we finally obtain the H I and H$_2$ surface density profiles in M pc$^{-2}$.

3. Analysis

To test for molecular hydrogen depletion in our dataset, we compare the H$_2$ mass in a sample of isolated galaxies with that in perturbed galaxies. Our isolation criterion is defined by the atomic hydrogen content. Because the edges of the HI disk are weakly bounded, any perturbation can easily remove atomic gas from a galaxy, lowering its HI mass. That the
Molecular hydrogen deficiency in HI poor galaxies

H I deficiency should trace environmental effects is supported by [Giovanelli & Haynes 1985], who show that H I deficiency increases toward the center of a cluster. In these regions the IGM is dense, the cluster potential well is deep and the number of galaxies is high so that environmental processes are very effective. We expect H I deficiency to be a useful measure of disturbance even if environment is not the dominant means of gas removal. For example, if star formation feedback is a primary cause of gas loss, this too will preferentially remove the low (density) loosely bound H I.

Formally, the atomic gas depletion is quantified using def_{HI}, the deficiency parameter, defined by [Haynes & Giovanelli 1984] as the logarithmic deficiency between the expected HI mass in isolated galaxies and the observed value:

$$def_{HI} = \log M_{HI,\text{exp}} - \log M_{HI,\text{obs}}$$

The reference mass $M_{HI,\text{exp}}$ is computed as a function of the optical radius at the 25th mag/arcsec2 in B band (retrieved from NED and HyperLeda) using the co-eclipses recently updated by [Solanes et al. 1993], which are weakly dependent on the morphological type. Several sources of uncertainty affect the determination of def_{HI}: the error on the observed H I mass, the statistical uncertainty on the calibrated co-eclipses and the determination of the optical diameter. It is hard to quantify a value for the intrinsic uncertainty, but a comparison of the values derived for a single galaxy using different data available in the literature suggests a mean dispersion of 0.2-0.3 dex on the H I deficiency.

Figure 4 shows the distribution of the H I deficiencies for our sample. If we arbitrarily consider unperturbed those galaxies which have lost less than a factor of 2 in their H I mass ($def_{HI} < 0.3$), our subsample of isolated galaxies is composed of 25 objects with a mean deficiency $def_{HI} = 0.045 \pm 0.27$. This is consistent with zero. Moreover, we point out that the dispersion on the mean value is within the deficiency threshold of 0.3 dex.

Only 4 galaxies lie at $def_{HI} < 0.3$, indicating that our reference sample is not dominated by galaxies with low HI mass above the average. The remaining 22 galaxies have $def_{HI} > 0.3$, spanning the entire range of moderate and high deficiency (0.3-1.2 dex).

In a similar way, we quantify a possible reduction in the molecular hydrogen content using the H_2 deficiency parameter def_{H_2} ([Boselli et al. 1997, 2002]):

$$def_{H_2} = \log M_{H_2,\text{exp}} - \log M_{H_2,\text{obs}}$$

The value for the reference mass $M_{H_2,\text{exp}}$ is computed from the observed correlation between the H_2 and the HI band luminosity ([Boselli et al. 1997] for isolated galaxies ($def_{H_2} < 0.3$). This definition is based on the natural scaling of the molecular gas abundance with the size of a galaxy, i.e., more massive spiral galaxies are more gas rich. Although our sample covers a small range in luminosity, owing to the good quality of our data (see section 4.1), we choose to compute a new reference mass with a least square fit:

$$\log M_{H_2,\text{exp}} = 0.50 \log L_H + 3.98$$

Since the dispersion (ms) in the calibration is 0.2 (see also Fig. 1b), galaxies with $def_{H_2} < 0.2$ cannot be distinguished from normal galaxies. In the following analysis, we therefore consider a galaxy with H_2 deficiency only if $def_{H_2} > 0.2$.

This criterion is arbitrary. It does have the virtue, though, of nicely dividing our sample into classes which have a comparable number of objects. A sub def_{H_2}, it is hard to quantify an uncertainty for def_{H_2}. Deiciency is a relative quantity, so the level of uncertainty for def_{H_2} is likely to be significant lower than for the absolute H_2 mass. The error of 0.7 dex we quoted in equation (2) is therefore an upper limit to the scatter in def_{H_2}. A more reliable estimate of the error is the dispersion of 0.2 dex we measure in def_{H_2} for the control sample of isolated galaxies (Fig. 1b). Since random error in computing M_{HI}, for example, due to galaxy scatter...
Figure 2. Comparison between calculated def_{HI} and def_{gas} values for our sample. The vertical dashed line corresponds to $\text{def}_{\text{HI}} = 0.3$ dex, the value below which a galaxy is considered unperturbed; the horizontal line represents $\text{def}_{\text{HI}} = 0.2$ dex. The absence of galaxies in the upper left quadrant suggests that HI deficiency is only a necessary condition for H_2 deficiency.

Figure 3. Average H_2 profiles in bins of normalized radius. The dashed line is computed by excluding HI-rich galaxies with $\text{def}_{\text{HI}} < 0.3$. The solid line is the average profile in Figure 2.

The quantities def_{HI} and def_{gas} can only broaden the intrinsic dispersion of H_2 masses at $x = L_1$, our measured scatter of 0.2 dex sets a more realistic upper limit on the size of random errors. The one caveat is that this value may neglect systematic uncertainties if unperturbed and perturbed galaxies have different values of luminosity and metallicity, for example, and thus systematically different values of X. However, we do not observe or expect any obvious trend of these quantities as a function of def_{HI} or def_{gas}.

Table 2: Completeness for the surface density profiles.

<table>
<thead>
<tr>
<th>Class</th>
<th>Objects</th>
<th>% Class</th>
<th>Total</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-deficient</td>
<td>10</td>
<td>40%</td>
<td>21%</td>
<td>Circle</td>
</tr>
<tr>
<td>Non-gas-rich</td>
<td>8</td>
<td>38%</td>
<td>17%</td>
<td>Line</td>
</tr>
<tr>
<td>HI-deficient</td>
<td>5</td>
<td>38%</td>
<td>11%</td>
<td>Square</td>
</tr>
<tr>
<td>Gas-deficient</td>
<td>5</td>
<td>56%</td>
<td>11%</td>
<td>Triangle</td>
</tr>
</tbody>
</table>

a % Class is defined as the number of galaxies with HI maps in each class over the total number of objects in that class.

b % Total is defined as the number of galaxies with HI maps in each class over 47, the number of objects in the entire sample.

c Symbols used for each class in the plots throughout the paper.

Figure 4 shows a comparison between def_{HI} and def_{gas} in our sample. The vertical dashed line corresponds to $\text{def}_{\text{HI}} = 0.3$ dex, the value below which a galaxy is considered unperturbed; the horizontal line represents $\text{def}_{\text{gas}} = 0.2$ dex. Inspecting this plot, the first striking result is that 9/22 of the galaxies with $\text{def}_{\text{HI}} < 0.3$ have def_{gas} values greater than 0.2 dex, while the region characterised by $\text{def}_{\text{HI}} > 0.3$ and $\text{def}_{\text{gas}} = 0.2$ is almost empty. This distribution proves the existence of HI-deficient gas in a significant number of galaxies which are HI poor. This is a consequence of HI deficiency and H_2 deficiency do not follow a tight correlation, and this is not surprising. In fact, we do not expect this to lead to the HI gas in the same way on the H_2 gas which is more strongly bound. Rather, a correlation is evident that galaxies lie in three regions roughly defined by our criterion of isolation and molecular deficiency (dashed lines). Based on Figure 2, we divide our sample into three classes: unperturbed or non-HI-deficient galaxies ($\text{def}_{\text{HI}} < 0.3$ and $\text{def}_{\text{gas}} < 0.2$), HI-deficient galaxies ($\text{def}_{\text{HI}} > 0.3$ and $\text{def}_{\text{gas}} < 0.2$) and galaxies which are only HI-deficient ($\text{def}_{\text{HI}} > 0.3$ and $\text{def}_{\text{gas}} < 0.2$). This classification should not be considered strict, since galaxies are distributed continuously rather than in distinct populations, but it is useful for the analysis. We test the robustness of our result by changing the isolation criterion in the range $\text{def}_{\text{HI}} = 0.1$ to 0.4 and recomputing def_{HI} after that a new calibration has been derived. We find that the distribution in Figure 2 does not change significantly.

Since the definition of the molecular gas deficiency relies on Eq. 10 which sets the reference mass, the behaviour shown in Figure 2 could be an artifact imposed by this calibration. We further explore the robustness of a HI-deficient population by studying the HI deficiency with surface density gas profiles, which is independent from the calibration of $\log M_{\text{HI}}$. In Figure 5, we show the average HI mass in bins of normalized radius R.

Note that the gas is defined in Table 1. Details on the completeness in each class are provided in Table 3. By comparing the values for the

5 This quantity is well defined under the hypothesis that the stellar disk is not truncated during the perturbation. Clearly this is not the case for tidal interactions. In our sample, NGC 3351 is the galaxy most likely to be affected by tidal stripping. However, we note that a value for R_{25} larger than what we have adopted would shift the surface density profile at lower R_{25}, enhancing the separation between unperturbed and gas deficient galaxies.
three classes of galaxies (non-decent with circles, gas-decent with triangles and HI-decent with squares), it is evident that gas-decent galaxies have the lowest molecular gas column densities, while HI-decent and non-decent galaxies exhibit a similar behavior. The dashed line in Fig. 3 shows the average profile excluding those galaxies with $\text{def}_{\text{HI}} < 0.3$. The similarity of this profile to that of the full non-decent sample (circles) indicates that the observed difference in H_2 content between the three galaxy classes is not an artifact enhanced by the presence of gas-rich galaxies in our sample. Based on an independent method, Fig. 3 confirms the existence of H_2 (decent) galaxies in 40% of the HI-poor galaxies and 20% of all the galaxies in our sample. As discussed in the next section, these values should be regarded as lower limits.

4. Discussion

4.1. Comparison with previous studies

The first issue that we would like to address is why previous studies, based on large CO surveys, did not reveal a population of H_2-decent galaxies. As discussed in the introduction, several studies (Stark et al. 1988; Kenney & Young 1988, 1989; Casoli et al. 1991; Boselli et al. 1997, 2002) based on large samples both in the VIMOS and in the COMA clusters did not show any evidence for a molecular gas decent. As discussed by Boselli & Gavazzi (2008), some biases in the previous works; for example, a constant conversion factor was often assumed or sample selection criteria which prefer CO-rich galaxies. Of course, our sample has also been selected to have IRAS μJy at 100 μm. By comparing the 100 μm μJy with our def_{HI}, in Figure 4, we notice that gas-decent client show systematically lower 100 μm μJy, therefore, we might miss a significant fraction of molecular poor galaxies.

Based on this work, we can identify two additional reasons for why previous studies failed to detect the molecular decent: the completeness in the UX sampling and the homogeneity of the data. While observing at a single dish, the integration time required to detect the CO UX is very high (120 μm minutes at a 12m telescope) and several observations are required to image the entire galaxy. It has only recently become possible to produce CO maps in a reasonable observing time, thanks to the availability of mid-beam receivers that reduce the number of pointings required to fully map the entire disk. Due to these technical limitations, previous studies were based on the observation of one position per galaxy plus one or two positions centered along the major axis. The total CO UX was then recovered by interpolating with an exponential model, a procedure that inevitably gives only a rough estimate of the proper H_2 mass. By comparing the integrated CO UX from Kenney & Young (1988) and GOLDMine with the Nobeyama A and BMA data, we find a dispersion of up to 1 dex. In contrast, by comparing galaxies in common with the BMA and Nobeyama surveys, the observed discrepancy in the total mass is less than 0.4 dex. Therefore, we believe that the data used in previous studies suffer from fluctuations larger than the observable H_2 decent (< 0.6 dex in our sample). Another possible problem is related to the homogeneity of the sample. To increase the statistics, earlier studies often combined CO data from surveys with different sensitivities and diverse techniques to recover the integrated UX, increasing the relative dispersion in the observed H_2 mass. We attribute the fact that the H_2 decent has remained hidden in previous analysis to the combination of these two effects. On the contrary, based on high quality and homogenous data from the BMA and Nobeyama surveys, our work allows for a determination of molecular gas decent.

4.2. The observed distribution in the H_2 decent

The observed distribution in def_{HI} deserves a detailed analysis. In particular, we are interested in understanding why H I decent is a necessary but insufficient condition for H_2 decent and what the fundamental difference is between galaxies which are only HI-decent and galaxies which are also molecular gas decent. The answers to these questions lie in the physics that governs the H_2 formation. Molecular hydrogen is synthesized in spiral disks through the interaction of atomic hydrogen with dust grains, whereas it is destroyed by the UV radiation field. The balance between these processes determines the ratio of atomic to molecular hydrogen. In a series of recent papers, Krumholz et al. (2008, 2009) investigate the problem of atomic to molecular ratio with a model that includes the treatment of H_2 formation, its self-shielding, and the dust shielding. According to their prescription, the molecular fraction in a galaxy is determined primarily by the product of its hydrogen column density and metallicity. Under the assumption of a two-phase medium (Wilson et al. 1995), the results are largely independent of the UV UX because a change in the UV UX produces a compensating change in the H I density. Hence, the effects of UV radiation field are largely cancelled out. For the purposes of our analysis, the most important prediction of the model by Krumholz...
et al. is that the fraction of the gas in molecular form increases as the total gas column density \(\rho_{\text{gas}} = n_{\text{HI}} \times \rho_{\text{HI}} \) and the metallicity \(Z \) increases, providing a large enough shield against the photodissociation. In agreement with what is observed in local galaxies, they found that the H\(\text{I} \) column density is expected to saturate at a value of \(10^2 \text{ pc}^{-2} \). Based on the works by Krumholz et al., it is natural to study the behaviour of the total gas column density in our sample to understand the nature of the H2 (de ciency).

Figure 5 shows the average total gas surface density profiles of the normalised galactocentric radius. Inside the optical radius, the total gas content of the H\(\text{I} \) (de ciency galaxies (squares) is the same as that of the unperturbed galaxies (circles), while gas (de ciency galaxies (triangles) have a lower total gas column density. This behaviour reflects the observed atomic and molecular gas content seen in Fig. 4, yet add new insights into the nature of the H2 (de ciency). Gas (de ciency galaxies have a low gas column density too low to shield the molecules from photodissociation, while H\(\text{I} \) (de ciency galaxies have normal gas content inside their optical radii, which allows the production of molecular hydrogen as in unperturbed galaxies. Indeed, gas (de ciency galaxies lie below the critical shielding column density of 10 M pc\(^{-2}\) while unperturbed and H\(\text{I} \) (de ciency galaxies lie above this threshold. As in Fig. 3, we also plot the average gas profile excluding galaxies with \(\text{def}_{\text{HI}} > 0.3 \) (dashed line): the consistency of the profiles with or without H\(\text{I} \) rich galaxies excludes any bias in the mean value towards high column density. Inspecting the individual H\(\text{I} \) profiles, we noticed that NGC 4321 exhibits an unusual high column density. At this point, we have offered an interpretation for why the high column density in H\(\text{I} \) (de ciency galaxies is only a necessary condition for the existence of H2 (de ciency in H\(\text{I} \) poor galaxies, but a new question arises: if unperturbed and H\(\text{I} \) (de ciency galaxies have a comparable gas column density, why do they have different values of \(\text{def}_{\text{HI}} \)? The analysis presented in Fig. 5 provides the answer. In this plot we show the average H\(\text{I} \) surface density profiles in bins of the normalised galactocentric radius up to two times \(R_{25} \). As for Fig. 4, inspecting the individual H\(\text{I} \) profiles, we noticed that NGC 4321 exhibits an unusual high column density. To test if this is relevant for our analysis, we overplot with open squares a new H\(\text{I} \) profile excluding this galaxy. This profile is no longer fully compatible with the one observed for non (de ciency galaxies. It is also evident that the surface density profiles for H\(\text{I} \) (de ciency and gas (de ciency galaxies exhibit a different behaviour. The form er rises towards the center, approaching the gas column density observed in unperturbed galaxies, while the latter remains at the lowest observed column density at all the radii. Assembling the profile for unperturbed galaxies serves as a template for how the atomic gas is distributed in spiral galaxies, H\(\text{I} \) (de ciency galaxies have a significant residual quantity of gas towards the center that allows the H2 formation, but have much less H\(\text{I} \) at larger radii. Therefore, the main contribution to \(\text{def}_{\text{HI}} \) comes from the outer part of the disk where the H\(\text{I} \) profile rapidly declines. Gas (de ciency galaxies have an H\(\text{I} \) column density that is reduced relative to that of unperturbed galaxies in both their inner and outer disks and it is only this reduction in the H\(\text{I} \) content from the inner disk that gives rise to H2 (de ciency. The dashed line in Fig. 6 shows that the observed behaviour is not driven by H\(\text{I} \) rich galaxies.
Molecular hydrogen deficiency in H I poor galaxies

In Figure 3 we show the ratio of the molecular to atomic hydrogen as a function of the total gas column n density. In this plot, all systematics disappear between the classes of galaxy disappear. Since we are exploring the high density regions, the fact that even gas-de cient galaxies show the same behaviour in non-perturbed and HI-de cient galaxies suggests that molecular formation is a local process within a galaxy and that the relevant local variable is column density. The solid lines in Figure 3 are the expected values of molecular fraction from the model by Krumholz et al. (2003). The model is dependent on the metallicity, so we consider a lower ([O/H] = -0.4) and an upper ([O/H] = 0) value that reasonably correspond to the range of metallicity observed in our sample. There are some approximations that limit the robustness of the comparison between the data and the model. First, the density considered in the model is computed assuming the gas phase, which may not hold in perturbed galaxies; second, we average the gas column density on physical scales that contain several molecular complexes, while the model is formulated for a single cloud. Despite these limitations, there is a satisfactory agreement between data and the model.

Finally, Figure 4 is useful to stress once again the main result of our analysis: galaxies which suffer from HI depletion inside the optical disk are on average shifted at lower column density where the production of H2 becomes inefficient.

4.3. H2 deficiency and star formation

Our analysis offers a possible solution to the current inconsistency in studies of the star formation and galaxy environment. In fact, the observed molecular deficiency is the missing link between the quenching of the star formation rate (SFR) in H I-de cient galaxies (e.g., Gavazzi et al. 2002) and the fact that the bulk of the stars form in molecular regions (Wong & Blitz 2002; Kennicutt et al. 2003; Fumagalli & Gavazzi 2008; Bigiel et al. 2008). Our simple picture is that, when perturbations reduce the atomic hydrogen column density below the threshold required to produce the molecular hydrogen, star formation will be suppressed.

We can test this hypothesis by comparing in Figure B the integrated atomic and molecular hydrogen content with our indicator for the star formation activity. The top (left panel) reproduces the well-known trend (e.g., Gavazzi et al. 2002) between H I deficiency and the quenching of star formation activity, measured through the H + N II/EW. Gas-deficient galaxies (triangles) clearly exhibit a lower specific star formation rate than unperturbed (circles) and H I-de cient galaxies (squares). In the top (right panel), we plot the H + N II/EW versus defH2. Two distinct behaviours can now be identified: molecular hydrogen deficient galaxies (triangles) have their star formation rate strongly suppressed with respect to molecular rich galaxies (squares and circles). Comparing both the top panels, we conclude that the trend between defH2 and the star formation rate is in reality a reversion of the link between defH2 and defH I w/R defH2, and the star formation rate. In more detail, looking at the galaxies with defH2 = 0.5 it appears that the H I/de cient galaxies can have star formation rates equal to the values observed in non/de cient galaxies, while gas-deficient galaxies have the lowest H + N II/EW. The dispersion observed in the top (left panel) can be interpreted as being primarily a product of the observed range in the molecular gas deficiency: not all H I-de cient galaxies are molecular deficient and thus not all of them have suppressed star formation. This degeneracy is removed by directly comparing the H + N II/EW with the defH2. Because we end the same result by comparing the 100 kpc luminosity normalized to the H-band luminosity with both defH2 and defH I (bottom panels), we are confident that dust extinction or [N II] contamination do not significantly affect our conclusions.

5. Summary and Conclusion

Using high sensitivity and high resolution CO images from the Nobeyama and the BIMA surveys, we have studied molecular hydrogen deficiency in spiral galaxies. Our results and conclusion are summarized as follows.

1. Comparing the total masses of molecular and atomic hydrogen, we detect H2 deficiency in a subset of galaxies which are H I poor. The same result is found by studying directly the H2 surface density profiles. We observe that molecular gas deficiency is associated with the H I reduction inside the optical disk. The deficiency in the atomic hydrogen is a necessary condition for the molecular gas deficiency, but the defH2 parameter spans a wide range of values even in galaxies which are H I-de cient.

2. In fact, there are H I poor galaxies which have a non-atomic H2 content.
and gas deficient galaxies. This suggests that the total gas column density, or something strongly correlated with it, is the primary factor in determining the molecular content of a galaxy. In this picture, a galaxy moves from H I deficient to gas deficient when it loses enough gas inside its optical disk to bring the gas column density below the critical value of \(10^8\) pc\(^{-2}\) required for H\(_2\) to be present. This behaviour is quantitatively consistent with the models of Krumholz et al. (2008, 2009), albeit with significant uncertainties.

Since the bulk of the star formation seems connected with the molecular gas, when perturbations reduce the atomic hydrogen column density below the threshold required to produce molecular hydrogen, star formation is suppressed. Studying the H + [N II] E.W. or the 100 m\(^{-1}\) luminosity, we show that H\(_2\) (deficient) galaxies have less star formation than what is observed in H\(_2\) (normal) galaxies and that the well-known trend between the H I deficiency and the star formation rate most likely reflects a physical connection between molecular hydrogen depletion and star formation activity.

All together, these results corroborate a picture in which the gas phase as a whole feeds the star formation activity. The atomic hydrogen is the essential and primary fuel for the formation of molecular hydrogen that sustains the bulk of star formation activity. When environmental processes or feedback are able to reduce the atomic gas inside the optical disk, the H I column density drops below the critical column density required for molecular hydrogen formation and star formation is quenched. This scenario is supported on cosmological scales, where the H I content in galaxies appears to be unchanged for the past 10 Gyr (Prochaska & Wolfe 2008). This suggests that the global star formation rate is driven by the accretion of fresh gas from the IGM. In addition, our analysis explains how environmental perturbations or galaxy feedback, which remove the atomic gas, can suppress the star formation of the H\(_2\) and stars. The behaviour seen in the innermost bin \((0 < R < 0.25)\) of Figures 3, 5 and 6 allows to rule out the hypothesis that AGN feedback is the dominant process responsible for the gas depletion. In fact, gas is almost unperturbed in the galaxy center. This is expected in our sample where 7/9 of gas deficient galaxies belong to the Virgo cluster or the Coma 1 cloud in which gas stripping is the most efficient process (Boselli & Gavazzi 2008; Boselli et al. 2008).

Ongoing CO surveys as HERACLES by Leroy et al. (in prep) or JCM T, the Nearby Galaxies Legacy Survey by W. Ilon et al. 2008), will soon provide larger samples to test our results. A preliminary comparison with the results published by W. Ilon et al. 2008 appear to support our work. Looking at their Table 4, the four listed galaxies show from the top to the bottom decreasing values of SFR and CO J:3 2 luminosity; consistently, we nd for them an increasing value of def\(_{HI}\). If confirmed, our results support the argument that the bulk of star formation is connected with the molecular gas phase. Moreover, the ability to derive the molecular gas content starting from an observed H I distribution will provide a useful way to correct the star formation rate expected from local star formation laws (Kennicutt 1998; Bijaoui et al. 2008), including the effect of the molecular
gas de ciency which suppresses star formation in rich clusters or in interacting galaxies.

Our analysis leaves open a fundamental question on the implications that H_2 de ciency might have for galaxy evolution. In the standard scenario where star formation is supported by cold gas infall towards the inner part of the galaxy halo (Boissier & Prantzos 1999; Dekel & Birnboim 2006), it is fascinating to think that, when the gas is halted, the gas is devoured by ongoing star formation. The galaxy depletes its gaseous reservoirs and turns into a quiescent system (van den Bergh 1976). This process might explain a rst step for the transition between the blue and red sequence in the color-magnitude diagram. Interactions with the intergalactic medium might thus be an alternative process to AGN feedback or galaxy mergers to explain the departure of star forming systems from the blue sequence. In our scenario, two time scales govern this migration, one set by the atomic gas depletion and the other related to the response of the star formation activity to the gas removal. The rest varies according to the physical process responsible for the H I gas removal, but in this phase the galaxy is still forming stars (e.g. Boselli et al. 2006). The second is a relatively short time scale, at most set by the gas consumption through star formation (~ 2 Gyr, Boselli et al. 2006), but more likely connected with the much shorter life time of the GMCs. This second phase is consistent with a rapid evolutionary path in the color-magnitude diagram. However, it has been proven that dwarf galaxies can turn into dwarf ellipticals within ~ 2 Gyr in the local universe (Boselli et al. 2003). It is challenging to prove that massive spirals can turn into giant spirals just as a consequence of gas removal through interactions with the cluster IGM. In fact, their angular momentum would be fairly conserved in this kind of interaction. Major mergers as those dominating at higher redshifts must be invoked (Faber et al. 2007).

We thank A. Chung, J. van Gorkom and J. Kenney for their kind permission to use H I maps from V IVA, prior to publication. M. F. is grateful to B. Devecchi, S. Falbello, S. Colombo and S. Callegari for helpful suggestions and useful discussions. Support for this work was provided by the National Science Foundation through grant AST-0807739 (to M.R.K) and by NASA, as part of the Spitzer Space Telescope Theoretical Research Program, through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology (to M.R.K.). JXP is supported by NSF grant (AST-0709235). This research has made use of the G O L D M e Database. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. IRAF is the Image Analysis and Reduction Facility made available to the astronomical community by the National Optical Astronomy Observatories, which are operated by AURA, Inc., under contract with the U.S. National Science Foundation.

APPENDIX

H I FLUXES

As discussed in Sec. 2.2.1, the HI ux es quoted in the literature for individual galaxies are subject to discrepancies which in some cases are not negligible. To show that our results are independent of a particular choice for the HI ux es, we compute di erent sets of de H I param eters using uxes from ALFALFA, THINGS, V IVA and [Springob et al. 2005]. Figure 4 shows a comparison of these values with the HI de ciency computed from HyperLeda uxes adopted in our analysis.

Inspecting the left panels, we notice that de H I computed from ALFALFA and V IVA is in agreement with our values. Because these two surveys provide HI uxes in the Virgo cluster where the most HI de cient objects reside, we conclude that de H I for these galaxies is not e ected by protostellar uctuation. On the contrary, looking at the right panels, we notice that low HI de ciency systems are set apart from the rest. Since only a few galaxies at low de ciency are available in ALFALFA or V IVA, an additional comparison is almost impossible and it is di cult to further discuss this di erence. However, assuming that HyperLeda uxes su er from a systematic e ect, we should correct our de H I towards even lower values and galaxies we classify as non-de cient remain in this class. This is not the case for NGC 5236 and NGC 6946, the two outliers visible in the bottom right panel. However, these galaxies are more extended than the primary beam mapped by THINGS and we are con dent that our value for de H I is more accurate. This comparison con rms that, despite the uctuation in the de H I parameter, the nal distribution for the HI de ciency and thus our analysis are not signi cantly a ected by a particular choice of the HI uxes.

REFERENCES

This value comes from the ratio of gas surface density and star formation rate surface density which is assumed constant. However, gas recycling may increase gas up to 40% and the actual time scales may be longer.
Fig. 9. Comparison between the HI (de)ciency computed using fluxes from HyperLeda (x-axis) and from THINGS, VIVA, ALFA LFA and Springob et al. (2005) (y-axis). The solid line is the 1:1 correlation.

Tully, R. B. 1994, VizieR Online Data Catalog, 7145, 0