A SPATIALLY RESOLVED INNER HOLE IN THE DISK AROUND GM AURIGAE

A.M. Meredith Hughes1, Sean M. Andrews12, Catherine Espaillat1, David J. Wilner1, Nuria Calvet3, Paola D’Alessio4, Chunhua Qi5, Jonathan P.W. Illams6, and M.ichiel R. Hogerheijde6

Preprint typeset using L T E X style em ulat ep jv. 08/22/09

ABSTRACT

We present 0′3 resolution observations of the disk around GM Aurigae with the Submm illimeter Array (SMA) at a wavelength of 860 m and with the Plateau de Bure Interferometer at a wavelength of 1.3 m. These observations probe the distribution of disk material on spatial scales com m ensurate with the size of the inner hole predicted by models of the spectral energy distribution. The data clearly indicate a sharp decrease in millimeter optical depth at the disk center, consistent with a de c ent of material at distances less than 20AU from the star. We note the accretion disk model of Calvet et al. (2003) based on the unresolved spectral energy distribution (SED) and conclude that it reproduces well the spatially resolved millimeter continuum data at both available wavelengths. We also present complementary SMA observations of CO J = 3 → 2 and J = 2 → 1 emission from the disk at 2″ resolution. The observed CO morphology is consistent with the continuum model prediction, with two significant deviations: (1) the emission displays a larger CO J = 3/2 → J = 2/1 line ratio than predicted, which may indicate additional heating of gas in the upper disk layers; and (2) the position angle of the kinetic rotation pattern differs by 11° from that measured at smaller scales from the dust continuum, which may indicate the presence of a warp. We note that photoevaporation, grain growth, and binarity are unlikely mechanisms for inducing the observed sharp decrease in opacity or surface density at the disk center. The inner hole plausibly results from the dynamical influence of a planet on the disk material. W arping induced by a planet could also potentially explain the discrepancy in position angle between the continuum and CO data sets.

Subject headings: circumstellar matter | planetary system: protoplanetary disks | stars: individual (GM Aurigae)

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; m.hughes, sandrews, dwilner, cq@cf a.har vard.edu
2 Hubble Fellow
3 Dep artment of Astronom y, University of Michigan, 830 D ennison Building, 500 Church Street, Ann Arbor, MI 48109; acpapa,ncavet@umich.edu
4 Centro de Radioastronom a y Astrofísica, Universidad Na cional Autónoma de México, 58089 M ecala, M exico; pauldporto@astrom. unam.mx
5 University of Hawaii Institute for Astronomy, 2680 W oodlaw n Dock, Honolulu, H I 96822; jw @ifa.ha waii.edu
6 Leiden Observa tory, Leiden University, P. D. Box 9513, 2300 RA Leiden, Netherlands; michiel@strw. leidenuniv.nl

1 INTRODUCTION

Un dertstanding of the planet formation process is intimately tied to knowledge of the structure and evolution of protoplanetary disks. O particular in portance is how and when in the lifetime of the disk its constituent material is cleared, which provides clues to how and when planets may be assembled. While observations suggest that the inner and outer dust disk disperse nearly simultaneously (e.g. Skrutskie et al. 1993, Wilner & Walter 1999), it is not clear which physical mechanisms drive this process, or the details of how it proceeds. Possible dispersal mechanisms, of which several may come into play during the lifetime of a disk, include a drop in dust opacity due to grain growth (e.g. Strom et al. 1989, Dullemond & Dominik 2003), photoevaporation of material by energetic stellar radiation (e.g. Clarke et al. 2001), photophoresis effects of gas on dust grains (Kausch & Wurm 2003), inside-out evacuation via the magnetorotational instability (Chiang & Murray-Coul by 2007), and the dynamical interaction of giant planets with natal disk material (e.g. Lin & Papaloizou 1986; Bryden et al. 1999). Observing the distribution of gas and dust in disks allows us to evaluate the roles of these disk clearing mechanisms.

One particular class of systems, those with ‘transition’ disks (e.g. Strom et al. 1983, Skrutskie et al. 1993), have become central to our understanding of disk clearing. These disks exhibit a spectral energy distribution (SED) morphology with a de c in the near-to mid-Infrared excess over the photospheres consistent with a depletion of warm dust near the star. The advent of the Spitzer Space Telescope has allowed detailed m easurements of mid-Infrared spectra with unprecedented quality and quantity. Combined with simultaneous advances in disk modeling that can now reproduce in detail the SED features (e.g. D'Alessio et al. 1993, 2001; Dullemond et al. 2002, D'Alessio et al. 2003), these observations have revolutionized the study of disk structure. However, such studies rely entirely on SED de cits whose interpretations are not unique, since e cts of gas em etry and opacity can m in in the signature of disk clearing (Boss & York 1999; Chiang & Goldreich 1999).

Spatially resolved observations are crucial for constrain ing the structures inferred from disk SEDs. High resolution imaging at millimeter wavelengths is especially important because dust opacities are low, and the disk mass distribution can be determined in a straightforward manner for an assumed opacity. Millimeter observations also avoid many of the complications present at shorter wavelengths, including large optical depths, spec-
tral features, and contrast with the central star. Several recent millimeter studies have resolved inner emission cavities for disks with infrared SED data from direct imaging observations, e.g., TW Hya (Cak et al. et al. 2002; Hughes et al. 2007; LKH 330 Brown et al. 2007, 2008), and LkCa 15 (Pietu et al. 2007; Espaillat et al. 2003). These observations unveil a prominent inner disk with a sharp drop in millimeter emission at the disk center. More information is needed to determine whether the low optical depth is a result of decreased surface density or opacity.

GM Aurigae is a prototypical example of a star host to a \"transitional\" disk, The 1-5 Myr old T Tauri star (Santos & Prato 1995; Bulling et al. 1998) of spectral type K5 is located at a distance of 140 pc in the Taurus-Auriga molecular complex (Bertout & Genova 2003), and its brightness and relative isolation from intervening cloud material have enabled a suite of observational studies of its disk properties. The presence of circumstellar dust emission at millimeter wavelengths was first inferred by Wetzelaer et al. (1989), and the disk structure was subsequently resolved in the 13CO J = 2(1) transition by Roemer et al. (1993). Their arcsecond-resolution mapping of the gas disk revealed gaseous material rotation about the central star. A strong Keplerian rotation pattern allowed a dete...
GM Aur Protoplanetary Disk

Fig. 1. Continuum emission from the disk around GM Aur at wavelengths of 860 μm observed with the SMA (top) and 1.3 mm observed with PdBI (bottom). The data are displayed in both the image (a) and Fourier (b) domains. In the image domain (a), the observed brightness distribution at each wavelength (left) is compared with the model prediction (center; see Fig. 3 for model details), and the residuals are also shown (right). In the data and model from es, the contours are (3.69±1) mJy beam⁻¹ at 860 μm and 0.75 mJy beam⁻¹ at 1.3 mm. In the residual frame, the contours start at 2σ and are never greater than 3σ. The synthesized beam sizes and orientations for the two maps are, respectively, 0.05 ± 0.02 at a position angle of 34° and 0.04 ± 0.03 at a position angle of 35°. Two sets of axes are shown: the dotted line indicates the position angle of the double-peaked continuum emission, while the solid line indicates the best-fit position angle of the CO emission (see Sect. 5.2.3 for details). In the Fourier domain (b), the visibilities are averaged in bins of deprojected u-v distance from the disk center, and compared with the model prediction (red line). The inner hole in the GM Aur disk is clearly observed at both wavelengths, as a double-peaked emission structure in the image domain or as a null in the visibility function in the Fourier domain.

GM Aurigae was also observed with the 6-element Plateau de Bure Interferometer (PdBI) in the A configuration (up to 750 m baseline) on 2006 January 15. Observing conditions were excellent, with atmospheric phase noise generating a seeing disk of 0.25″. The PdBI dual-receiver system was set to observe the 110.201 GHz (2.7 mm) and 230.538 GHz (1.3 mm) continuum simultaneously. As with the SMA data, observations alternated between GM Aur and two gain calibrators, 3C 111 and J0528+134. The data were edited and calibrated using the GILDAS package (Petit et al., 2003). The passband responses and amplitudes scales were calibrated with observations of 3C 454.3 and MW C 349, respectively. The derived 1.3 and 2.7 mm fluxes of GM Aur are 180 ± 20 and 21 ± 2 mJy.

The standard tasks of Fourier inverting the visibilities, deconvolution with the CLEAN algorithm, and restoration with a synthesized beam were conducted with the MIRAD software package. A high spatial resolution image of the 860 μm continuum emission from the SMA data was created with a Briggs robust = 0.0 weighting scheme for the visibilities, excluding projected baselines > 70 kλ, resulting in a synthesized beam FWHM of 0.050 ± 0.012 at a position angle of 34°. A similar image of the 1.3 mm continuum emission with a synthesized beam FWHM of 0.043 ± 0.013 at a position angle of 35° was generated from the PdBI data using natural weighting (robust = 2.0). Table 1 summarizes the line and continuum observational parameters.

3. Results

3.1. Mmimeter Continuum Emission

Figure 1 shows the results of the SMA and PdBI continuum observations in both the image and Fourier domains. The presence of an inner hole in the GM Aur disk, as predicted by models of the SED, is clearly indicated both by the double-peaked emission structure in the image and by the null in the visibility data. The double-peaked emission structure points to a decretion of ux near the disk center; the null in the visibility function, or the location at which the real part of the visibilities change sign, similarly retracts a decrease in ux at small angular scales. The resolution of the 2.7 mm data from the PdBI was insufficient to provide any clue about the inner hole.

The maps in the left panel of Fig. 1 show a double-peaked brightness distribution at both wavelengths, with peak ux densities of 59 ± 4 mJy beam⁻¹ at 860 μm and 16 ± 0.5 mJy beam⁻¹ at 1.3 mm. For all but the most edge-on viewing geometries (e.g., Wofford et al., 2008), a continuous density distribution extending to the dust destruction radius (0.05-0.1 AU; Isella et al., 2003) would be expected to result in a centrally-peaked brightness distribution. In the case of GM Aurigae, the double-peaked emission structure is geometrical due to the truncation of disk material at a much larger radius, viewed at an intermediate inclination of 50-56° (Dutrey et al., 1998, 2005; Hughes et al., 2003). The region of highest density is near the inner edge of the disk, with a large column density of optically thin material. This ring is actively generating hot brightness at the inner edge of the outer disk, at two points along the disk major axis.

The size of the inner hole can be roughly estimated by the separation of the emission peaks, although the peak separation will also depend on the brightness of the directly-illuminated inner edge of the outer disk, relative to the extended disk component. The separation of the peaks in the 860 μm image is 0.038 ± 0.003, corresponding to a physical diameter of 53 ± 2 AU at a distance of 140 pc. A position angle of 66° is estimated by the orientation of a line that bisects the two peaks, although a more robust value of 64° ± 2 is derived in Sect. 4.1 below. Since the peaks are...
not distinctly separated in the 1.3 mm age, the same estimational cannot be made, but the position angle is clearly consistent with that derived from the 860 m visibilities and indicated by the perpendicular dashed lines in Fig. 4.

The presence of an inner hole is also evident from the visibilities displayed in the right panel of Fig. 1. The real part of the complex visibilities have been averaged in concentric annuli of projected (u,v) distance from the disk center. For details of the deprojection process, see [Lay et al. 1993]. As discussed in the appendix of Hughes et al. (2003), the presence of a null in the visibility function indicates a sharp decrease in ux at a radius corresponding roughly to the angular scale of the null position. The precise position of the null depends primarily on the angular size of the inner hole, but also on the radial gradients of the surface density and tan peat angle distribution and the relative brightness of the directly illuminated wall at the inner edge of the outer disk. In a standard power-law parametrization, the red peat mass loss varies linearly with radius as \(R^{-1/2} \) and \(T^{-1} \). Neglecting the emission from the wall and assuming standard values of \(p = 1.0 \) and \(q = 0.5 \), expected for a typical viscous disk, with constant [hartman et al. 1993] and consistent with previous studies of the GM Aur disk [Dutrey et al. 1998; Andrews & Williams 2007; Hughes et al. 2008], we may obtain a rough estimate of the size of the inner hole using the observed null position and Eq. A9 from [Hughes et al. 2003]:

\[

R_{\text{null}}(K) = \left(\frac{1.2 \times 10^4 M_{\odot}}{M_{\text{source}} = 100 M_{\odot}}\right) \left(\frac{2618 + 1059(p + q)}{2618 + 1059(p + q)}\right).

\]

A polarized curve t to the visibilities yields a null position of 190 k at 860 m and 224 k at 1.3 m, which correspond to inner hole radii of 31 and 26 AU, respectively. However, these estimative uncertainties are uncertain to within 30 km/s, as the data are consistent with a broad range of null positions. We therefore turn to a more sophisticated modeling procedure described in 4.4 below.

3.2. CO Channel and M mm Maps

Figures 2-4 display the new SMA observations of CO emission from the GM Aur disk. Figures 2 and 3 show channel m maps with contours starting at twice the rms noise level and increasing by factors of \(2 \), while Figure 4 displays the zeroth (contours) and rst (color) m on ents of the data; these are the velocity-integrated intensity and intensity-weighted velocities, respectively. The peak intensity density is 6.7 mJy beam \(^{-1}\) in the CO J = 3(2) line and 2.4 mJy beam \(^{-1}\) in the CO J = 2(1) line, with integrated uxes of \(9.4 \text{Jy km s}^{-1} \) and \(21.2 \text{Jy km s}^{-1} \), respectively (although emission from extended ambient cloud material is likely to increase the CO J = 2(1) integrated

ux over that originating from the disk alone). The channel and mm ent maps are broadly consistent with the expected kinematic pattern for m aterial in Keplerian rotation about the central star, substantially inclined to our line of sight (as in Dutrey et al. 1998, Simon et al. 2003).

The short-baseline spatial frequencies in the (u,v) plane provided by the subcompact con guration of the SMA during our observations of the J = 2 1 transition are sensitive to emission on the largest spatial scales. These short antenna spacings reveal the severity of the cloud contamination to an extent not possible with previous data. The contamination is evident as an extended halo around the disk emission in the central channels of the J = 2 1 channel m maps near LSR velocities of \(5-6 \text{ km s}^{-1} \) (Fig. 2). It is also evident in the mm map (Fig. 4) as an elongation of emission near the systemic velocity (green-yellow) to the northwest along the disk minor axis. This contamination indicates that caution must be exercised when deriving kinematic information from the CO lines, particularly the central channels. Spatial binning by the interferometer does not elude cloud contamination in an abundant, easily-excited, high-resolution depth tracer like CO J = 2 1. The J = 3 2 line appears less contaminated than J = 2 1 (Figs. 2 and 3), although similar short antenna spacings (8-43 m) are not present in this data set. Nevertheless, we expect less cloud contamination in the J = 3 2 transition, since the embedded cloud will be lower than that of the disk and will therefore populate the upper rotational levels of the CO molecule less efficiently. The cloud contamination prevents detection of self-absorption in the central channels of the CO J = 2 1 channel m maps along the near (northwest) edge of the disk (as determined by scattered light observations; see Schneider et al. 2003, Dutrey et al. 1998) report self-absorption along the southeast edge, but our observations suggest that this brightness asymmetry may be due to cloud contamination. It is also possible that the contamination is due to a residual envelope, although we are unable to determine the large-scale structure of the extended line emission with our interferometric data.

In all cases, the disk orientation based on the position angle of 64 derived from the continuum emission (Fig. 4 and 4.1) is plotted over the CO emission as a set of crossed dashed lines, with the relative extent of the major and minor axes (based on the inclination angle of 55) indicated by the length of the perpendicular lines. The position angle of 51 derived by Dutrey et al. (1998) for the CO J = 2 1 emission, consistent with our own J = 3 2 and J = 2 1 observations, is illu-
Fig. 2. Channel maps of CO J = 3–2 emission from the GM Aur disk. Contour levels start at 0.61 Jy (2 times the m s noise) and increase by factors of 2^2. LSR velocity is indicated by color and quoted in the upper right of each panel. The synthesized beam (219 at a PA of 14°) and physical scale are indicated in the lower left panel. Two sets of axes are shown: the dotted line indicates the position angle of the double-peaked continuum emission, while the solid line indicates the best-fit position angle of the CO emission.

Fig. 3. Channel maps of CO J = 2–1 emission from the GM Aur disk. Contour levels start at 0.17 Jy (2 times the m s noise) and increase by factors of 2^2. LSR velocity is indicated by color and quoted in the upper right of each panel. The synthesized beam (219 at a PA of 55°) and physical scale are indicated in the lower left panel. Two sets of axes are shown: the dotted line indicates the position angle of the double-peaked continuum emission, while the solid line indicates the best-fit position angle of the CO emission. Cloud contamination is evident in at least the central four channels.

tated by the solid line. Note that the position angle of the CO emission diverges slightly from the position angle of the continuum emission, by 11° (see Fig. 4.1). The trend is clear for both transitions, but more obvious in the less-contaminated J = 3–2 transition. Note that the position angle for the CO emission is derived entirely from the rotation pattern (evident in the isovelocity contours) and not from the geometry of the integrated CO emission: the integrated emission appears to match the position angle from the continuum emission reasonably well. We do not observe the isophote twisting in integrated CO emission seen by Dutrey et al. (1999). Cloud contamination and differences in antenna spacings may play a role.

4. DISK STRUCTURE MODELS
4.1. Updated SED Model

Here we revisit the broadband SED modeling of GM Aur presented by Calvet et al. (2005). Taking into consideration new observational constraints at sub-mm and mm wavelengths, we use the interpolated accretion disk models of D'Alessio et al. (2005, 2006) to re-derive the properties of the outer disk of GM Aur and its inner, truncated edge or wall. Our grain-size distribution follows a power-law of $a^{3.5}$, where a is the grain radius. We assume ISM-sized grains in the upper layers of the disk and accordingly adopt $a_{\text{min}} = 0.005 \, \text{m}$ and $a_{\text{max}} = 0.25 \, \text{m}$. Close to the disk midplane grains have a maximum size of 1 mm. Input parameters for the outer disk include the stellar properties, the mass accretion rate, the viscosity parameter (ψ), and the settling parameter (α) which measure the dust-to-gas mass ratio in the upper layers of the disk relative to the standard dust-to-gas mass ratio. Following Calvet et al. (2009), we adopt the same extinction, distance, inclination, dust grain opacities, and stellar properties (i.e. luminosity, radius, and temperature; see Table 2). We use a mass accretion rate of $7.2 \times 10^{-9} \, \text{M}_\odot \, \text{yr}^{-1}$ which was derived using HST STIS spectra by Ingleby & Calvet (2003),...
in contrast to the value of $10^8 \, M_\odot \, yr^{-1}$ derived from veiling measurements in Calvet et al. (2005). We assume an outer disk radius of 300AU, which matches the observed extent of scattered light from the dust disk (Schneider et al. 2003) and previous fits to the continuum emission (Hughes et al. 2008), as well as the short-baseline data presented here.

In order to reproduce the outer disk component of the SED, we vary and (Figure 5). As described in Calvet et al. (2005), e activitively detunes the mass surface density distribution and therefore the disk mass, which is best reected by the longest-wavelength SED points. The value of has the greatest e ect on the slope of the SED beyond 100 m. With the new millimeter data we nd $n_d = 0.5$, indicating less settling than reported previously. We also nd $n_d = 0.002$ and a mass of outer disk of 0.16M . This mass is signifantly larger than an estimate based on the 860 m and 1.3mm measurements using opacities from Beckwith et al. (1990), which yields $0.04M_\odot$, and is only marginally

Fig. 4. Zeroeth (contours) and rst (colors) moment maps of the CO J = 3 2 (top) and J = 2 1 (bottom) data in Figs. and . The dotted line indicates the position angle of the double-peaked continuum emission, while the solid line indicates the best-t position angle of the CO emission. The zeroeth moment contours are well aligned with the latter, while the lowvelocity contours of the rst moment map are more consistent with the former. Cloud contamination is evident in the CO J = 2 1 map in the northeast region along the disk minor axis.

The model operates on the disk mass, which is about four times lower than that derived from the Beckwith et al. (1991) opacities, accounting for the discrepancy in mass. Within the inner disk, there are $1.1 \times 10^{11} \, M_\odot$ of optically thin small dust grains, which account for the 10 m emission and the near-IR excess. The mass in solids could be much larger than this mass if pebbles, rocks, or even planets exist in the inner disk, since they would have a negligible opacity in the near-IR. We note that D'Alessio et al. (2001) reports the mass of the dust as $7 \times 10^9 \, M_\odot$; this is actually the mass of the gas within the hole, assuming the standard dust to gas mass ratio. The gas mass could be significantly larger, depending on the total amount of solids and the actual ratio, but these are poorly constrained by existing data.

We vary the temperature of the wall to best reproduce the data. The radius of the wall is set by the temperature and dust composition, and the wall's height is set by the disk scale height. We assume that the wall is axisymmetric and composed of relatively small grains, as well as vertically at in order to reproduce the rapid rise of the mid-IR excess at wavelengths beyond 10 m. We adopt the dust composition used in D'Alessio et al. (2001) and Calvet et al. (2005). The maximum grain size is adjusted from ISM sizes to reproduce the shape of the IRS spectrum as necessary. At short wavelengths, larger grains have smaller opacities than ISM-sized grains. Therefore, at a given temperature, large grains will be at smaller radii than ISM-sized grains as per Eqn. 12 of D'Alessio et al. (2003). The derived size of the inner hole varies somewhat depending on whether the SED or the resolved millimeter visibilities are included. Fitting only the broadband SED and neglecting the resolved millimeter wavelength data, the wall is located at 26AU and has a temperature of 130K and a wall radius of 2AU with a maximum grain size $a_{\text{max}} = 0.25 \, m$ (Fig. 5, left panel). The radius of the wall is derived by 2AU from Calvet et al. (2001), since here we take L_{acc}, GM, and GM = 2R assuming magnetospheric accretion while Calvet et al. (2003) uses L_{acc} GM = 2R as per the boundary layer model. We also adopt a different mass accretion rate.

In order to compare the SED model with the resolved continuum data, it is necessary to x the disk geometry. As listed in Table 2, we adopt an inclination of 55, in order to maintain consistency with Calvet et al. (2003). However, the position angle is poorly reproduced by the value of 53$^\circ \pm 9^\circ$ that is the weighted average of the SED points (Burto et al. 1998, 2003, see Fig. 4). To derive a more appropriate position angle, we generate a sky-projected image in age from the disk model and use the MIRAD task uan to sample the image at the same spatial frequencies as the data. We com pare these model visibilities with the observed 860 m visibilities (which have the highest resolution). We repeat this process for a range of position angles and calculate a value comparing each set of model visibilities with the data. Using this method, we select a position angle of 64 2, which is derived by 11 2 from the position angle of the CO disk derived by Burto et al. 1998, 2003, see Fig. 4.

When considering the resolved millimeter-wavelength
visibilities, a disk with a 20 AU hole reproduces the emission much better (Fig. 4, right panel, and Fig. 5, center panels). Using the same 2D comparison of visibilities as described in the previous paragraph, the 20AU model represents a 3:1 agreement over the 26AU model, which significantly underpredicts the amount of ux produced close to the star. This 20AU hole has a wall with a temperature of 120 K, a height of 1 AU, and a maximum grain size of 5 µm. For neither the 20AU nor the 26AU model does the wall contribute significantly to continuum emission at the wavelengths and spatial scales probed by our data. The main discrepancy between the model and the 1 mm interferometric visibilities occurs between wavelengths of 20(40 m where the 20AU hole model overpredicts the ux. However, the SED morphology in this region is likely sensitive to the properties of the wall at the inner disk edge, which are not well known and are not constrained by our data. It is also possible that the component of the grains, particularly whether the silicate and graphite form continuous grains or are separated, can account for the discrepancy and therefore the 2:1 morphology of the wall, consistent with the SED of the disk (DAlessio et al. 2005, in prep.).

Since our focus is on the interferometric 1 mm interferometric data, we adopt the model with a 20AU inner hole for the remainder of the analysis. Figure 1(c) compares this model with the data in the image plane (center panel) and in the visibility domain (red line in the right panel). The agreement is excellent, and the residuals are less than 5% within the 2σ box shown.

The ux density of the eastern peak of the 860 m image is 50 m Jy beam, while that of the western peak is 55 m Jy beam. The corresponding peaks in the model images are 49 and 50 m Jy beam, respectively. Given the m s noise of 3.5 m Jy beam, these values are consistent with no ux discrepancy and hence axially symmetric emission from the inner disk edge. The positional accuracy of the data and knowledge of the stellar proper motion are sufficient to determine whether or not the emission peaks are equally offset from the star. This result may be consistent with the strong asymmetries observed by Hughes et al. (2008) in their observations of the inner hole in LkHα 330, although these data are missing short antenna spacings present in the GM Aur data that may dilute asymmetric features. However, as in the case of LkHα 330, we find that the GM Aur continuum presents a sharp contrast in brightness between the inner and outer disk, reected by the null in the visibility function and the strong agreement between the data and the model containing an inner hole. The 10 16 M⊙ of dust within the central hole in the model implies a reduction in the mass surface density of all grains of at least 6 orders of magnitude at 1 AU relative to the continuous m model of the disk edge, indicating that the data are consistent with an inner disk region that is essentially completely evacuated of small grains.

4.2. Comparison with CO Observations

In order to compare the gas and dust properties of the GM Aur disk, we used the SED-based model described above to generate predicted CO J = 3 2 and J = 2 1 emission. We assume that gas and dust are well mixed, with a uniform gas-to-dust mass ratio of 100 (neglecting the compaction of dust settling) and a constant CO abundance relative to H2 of 10 6, which is required to reproduce the peak CO J = 2 1 ux. We also add microturbulence with a FWHM of 0.17 km s throughout the outer disk, as derived by Dutrey et al. (1998). This is comparable to the 0.18 km s spectral resolution of the data and does not affect our determination of the disk geometry. Due to the position angle discrepancies evident between the continuum emission in Fig. 4 and the central channels in Fig. 5, we also adjust the position angle to 51° (as in Dutrey et al. 1998). Finally, we note that with an outer radius of 300 AU, the continuum m model severely underpredicts the CO emission at large radii, as expected for a model with a sharp cut-off at its outer edge (Hughes et al. 2008). We therefore extrapolate the model to 525 AU to match the spatial extent of the CO emission (Dutrey et al. 1998). While this larger CO model no longer matches perfectly the continuum emission for the shortest baselines, based on the prediction assuming a constant gas-to-dust mass ratio, it retains the kinematic and thermal structure of the small-scale continuum m model. In order to consistently solve for the level populations and generate sky-projected images in the CO lines, we use the M Monte Carlo radiative transfer code RATRAN (Hogerheijde & van der Tak 2000). We then use the M R IAD task umd to sample the m model in age at identical spatial frequencies to those present in our interferometric CO data set.

Figure 5 compares the predicted CO emission from the extended SED model (right) with the observed emission from the GM Aur disk (left) for the J = 2 1 (top) and J = 3 2 transitions. It is clear that the velocity pattern in the disk is consistent with Keplerian rotation (as previously noted by Koeimer et al. 1993, Dutrey et al. 1998), and that the SED-based model is capable of reproducing the basic m morphology of the CO emission.

The primary discrepancy between data and model is the CO J = 3 2 J = 2 1 line ratio: the disk structure m model that reproduces the peak ux density of the J = 2 1 tran-
The resolved millimeter continuum observations of the GM Aur system are consistent with the prediction from the SED model. Models of the observed 860 μm and 1.3 mm maps in conjunction with the SED and Spitzer IRS spectrum, give a value of 20 AU for the extent of this inner cleaned region. The inference of an inner hole of this size from the SED and resolved millimeter observations is consistent with recent millimeter-wave observations of rotational transitions of CO isotopologues from the GM Aur disk that provide spectroscopic evidence for a diminished density of cold CO within 20 AU of the star (Dutrey et al. 2008). However, other observations indicate that this region cannot be entirely devoid of gas. Salyk et al. (2007) detect CO vibrational emission originating from hot gas at radii near 0.5 AU, from which they infer a total gas mass in the inner disk of 0.3 M☉. Measurements of the Hα line width imply an accretion rate of 10⁻⁸ M☉ yr⁻¹ (Hines & Greiz 2001, Ingleby & Calvet 2003); accretion at this rate requires a steady supply of gas from the inner disk. The SED model also requires 3 × 10⁴ linear mass of dust in the inner disk, to account for the 10⁷ m² silicate feature and slight near- to mid-IR excess (Calvet et al. 2005).

A wide variety of mechanisms has been invoked to explain the low optical depth of the central regions of transition disks (see e.g. Najita et al. 2007, and references therein), each of which are in competition with planet formation and the processes of evolution between the primordial debris disk stages. The available measurements of properties of the inner hole in the GM Aur disk allow us to evaluate the plausibility of each mechanism as the driver of disk clearing in this system.

 Grain Growth (The accretion of dust into larger particles should proceed faster in central regions where relative velocities of particles are faster and surface den-
Fig. 6. Position-velocity diagrams comparing the molecular line observations (left) with the predicted (right) CO J = 2(1) (top) and CO J = 3(2) (bottom) emission from the GM Aur disk, assuming a standard gas-to-dust mass ratio of 100. The plots show the brightness as a function of distance along the disk major axis, assuming a position angle of 51°. Contours are [0.17 and 0.61 Jy beam⁻¹, respectively]. The dotted line shows the expected Keplerian rotation curve for a star of mass 0.84M☉. The outer radius of the model has been extended to 525 AU to reproduce the extent of the molecular gas emission (see §4.2 for details). The CO morphology is consistent with the SED-based model, with the exception of the line ratio: the model that best reproduces the peak flux of the CO J = 2(1) line underpredicts the CO J = 3(2) brightness by 30%.

Photoevaporation. Another proposed process to generate inside-out clearing of protoplanetary disks is photoevaporation via the "UV switch" mechanism (Clarke et al. 2001). In this scenario, high-energy photons from the star heat the upper disk layers, allowing material to escape the system at a rate that gradually diminishes the disk mass, while most of the disk mass drains onto the star via viscous accretion (e.g. Hartmann et al. 1998). Once the photoevaporation rate matches the accretion rate near 1 AU and prevents resupply of material from the outer disk, the inner disk will de-couple and drain onto the star within a viscous timescale, leaving an evacuated central region surrounded by a low-mass outer disk that will then rapidly disperse. As noted by Alexander & Armitage (2007), the properties of the GM Aur system are inconsistent with a photoevaporative scenario because the large mass of the outer disk should still be sufficient to provide a substantial accretion rate to counteract the photoevaporative wind. Furthermore, the measured accretion rate is high enough that within the framework of the photoevaporation scenario, it would...
only be observed during the brief period of time when the inner disk was draining onto the star. Photoevaporation may yet play a role in clearing the outer disk of its remaining gas and dust, but it cannot explain the current lack of inner disk material.

Inside-Out M R I Clearing (The magnetorozational instability operating on the inner disk edge may also drive accretion and central clearing, although it should be noted that this is purely an evacuation mechanism: it can only take hold after the generation of a gap by some other means. Nevertheless, given the creation of a gap, M R I clearing is predicted to operate in systems like GM Aur where the outer disks are still too massive for photoevaporation to dominate. Chang & Murray-Clay (2007). The observed depletion of CO interior to 20 AU radius (Dutrey et al. 2008) is consistent with this theory, which predicts a total gas mass depletion of order 1000 interior to the 2 AU radius relative to the extrapolated value from the outer disk power law, t, normalizing to the total disk mass of 0.16 M_\odot. This theory is consistent with the substantial accretion rate of the GM Aur system, yielding a value of of 0.005, only slightly greater than the derived value of 0.002 from the model. Salyk et al. (2007) estimate a gas-to-dust ratio of 1000 in the inner disk, roughly 10 times greater than that of the outer disk, which is consistent with the prediction of the inside-out M R I evaporation scenario that UX from the star should promote blowout of small dust grains by radiation pressure, substantially clearing the inner disk of dust even as the gas continues to accrete onto the star. However, it is difficult to reconcile this with the substantial population of m-size grains that must be present in the inner disk to account for the 10 m silicate feature in the IRS spectrum. It is also important to consider the source of the requisite initial gap in the disk.

Binarity (The dynamical influence of an unseen stellar or substellar companion would also cause clearing of the inner disk. A notable example is the recent result by Ireland & Kraus (2008) dem onstrating that the inner hole in the transition disk around CO K Aur/4 is caused by a previously unobserved companion. There are relatively few constraints on the multiplicity of GM Aur at the < 20AU separations relevant for the inner hole. Radial velocity studies with km s\(^{-1}\) precision do not rule out companions within 0.5 AU (Kalas et al. 2005) or 1 AU (Ireland & Kraus 2008), but the companion masses are not constrained. As Dutrey et al. (2008) discuss, the stellar temperature and dynamical mass from the disk rotation combined with the H-band u band may place an upper limit of 0.3 M_\odot on the mass of a companion. Interferometric aperture masking observations with the NIRC2 that take advantage of adaptive optics on the Keck II telescope place an upper limit of 40 times the mass of Jupiter on companions with separations between 1.5 and 35 AU from the primary (A. Kraus and M. Ireland, private communication). The presence of hot CO in the central 1AU of the system (Salyk et al. 2004) and the high accretion rate, and in a major part of the central, or at least close to the Taurus median, also argue against the presence of a massive close companion. A stellar companion is therefore an unlikely origin for the central clearing in the GM Aur system.

Planet-Disk Interaction (Perhaps the most compelling mechanism for producing a transition disk is the dynamical clearing of material by a giant planet; a few times the mass of Jupiter. The opening of gaps and holes in circumstellar disks has long been predicted as a consequence of giant planet formation (e.g., Lin & Papaloizou 1986, Bryden et al. 1993). Some simulations have shown that inner holes may in fact be a common outcome than gaps as angular momentum transport mediated by spiral density waves can clear the inner disk faster than the viscous timescale (Varniere et al. 2008, Lubow & D’Angelo 2006). The planet-induced clearing scenario was considered in detail for GM Aur by Rice et al. (2003) and found to be globally consistent with the observed properties of the system (although their estimate of the inner hole radius is based on pre-Spitzer SED information). This mechanism naturally explains the diminished but persistent accretion rates and presence of small dust grains through two predictions of models of planet-disk interaction: (1) Irradiation of dust grains according to size is expected at the inner disk edge, leading to a dominant population of small grains in the inner disk (Rice et al. 2003); and (2) a sustained reduction in accretion rate to 10% of that through the outer disk is predicted as the giant planet begins to intercept most of the accreting material (Lubow & D’Angelo 2006). These effects may also explain the enhanced gas-to-dust ratio in the inner disk. A planet-induced gap could also serve as a catalyst for inside-out M R I clearing (Chang & Murray-Clay 2007).

Given the observed 20AU inner disk radius and the scenario of clearing via dynamical interaction with a giant planet, it is possible to make a simple estimate of the distance of the planet from the star. The width of a gap opened by a planet is approximately 2.5 Roche radii (Artymowicz 1983), and simulations show that the minimum mass necessary to open a gap is of order 1 Jupiter mass (Lin & Papaloizou 1993). If the outer edge of the planet-induced gap coincides with the 20AU inner disk radius (with the portion of the disk interior to the planet cleared via spiral density waves or the M R I), then a companion between 1 and 40 times the mass of Jupiter would be located between 11 and 16AU from the star. The presence of a planet carving out an inner cavity in the dust distribution is therefore a plausible scenario, bolstered by recent results demonstrating that a planetary gap is responsible for dynamical sculpting of dust in the much older Fomalhaut system (Kalas et al. 2005).

5.2. Evidence for a Warp?

While the model comparison in figure above shows that CO emission from the disk is globally consistent with Keplerian rotation, the difference in position angle between the continuum data and the two CO data sets is significant at the 5 level, and may indicate some kinematic deviation from pure Keplerian rotation in a single plane. Changes in position angle with spatial scale are commonly interpreted as warps in the context of studies of galaxy dynamics (e.g., Roestad et al. 1974); it may be that the change in position angle in the GM Aur disk indicates a kinematic warp.

The possibility of a warp or other deviation from Keplerian rotation was discussed by Dutrey et al. (1998), although their discussion was based on possible isophote twisting observed in integrated CO J = 2 1 contours. We observe no such isophote twisting in the Integrated CO
J=2/1 or J=3/2 emission presented here (Fig. 3), although this detection may be in error by the differing baseline lengths and beam shapes in the respective interferometer data sets. Instead, we observe deviations from the expected position angle only in the rotation pattern of the resolved CO emission, which is not evident in the isovelocity contours of Fig. 4. This position angle change does not appear to be related to the cloud contamination, as it is more clear in the less-contaminated CO J=3/2 data set. In order to test whether the position angle of the true brightness distribution might have been altered by incomplete sampling of the data in the Fourier domain, we generated a model of the disk at a position angle of 64°, consistent with that measured independently for the two continuum data sets. We then tilted the position angle by −2° minutes of arc in the manner described above.

With this method, after sampling with the response at the spatial frequencies in the CO J=3/2 data set, we recover the position angle to within less than a degree of the input model. This is to be expected, since the 2° tiling procedure takes into account the interferometer response when tiling for the position angle. The position angle change is therefore robust independent of beam convolution effects.

In order to cause a change in position angle on physical scales between those probed by the continuum (30 AU) and the CO (200 AU), a warp would have to occur at a size scale of order 100 AU. The most natural explanations for the presence of a warp in a gas-rich circumstellar disk include bybys and perturbations by a planet or substellar companion. A simple estimate for the tilt scale of byby interactions is 1/(N b ψ), where N is the number density of stars, b is the approach distance, and ψ is the velocity dispersion. A sum of typical values for Taurus, including a stellar density of 10 pc−3 (e.g. Gom ez et al. 1993) and velocity dispersion of 0.2 km s−1 (Kraus & Hillenbrand 2008), the tilt scale for interactions at distances of 1000 AU, is sufficient to cause significant perturbations at 0.5 AU. The value of ψ is of order 1 Gyr. Since the results of a one-time perturbation would likely damp in a few orbital periods (10 Gyr at a distance of 1000 AU), such an interaction is statistically unlikely. However, it should be noted that a recent interaction might have been capable of producing an extended feature such as the "blue ribbon" observed in scattered light by Schneider et al. (2003).

The inclusions of a massive planet or substellar companion has been investigated as the origin of warps observed in gas-depleted debris disks, including Pictoris (Mouillet et al. 1997) and HD 100546 (Quillen 2003). However, there is a dearth of observational evidence to plausibility caused by planetary systems in gas-rich disks are closely analogous to the GM Aur system. Since the warp in the GM Aur disk must occur between the Hill sphere of the putative planet and the 200 AU resolution of the CO line observations, it is plausible that the warp could be due to the gravitational influence of the same body responsible for evacuating the inner disk. A theoretical inquiry into this possibility would be useful, but is beyond the scope of this paper.

6. CONCLUSIONS

Spatially resolved observations in millimeter continuum emission, obtained using the SMA at 860 m and PdBI at 1.3 m, reveals a sharp decrease in optical depth near the center of the GM Aur disk. Simple estimates of the extent of this region based on the separation of peaks in the continuum images and the position of the null in the visibility functions in Fig. 4, are consistent with an inner hole radius of 24 AU derived by Cabet et al. (2005) using disk structure models to fit the SED. No significant azimuthal asymmetry is detected in the continuum emission.

Read versions of the SED-based model of Cabet et al. (2005) show that the data are very well reproduced by a disk model with an inner hole radius of 20 AU. This model reproduces the broadband SED ux in the 20 µm wavelength regime, but this region of the spectrum likely depends on the properties of the wall at the inner disk edge, which are poorly constrained by available data.

CO emission in the J=3/2 and J=2/1 transitions confirms the presence of a disk with kinematics consistent with Keplerian rotation about the central star, but at a position angle set from the continuum by 11°. The morphology of the CO emission is broadly consistent with the SED model, but with a larger CO J=3/2/J=2 line ratio than predicted for the SED model. This is a likely indication of additional gas heating relative to dust in the upper disk atmosphere.

Given the observed properties of the GM Aur system, photoevaporation, grain growth, and binarity are unlikely physical mechanisms for inducing a sharp decrease in opacity or surface density at the disk center. The inner hole plausibly results from the dynamical influence of a planet on the disk material, with the inner disk possibly cleared by spiral density waves or the MRI. While a recent byby is statistically unlikely, warping induced by a planet could also explain the difference in position angle between the continuum and CO data sets.

The authors would like to thank the RAM staff, particularly Roberto Neri, for their help with the observations and data reduction. We thank Lee Hartmann for helpful discussions in the early stages of this project. Partial support for this work was provided by NASA Origins of Solar System Program Grant NAG 5-11777. A.M.H. acknowledges support from a National Science Foundation Graduate Research Fellowship. Support for S.M.A. was provided by NASA through Hubble Fellowship Grant #HF-01203-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. N.C. acknowledges support from NASA Origins Grant NNG05G12G and JPL grant AR 50405. P.D. acknowledges grants from CONACyT, Mexico. J.P.W. acknowledges support from NSF grant AST-0808144.

REFERENCES

