A spectroscopic survey of EC 4, an Extended Cluster in Andromeda's halo

Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK.
Observatoire de Strasbourg, 11, rue de l'Université, F-67000, Strasbourg, France.
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany.
Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, UK.
University of Sydney, NSW 2006, Australia.
Sydney Institute for Astronomy, School of Physics, A29, University of Sydney, NSW 2006, Australia.
NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, V9E 2E7, Canada.
Department of Physics & Astronomy, University of Leicester, Leicester, LE17 6PH, UK.
Department of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL.

ABSTRACT

We present a spectroscopic survey of candidate red giant branch stars in the extended star cluster EC 4, discovered in the halo of M 31 from our CFHT/MegaCam survey, overlapping the tidal stream streams 'Cp' and 'Cr'. These observations used the DEIMOS Imaging Multi-Object Spectrograph (DEIMOS) mounted on the Keck II telescope to obtain spectra around the Ca II triplet region with 1:3 Å resolution. Six stars lying on the red giant branch with 2 core-radii of the centre of EC 4 are found to have an average $v_r = 2879.2^{+1.9}_{-1.4}$ km s$^{-1}$ and $v_{pec} = 279.2^{+1.2}_{-1.0}$ km s$^{-1}$, taking instrumental errors into account. The resulting mass-to-light ratio for EC 4 is $M/L = 67^{+73}_{-67} M_\odot L_\odot$, a value that is consistent with a globular cluster within the errors we derive. From the summed spectra of our member stars, we find EC 4 to be metal-poor, with [Fe/H] = -1.6 ± 0.1. We discuss several formation and evolution scenarios which could account for our kinematics and metallicity constraints on EC 4, and conclude that EC 4 is most compatible with an extended globular cluster. We also compare the kinematics and metallicity of EC 4 with Stream 'Cp' and Stream 'Cr', and find that EC 4 bears a striking resemblance to Stream 'Cp' in terms of velocity, and that the two structures are identical in terms of both their spectroscopic and photometric metallicities. From this we conclude that EC 4 is likely related to Stream 'Cp'.

Key words:

1 INTRODUCTION

Over the past few years, the number, depth and coverage of both photometric and spectroscopic surveys of the Local Group has increased dramatically, resulting in the discovery of a myriad of globular clusters (GCs) and dwarf spheroidal galaxies (dSphs) orbiting within its gravitational potential. And whilst traditionally, satellite objects such as these have been somewhat simple to classify in terms of their half-light radii (r_h, 2-5 pc for GCs, cf. ~100 pc for dSphs) and their dark matter content via the calculation of their mass-to-light (M/L) ratios ($M/L < 3$ for GCs, which are not considered to contain dark matter, cf. $M/L > 10$ for the dark matter dominated dSphs), recent discoveries of low-surface brightness objects with properties common to both GCs and dSphs have caused this historical divide to blur. SDSS has been instrumental in this process with the discovery of our own Milky Way (MW), in addition to a host of dSphs, a number of low luminosity objects have

1 The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
been discovered out in the halo with properties that see them encroaching on the void in the size-luminosity parameter space between GCs and dSphs (Wilman et al. 2005; Bekkurov et al. 2007; Simon & Geha 2007; Babcock et al. 2007). Similar, with r_t photometric surveys of M 31 and its extensive halo conducted with the Isaac Newton Telescope WFC3/UVIS Camera and CFHT MegaCam (Ibata et al. 2001; Ferguson et al. 2002; Ibata et al. 2007), have revealed equally puzzling entities (Huxor et al. 2003; Mackey et al. 2006; Huxor et al. 2008), as well as vast numbers of more typical GCS and dSphs (Charman et al. 2005; Martin et al. 2006; Ibata et al. 2007; Huxor et al. 2008; Irwin et al. 2008; Simon & Geha 2007).

Some of the more notable of these recent M31 discoveries include the unusual objects W 112 and Segue 1, Bootes II and Leo V, all of which are low luminosity objects ($M_V > 4.5$), with half light radii between 20 - 40pc (Wilman et al. 2005; Bekkurov et al. 2007; Babcock et al. 2007; Bekkurov et al. 2008). There is also some debate as to whether such objects are dark matter dominated, which would suggest that some remnant is the dSph population or if they are merely unusually extended clusters, with no sizeable dark matter component. In the case of Bootes II and W 112, these unusual combinations of size and luminosity are also accompanied by internal metallicity dispersions and population variations (though in the case of W 112, this is subject to debate, see Sipe et al. 2008), traits that are associated primarily with dSphs, not GCs. A few of these faint satellites, such as Ursa Major II and Com a Berenices, are observed to have mean metallicities that are significantly higher than would be expected for objects of their luminosity (Simon & Geha 2007). It is important to point out that such studies are hampered by low-number statistics, but the results certainly indicate the existence of an interesting population of low surface brightness satellites within the Local Group. Similarly, in M 31 a large population of unusual extended clusters (hereafter ECs) has been uncovered in the outskirts of the halo that cannot easily be classified as GCs or dSphs (Huxor et al. 2008). Objects analogous to these ECs have also been discovered around other nearby galaxies (Stonkute et al. 2008) and have been identified as one such cluster in M 33 and Hwang et al. 2003) found 3 remote ECs in NGC 6822. The luminosities ($M_V > 8$) and half light radii (10 - 30 pc) of these objects places them in an intriguing position in size-luminosity parameter space, populating what was previously observed as a gap between dSphs and classical GCs (see g.1).

Constraining the nature and properties of these low luminosity objects is important to our understanding of galaxy evolution and hierarchical structure formation. If they are the tidally-stripped cores of dSphs, such as has been suggested for M 31's W 112, they are extremely interesting objects as they must be remnants of previous accretion events within their host galaxy. If, however, they reside in the extreme tail of the log-normal size distribution of GCs, they are remnants of previous accretion events within their host galaxy. If, however, they reside in the extreme tail of the log-normal size distribution of GCs, they are unlikely to be identified as typical GCs. If the observed stars are cluster members, with spectroscopic information, one can separate stars that are kinematically associated with the cluster from those that are not. This is important to point out that such studies are hampered by low-number statistics, but the results certainly indicate the existence of an interesting population of low surface brightness satellites within the Local Group.

Figure 1

The half-light radius and luminosity for Extended Clusters EC 4 (red circle) and EC 1-3 (open red circle) compared with the faintest known M 31 dwarf galaxies (red pink triangles: McConnel & Inn 2004; EC 3; McConnel et al. 2003; Zucker et al. 2004; Irwin et al. 2008; Simon & Geha 2007, and Collins et al. in prep.), M 31 globular clusters (open pink triangles: Mackey et al. 2005), W 112 associated dSphs (blue blue squares: Iba et al. & Batista Peres 1993, W 112, McConnel et al. 2004, Iba et al. 2008; Simon & Geha 2007; Ibata et al. 2008) and M 31 GCS (open blue squares: van den Bergh 1994)). In addition, the line of the equation $log r_t = 0.2 M_V + 2.5$ (from van den Bergh & Mackey 2004) is plotted as a dashed line, above which only two Galactic GCs (NGC 2419 and NGC 2706) are found.
Colour-Magnitude Diagram (CMD), and allow us to derive dynamical constraints. In addition, the metallicity of individual stars can be measured from the spectra of the likely members via an inspection of the Near-infrared CaII lines (CaT), providing a measure for [Fe/H] that is independent of the photometrically derived value. We can also use the central velocity dispersion of the cluster to estimate the instantaneous mass of the system, assuming it is perfectly spherical and in virial equilibrium (e.g. Hillenbrand 1976, Richstone & Tremaine 1986). One can then compare the M/L ratio of ECs and other derived properties to those expected for GCs and dSphs in order to determine if they can be reconciled entirely with the globular properties of either, or if they are indeed members of another type of stellar association that bridges the gap between the two.

To this end, we have initiated a spectroscopic survey of the newly discovered extended clusters found in the halos of M31 and M33 using the DEIMOS spectrograph on Keck II to derive radial velocities and metallicities of RGB stars. In this contribution, we discuss spectroscopic observations in EC4. EC4 was discovered within the CFHT-MegaCam survey (Huxor et al. 2008, Ibata et al. 2007) at a projected radius of 60 kpc (coordinates presented in Table 1). It has a half light radius of 33.7 pc and an absolute magnitude of $M_V = -6.6$ (Mackey et al. 2004), placing it in an unusual position in terms of its size and luminosity as can be seen in Fig. 1.

2 OBSERVATIONS AND ANALYSIS

The spectroscopic ECs discussed in this paper are located at a projected distance of 60 kpc from the center of M31. The ECs sit within Stream C presented in the Ibata et al. (2007) M31 extended halo analysis.

Multi-object spectroscopic observations with the Keck-II telescope and DEIMOS (Davis et al. 2003) were obtained in photometric conditions with $m_V > 18.4$ seeing in Sept. 2004. Target stars were chosen by colour/magnitude selection as described in Ibata et al. (2005), i.e. selecting likely RGB stars in M31 over all other ECs and dSphs, and selecting main-sequence stars with any other suitable stellar objects in the field. Two spectroscopic masks (F25 and F26 from the table in Chapman et al. 2006) targeted the ECs of the extended cluster EC4 (Huxor et al. 2003). A combined total of 212 independent stars in both ECs were observed in standard DEIMOS slitlet mask mode (Davis et al. 2003) using the high resolution 1200 l/mm grating, and i^\prime with slitsets. Ten of these target stars were specifically selected from HST photometry of EC4 to lie within the cluster. The top left panel of Figure 2 shows the map of HST stars derived from imaging in Mackey et al. (2006), and depicts the position of our spectroscopic candidates within the cluster. Our instrument setting covered the observed wavelength range from 4700–9800 Å. Exposure times were 60 min, split into 20 min in integrations. The DEIMOS-DEEP2 pipeline (Newman et al. 2004) designed to reduce data of this type accomplishes tasks of debiasing, at-eling, extracting, wavelength-calibrating and sky-subtracting the spectra.

The radial velocities of the stars in all these ECs were then measured with respect to spectra of standard stars observed during the observing runs. By fitting the peak of the cross-correlation function, an estimate of the radial velocity accuracy was obtained for each radial velocity measurement. The accuracy of these data, as estimated from the CaT cross-correlation, varies with magnitude, having uncertainties of <10 km s$^{-1}$ for stars. The CMDs, velocity errors, velocity histograms, and metallicities for these ECs are shown in Figure 2.

We address Galactic contamination in our spectroscopically identified stars in a manner similar to Koch et al. (2008), using a combination of radial velocity and the equivalent width (EW) of Na I 8183,8195 which is sensitive to surface gravity, and is accordingly very weak in M31 RGB star spectra, but can be strong in Galactic dwarfs (Schlawin et al. 1997). The Besancon Galaxy model (Robin et al. 2004) predicts that few contaminating foreground dwarfs with $v_r < 160$ km s$^{-1}$ (as shown in Ibata et al. 2005) are present in a standard DEIMOS eld (16.7·5$'$), and the chance of contamination within the small region of EC4 is 40 pc at. This is further supported by the fact that very few RGB candidates at these velocities show any significant Na I absorption lines, whereas stars with 160 to 0 km s$^{-1}$ velocity show strong Na I absorption on average, consistent with the findings of Gukhathakurta et al. (2006), Gilbert et al. (2006) and Koch et al. (2008). For this study, we ignore all stars with $v_r > 160$ km s$^{-1}$, and we remouve any stars from our sample which have a summed EW (Na I 8183,8195) > 0.8 in the velocity range $v_r < 160$ km s$^{-1}$.

In Fig. 2, we present the CFHT MegaCam colours of all stars within our two DEIMOS ECs, transformed into Landolt V and using a two stage process detailed in Ibata et al. (2003) and McConnachie et al. (2004). Ten stars were selected to lie within EC4 by their colours and positions from the HST CMD, also shown in Fig. 2. Of these ten, one was subsequently identified as a galaxy in the HST/ACS image, while another lies well outside the cluster RGB, likely due to contamination in the ground-based CFHT-MegaCam imaging acting the colour magnitude of the cluster.

In analyzing the DEIMOS spectroscopy, one targeted star lay exactly on the EC4 CMD, but had a discrepant velocity from the others. Close examination of the spectrum revealed detections of the first and second CaII lines with a velocity of -277.3 km s$^{-1}$, whereas the automated pipeline derived a cross-correlation to larger velocity residuals. We include this eighth star in the catalog as a possible member of EC4, although we do not include it in subsequent analysis owing to its poor velocity dispersion with respect to other member stars; we list the properties of all these stars in Table 1.

2.1 Velocity accuracy

Velocities for these EC4 stars were initially presented in Chapman et al. (2005), but since publication, we have discovered a systematic effect that was introduced into some of our spectra from a crowding of slits within the EC4 region. This caused slits overs to emit stars to be truncated resulting in a poor sky subtraction. The outcome was a broadening of the third Calcium Triplet line in a number of spectra, affecting the automated velocity cross correlations. We have since re-calibrated both our velocity and [Fe/H] calculations to
Figure 2. Top left panel: Position plot of stars in the HST imagery of the EC4 region, highlighting the spectroscopic candidates from our Keck survey. Circles indicate plausible EC4 candidates while the triangle represents likely members of Stream 'Cp'. Top right panel: HST CMD of all objects within 0.8' (right) and outside of (left) 5σ⊙ of EC4. 0 u spectroscopic targets are highlighted with red circles. Isochrones overlaid are from the Dotter et al. (2008) set, and correspond to (from left to right) -2.0, -1.8, -1.5, -1 and -0.75. These isochrones have been shifted to the average distance modulus of EC4, 24.31 (Mackey et al. 2006). The isochrone at [Fe/H] = -1.8 provides the closest match for the likely EC4 stars in the left panel, and in the right panel while the more metal-rich Stream 'Cr' component can be clearly seen at around [Fe/H] = -1.0, we also see an RGB component persisting at [Fe/H] = -1.8, which we attribute to Stream 'Cp'. Bottom left panel: CFHT-MegaCam CMD and radial velocity uncertainties of the observed stars in the Stream 'Cr'/Stream 'Cp' fields. Stars likely belonging to EC4 (red filled circles) and Stream 'Cp' (blue filled squares) are highlighted. The isochrones are also from the Dotter et al. (2008) set, and correspond to (from left to right) -2.0, -1.5, -1.25 and -1.0. Bottom right panel: The velocities of observed stars in the F25/F26 fields are shown in the top panel as a histogram, with EC4 member stars highlighted as a heavy histogram. The stellar halo velocity dispersion (σ = 125 km s⁻¹) from Chapman et al. (2006) is shown normalized to the expected 9 halo stars at this position from Ibarra et al. (2007). To differentiate EC4 stars from the galactic halo, we additionally plot the velocities against their radius from the EC4 center in the centre panel, referencing the symbols to the CMD plot. In the lower panel, photometrically derived [Fe/H] from CFHT-MegaCam is shown as a function of radial velocity, again referenced in symbols to the CMD plot.

Figure 3. Velocity differences are shown in Fig. 3, highlighting those corresponding to Stream 'C' (3 stars), Stream 'D' (2 stars), EC4 (3 stars), background halo (2 stars), and Milky Way member stars.
Figure 3. Left panel: Velocity differences of stars lying in both elds F25 and F26. Stars identi ed to velocity regions likely associated to Stream Cr, Stream Cp, EC4, background M 31 hal, and Milky Way foreground are identi ed. Stars are shown at their velocities from mask F25, with o set error-bars from mask F26. Right panel: Histogram of velocity difference of stars lying in both elds F25 and F26. Normalizing this histogram gives a distribution that is reasonably t by a Gaussian centred on -0.05 with $\sigma = 1.2$.

Figure 4. The kinematics of EC4. The relative likelihood distribution (taking into account the measurement errors) of v_r and σ_v for velocities of EC4 stars when marginalizing with respect to the other parameter. The thin dashed lines correspond, from top to bottom, to the parameter range that contains 68.3%, 95.4% and 99.73% of the probability distribution (1, 2 and 3 uncertainties), showing that the velocity dispersion of EC4 is unresolved. The peak values and 1 range are $<v_r> = 287^{+1.0}_{-1.4}$ and $\sigma_v = 2.9^{+0.2}_{-0.7}$.
Way background (46 stars). Agreement between observing nights for these stars is generally found within 1\% errors of the radial velocity measurement, suggesting that no significant systematic errors are present in the instrumental setup night to night. The dispersion in velocity differences is 6 km s\(^{-1}\) for both the M31 sample and the M31 W1am sample taken separately. For these 56 stars, we have taken as the radial velocity the error-weighted average of the measurements.

3 RESULTS

3.1 Kinematics

Figure 4 shows the CFHT-M egacam CMD and radial velocity uncertainties of the observed stars in the EC4 field. Stars likely belonging to EC4 are shown in red, allowing metallicity comparison to the Dotter et al. (2008) isochrones. Figure 5 displays the stars as a velocity histogram, highlighting the probable EC4 member stars as defined by their velocities. The kinematics for EC4 are strikingly similar to those of Stream Cap as discussed in Chapman et al. (2008), making it difficult to differentiate between the two objects on velocity alone. However, owing to the low density of Stream Cap stars within the 83.5 arcmin\(^2\) DEM Os. eld (5-7 stars associated to Stream Cap by Chapman et al. 2008), it is unlikely that a contaminating stream star would be found with the 0.02\% tidal radius of the cluster and hence we can use the radial distance from the centre of the cluster as a discriminant between the two populations. This is also plotted in Figure 4. Finally, photon etically derived metallicities, (Fe/H) = log(Fe/H) - 12, are computed for the stars by interpolating between the 10 Gyr old Dartmouth isochrones (Dotter et al. 2008). The redder and -abundance of + 0.4 adopted for metallicity comparison to the deJong will of course introduce a systematic uncertainty if significant variations are present. These photon etically derived metallicities are plotted in Figure 4 as a function of radial velocity.

Figure 4 shows that eight of the stars targeted in the cluster, EC4, can be kinematically identified with a distribution of velocities centered at \(v_\text{r} = -287.9 + 12\) km s\(^{-1}\). We exclude one of these from the following kinematic analysis as the noise in the spectrum is too high for us to ascertain a reliable velocity for the star. Of the remaining seven candidates, six lie within 2 core radii of the cluster centre and therefore are the most plausible EC4 members. The seventh star lies further out at 4 core radii, a distance within which 99% of the light of the cluster is contained, making its membership uncertain. For this reason, we omit it in the following analysis also. The individual spectra for both plausible and tentative members are shown in Figure 5.

The velocities for these six remaining stars are consistent with a \(v_\text{r} = -287.9 + 12\) km s\(^{-1}\) and an instrumentally resolved \(v_\text{rad} = 27.7 + 27\) km s\(^{-1}\) after accounting for velocity measurement errors in the maximum-likelihood sense described previously (see e.g., Martin et al. 2008) for details of the technique). Figure 5 shows the relative likelihood distribution of \(v_\text{r} \) and \(v_\text{rad} \) when marginalized with respect to the other parameters (the quoted uncertainties correspond to region containing the central 68.3% of the distribution function). The parameter range that contains 68.3%, 95.4% and 99.73% of the probability distribution (the 1, 2 and 3 uncertainties) are highlighted with dashed lines. The plot shows that the velocity dispersion of EC4 is consistent with zero at the 1\% level.

Taking the measured value for the integrated light of EC4, \(M_\text{V} = -6.6 \pm 0.4 \) (Mackey et al. 2006), we can assess the dynamical mass of the cluster if we assume a virial equilibrium. The mass to light ratio of a simple spherically symmetric stellar system of central surface brightness \(\mu_0 \), half-light radius \(r_0 \), and central velocity dispersion \(\sigma \) can be estimated as:

\[
M/L = \frac{9}{2} \frac{\sigma^2}{L} \mu_0 r_0^2
\]

(Richstone & Tremaine 1980), where \(L \) is a dimensionless parameter which has a value close to unity for many structural models.

Using the values of \(\mu_0 = 33.7 \) pc\(^{-2}\) and \(r_0 = 23.8 \pm 4 \) pc in Mackey et al. (2006), one can calculate a tidal radius, \(r_t = 165 \) pc. In order to get a value for central surface brightness, one can simply integrate the King profile in two dimensions, giving an area for the cluster of 3496 pc\(^2\). Using the distance modulus from Mackey et al. of \(m - M = 24.31 \pm 0.14 \) and assuming an absolute solar magnitude of \(M_\text{V} = 4.83 \), we calculate the luminosity of the cluster to be \(L = 3.73 \times 10^{11} \) L\(_\odot\). Hence, we derive a value of \(\mu_0 = 10.7 \pm 0.1 \) L\(_\odot\) pc\(^{-2}\) or 23.8 m^{mag} arcsec\(^{-2}\), which is fainter than typically observed in GCs (Noyola & Gebhardt 2004) but considerably brighter than would be expected for a dSph of similar absolute magnitude (McConnachie & Ivej 2004).

We assume the velocity dispersion we measure for EC4 is representative of \(\sigma \) as all six stars lie within 2 core radii. This assumption would cause us, if anything, to underestimate the velocity dispersion with distance, as our EC4 sample does marginally within the errors. If this is the case, the result would be that we would underestimate the \(M/L \) ratio of EC4 also.

Assuming \(v_\text{r} = 0 \), we nd \(M/L = 6.7^{+1.2}_{-1.0} \). We do not nd an increase in luminosity, making it unlikely that EC4 contains a sizable dark matter contribution. It is also unlikely that EC4 is the central remnant of a dSph that has lost the majority of its mass via tidal inter-
action with M 31 or surrounding substructure, as the models of Penarrubia et al. (2008) show that severe mass loss from a dwarf spheroidal by means of tidal stripping actually increases the value of M/L. This is because the tightly bound central dark matter \textit{cusp} of the dwarf is more resilient to tidal disruption than the stellar component of the galaxy, causing the object to become more dark matter dominated. Another possibility is that EC 4 is a stellar cluster undergoing tidal stripping, causing it to have an increased mass-to-light ratio in comparison to more typical GCs (though we note that the M/L of EC 4 is consistent with this population within its 1σ errors). Significant tidal debris from the cluster is not evident in the HST photometry of Mackey et al. (2006), though this could be due in part to the faintness of the cluster.

3.2 Measurem ents of [Fe/H]

The metallicity of the cluster can be calculated using the spectroscopic data obtained for each member star from the equivalent widths of the CaT lines (as described in Ibata et al. 2004). The spectra for the six plausible members (plus the two tentative members) is shown in Figure 6, where velocities and individual metallicities for each candidate are quoted also. The spectroscopic metallicity of the six most probable member stars range from [Fe/H] = -1.5 to [Fe/H] = -2.2. It is important to note that the errors on the metallicities of each individual star are quite high (of order 0.4 dex) owing to the signal-to-noise of the data.

In Figure 6 we display the combined spectra for these stars after normalizing by continuum and smoothed with a Gaussian of instrumental resolution. Overplotted in red are the 3 σ Gaussian fits to the CaT lines (also smoothed to correspond to data). The lower plot is shown for comparison and represents a continuum-normalized model atmosphere spectrum from Munari et al. 2005, resampled to R = 6000 with

Figure 5. The individual spectra of the six plausible and the two tentative EC 4 members are displayed with their associated velocities and measurements of [Fe/H] (as measured from the first and second CaT lines). As can be seen, the third CaT line in the majority of the spectra is skewed as a result of poor sky subtraction.
\[
\log(g) = 1.0, \ [\text{Fe/H}] = -1.5, T_{\text{eff}} = 4500K \quad \text{and shifted down by 0.5 for ease of reference.}
\]

Figure 6. Top spectrum: A straight average of reliable spectra plotted after normalizing by continuum and smoothing using a Gaussian. Over-plotted in red are the 3 smoothed Gaussian terms to the CaT lines. Lower spectrum: For comparison, a continuum-normalized model atmophere spectrum from Muanari et al. 2005 is shown, resampled to R = 6000 with \(\log(g) = 1.0, [\text{Fe/H}] = -1.5, T_{\text{eff}} = 4500K \) and shifted down by 0.5 for ease of reference.

It is also interesting to note that 3 FeI lines (at 8467, 8515, and 8687 Å) can be seen in our summed spectra that appear to have similar EWs as their counterparts in the template spectrum, implying that the model is a good fit in surface gravity and temperature space to our data. The FeI lines could also allow us to estimate chemical abundance ratios with better spectra in the future (see Koch et al. 2002, Ksby et al. 2008).

3.3 A association with Stream ‘Cp’

From its projected position in the halo of M31, EC4 appears to sit within the tidal stream structure, Stream ‘Cr’, first reported in Bata et al. (2007). The work of Chapman et al. (2008) and Richardson et al. (2009) has since shown that this stream represents two superposed structures, a metal rich Stream ‘Cr’ and a metal poor Stream ‘Cp’. Therefore, it seems natural to ask whether EC4 is related to either of these structures and, if so, what their relationship is?

From a comparison of their kinematics we nd that, whilst Stream ‘Cr’ is the denser of these two streams in the region of EC4 (3 times the density of Stream ‘Cp’), it does not seem likely that it is related to the cluster by either its velocity (\(v_r = -349.5 \text{km s}^{-1} \) vs. \(-287.9 \text{km s}^{-1} \) for EC4) or its metallicity (\([\text{Fe/H}] = -0.7 \) vs. \(-1.6 \) for EC4). However, from the 5 stars that were unambiguously identified as members of Stream ‘Cp’, Chapman et al. determined a systemic velocity for the structure of \(v_r = -385.0 \pm 10 \text{km s}^{-1} \), which is very similar to the velocity of \(-287.9 \text{km s}^{-1} \) that we derive here for EC4. They also found a spectroscopic metallicity for Stream ‘Cp’ of \([\text{Fe/H}] = -1.3 \) which, taken at face value, is more metal-rich than the value of \([\text{Fe/H}] = -1.5 \) that we nd for EC4. However, on a closer inspection of the data used to calculate the metallicity for the stream, we note that the same broadening of the third CaT line that we see in the EC4 stars, is also observed in the Stream ‘Cp’ spectra, which will have resulted in an over-estimate of \([\text{Fe/H}] \) for the stream. To correct this, we recalibrate the metallicity for the stream using the first and second lines only and nd \([\text{Fe/H}] = -1.6 \pm 0.2 \), which is once again in reasonable agreement with our EC4 result.

Photometrically, as stated in the previous section, we nd a mean metallicity for EC4 of \([\text{Fe/H}] = -1.5 \) 01. Using the same set of isochrones and applying them to the Stream ‘Cp’ stars we measure a mean \([\text{Fe/H}] = -1.4 \) 01, again in reasonable agreement. However, given the errors from crowding and contamination within the CFHT data and the discrepancies between value of \(-1.5 \) we calculate here for EC4 and that of \(-1.84 \) 02 calculated by Mackey et al. (2008), it is important for us to assess whether the HST data show a similar agreement between the two populations. A
the spectroscopic Stream ‘Cp’ members were not observed in the HST pointing, we are unable to directly compare them to the EC4 members in the HST reference frame. Instead, we separate the EC4 stars within the HST eld from the surrounding halo region by imposing a radial cut of 0.8’, which is beyond the tidal radius of EC4, and compare the CMDs for both regions. This is shown in the top right panel of Fig. 2, where we display the HST CMD with Dartmouth isochrones overlaid in the F606W and F814W bands, again with an age of 10 Gyr and [Fe/H] = +0.4, at metallicities of [Fe/H] = -2.0, -1.8, -1.5, -1.0, and -0.75. As can be seen, the isochrone with [Fe/H] = -1.8 is the best match to the EC4 data (left panel). Turning our attention to the surrounding eld (shown in the right-hand panel), we can see the core metal-rich Stream ‘Cr’ component quite clearly, but we also see a population persisting at [Fe/H] = -1.8. Given the distance of these stars from EC4, it is unlikely that they are bound members of the cluster, and hence we attribute this population to Stream ‘Cp’, showing again a good agreement in the photon etric properties of both objects.

The above ndings strongly suggest that EC4 and Stream ‘Cp’ are somehow related to one another, and it is worth considering whether these two stream stars (and consequently, the surrounding HST eld stars) could be far-ung members of EC4 itself, thereby implying representing rare or tidally disrupted members of an otherwise isolated cluster (without an associated tidal stream). These stars lie at large radii from EC4 (2 to 10 arcmin, or 0.5–2 kpc), chosen by chance in the spectroscopic search, and are very unlikely to be members of EC4 itself. They would represent 15–74% core radii of EC4 (30 pc) and therefore cannot belong to the cluster unless it is strongly disrupted, or in fact only the cold core component of a more diffuse dwarf galaxy with an outer second component of stars. Owing to its low value of M/V (as discussed above), it is unlikely that this is the case. It is more probable that EC4 and the Stream ‘Cp’ stars both constitute tidally stripped members of the as-yet undiscovered stream progenitor.

4 DISCUSSION

4.1 EC4 in the context of the dwarf spheroidal M/L relation

Given that EC4 encroaches on the parameter space between typical GCs and dSphs, it is interesting to compare EC4 with other local group dSphs to see if its properties are consistent with this population. A comparison is made between EC4 and members of the known Milky Way and M31 satellites in Figure 7, where the M Mateo (1998) relation between M/L and the luminosity of dwarf galaxies in the Local Group has also been plotted, with the blue hatched region representing the parameter space typically occupied by GCs. Most of the newly discovered M31 dSphs are in agreement with the relation within reasonable errors. It is obvious that EC4 is not consistent with this relation, and would need to be of order 100 times more massive than we measure here for it to be comparable with other dwarfs of similar luminosity. This strongly implies that EC4 is not a significant quantity of dark matter, and is not a member of the dwarf spheroidal population. Instead we nd that many of the attributes of EC4 are core consistent with those of a globular cluster without any sizable dark matter component. The half-light radius of 33 pc, though large for a cluster, is significantly smaller than what is typically observed in dSphs. There are three unusual, seemingly dark matter dominated objects where similar values of core radii to that of EC4 have been observed — the LMN and Leo V dSphs, and the Galaxy’s tidal stream. Though whether these associations represent dwarfs or clusters is also subject to debate (see e.g., van der Marel et al. 2008). The objects are also vastly less luminous than EC4 at M_V = -25, M_V = -30 and M_V = -43, and therefore they are not directly comparable. Another point to consider is that EC4 has a very narrow RGB, suggesting that it is composed of a single, probably old stellar population, without any evidence from the CMD of subsolar masses in the outer regions of the cluster.

4.2 The origin of EC4

The location of EC4 in M31’s halo, overlapping with the tangential stream ‘Cp’ and ‘Cr’, poses some interesting questions about the origins of the cluster. EC4 lies in a region where the metal-poor Stream ‘Cp’ has roughly 25% the stellar density of the metal-rich Stream ‘Cr’, although our spectroscopy reveals that EC4 is likely related to Stream ‘Cp’ with Stream ‘Cr’ overlapping only in projection. Could Stream ‘Cp’ actually be the debris from disrupted EC4 material? The integrated luminosity of Stream ‘Cp’ is comparable to a faint M31 dwarf galaxy like And XV or And XVI (Letarte et al. 2003), M_V = 9.5, which would suggest the baryonic matter mass loss of EC4 (M_M = 6.6 M_⊙) (Mackey et al. 2006) would be dramatically larger than its current intact mass. No distortion of the EC4 isophotes is found in the HST in any of Mackey et al. (2006), although the faintness of EC4 means this is unlikely to be a good test of ongoing mass loss or tidal distortion. A low, as noted in section 3, dSphs that have undergone severe tidal disruption are thought to increase their value of M/L and become core dark matter dominated. The low value of M_L/M_V = 6.7 ± 0.7 that we report here is therefore consistent with such an event. Using the results of Penarrubia et al. (2008), we can estimate what the initial M/L of EC4 might have been if it had undergone heavy tidal stripping. They nd that for the most extreme cases of tidal disruption (mass loss > 99%), the velocity dispersions of dSphs decrease by a factor 4, the core radii are trimmed by a factor 3 and the surface density is decreased by factors up to 100. Applying these
approximate corrections to our measured EC4 parameters gives an estimate for the initial M/L of less than 1, further weakening the case for EC4 being a member of the dSph population.

Regardless, it is likely that Stream C′p and EC4 are at least related by their kinematic and metallicity. If this is the case, then EC4 could represent an intact cluster of an as yet unidentified disrupting progenitor of Stream C′p that has been stripped of its host and is now being carried along in its wake. Such a phenomenon has been observed in the M31, where several GCs have been identified within the stream of the currently disrupting Sagittarius dwarf that are thought to have been stripped from Sagittarius itself (Dracones et al. 2000; Martinez-Delgado et al. 2002; Oberst 2002; Carignan et al. 2007). It is also possible that EC4 represents a cluster from M31’s halo that is now being carried along within Stream C′p.

There exists another possibility for the origins of Stream C′p and EC4. It has recently been suggested in Fardal et al. (2008) that by modeling the progenitor of the Giant Southern Stream (GSS) in M31 as a disk galaxy rather than a spherical, non-rotating galaxy as used in other models (Font et al. 2003; Fardal et al. 2007), many features of M31’s halo, such as the Northeast and Western Shelves, can be reproduced. Preliminary results from these models show that with particular input conditions for the disk progenitor (specific combinations of disk mass, radius and orientation), the models can reproduce tangential arc structures in the metallicity and orientation about the minor axis to those observed by (Sakai et al. 2007). These arcs are the result of stripped debris from the rotating progenitor being left in different physical locations depending on the disk’s orientation with respect to M31. However these simulations do not reproduce the distinct values of [Fe/H] as seen in Stream C′p and Stream C′p′. Another point to note is that initial results from modeling these simulated stream-like structures much further from the centre of M31 than the observed stream s, suggesting that their appearance in simulations may be coincidental. Further observational constraints and more in-depth modeling is required to determine whether these arcs (and EC4) could be related to the GSS. If this were the case, then it suggests that EC4 could have been formed in a larger dwarf galaxy, and subsequently been stripped off as the progenitor was tidally disrupted by M31.

Of course the possibility exists that EC4 is not associated with the Stream C′ structure at all, that it merely overlaps the region in projection. Without precise distance information, it is difficult to rule this out completely, though the striking similarities in the kinematics between the two objects makes such a conclusion seem unlikely.

5 CONCLUSIONS

In conclusion, we have conducted a Keck/DEimos survey of the extended cluster, EC4 in the halo of M31. We have measured the velocities and metallicity for 6 probable members stars and nd values of $v_r = -27$ km s$^{-1}$, $v_{	ext{pec}} = 27''$, and [Fe/H] = -1.6 for the cluster. The velocity dispersion of EC4 suggests that no sizable contribution of dark matter is present within EC4 as it has a $M/L = 6.7_{-1}^{+1.1}$, although the results clearly carry large uncertainties based on only 6 stars. We find that EC4 is not comparable with typical M31 and M31 dwarf galaxies, as it is not consistent with the well established M/L relation for dwarfs. It is a core-collapsed GC whose large
the region of Stream ‘C’, and its kinematics and metallicity are very similar to those of the more metal-poor component, Stream ‘Cp’, suggesting that the two structures are related to one another. Owing to its current impact mass and M/L ratio, EC4 is unlikely to be the disrupting progenitor of the stream, but its strong kinematic resemblance suggests it is either a cluster that has been stripped from the progenitor, or a stellar system that is being carried along by the disrupted stream.

"Extended Clusters" possess some unusual and interesting properties. Whether they are obscure globular clusters, tidally stripped dwarfs or a "missing link" between the two, they represent a relatively unstudied variant of stellar association. The work we have presented here indicates a need for further spectroscopic surveys of similar objects within M31 and other local group galaxies to be carried out, to see if results such as those found for EC4 are present throughout the EC population. It will be interesting to see if other ECs have associated streamy substructure, and to discover what role ECs play in the evolution of galaxies such as our own MW.

6 ACKNOWLEDGMENTS

MLMC acknowledges the award of an STFC studentship. SCC acknowledges NSERC for support.

REFERENCES

Table 1. Properties of EC 4 DEMOS eld stars.

<table>
<thead>
<tr>
<th>eld (J2000)</th>
<th>eld (J2000)</th>
<th>eld</th>
<th># targeted stars</th>
<th># EC 4 stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:58:15.50</td>
<td>+ 38:03:01.1</td>
<td>EC 4 (F25/F26)</td>
<td>211</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>star (J2000)</th>
<th>star (J2000)</th>
<th>vel (km s(^{-1}))</th>
<th>[Fe/H] (_{pec})</th>
<th>[Fe/H] (_{hot})</th>
<th>S/N</th>
<th>I-mag</th>
<th>V-mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:58:17.2</td>
<td>+ 38:02:49.6</td>
<td>-285.5 3.1</td>
<td>-1.7</td>
<td>-1.16</td>
<td>5.2</td>
<td>21.1</td>
<td>22.7</td>
</tr>
<tr>
<td>00:58:17.1</td>
<td>+ 38:02:54.1</td>
<td>-286.8 4.1</td>
<td>-1.5</td>
<td>-1.36</td>
<td>5.9</td>
<td>20.9</td>
<td>22.5</td>
</tr>
<tr>
<td>00:58:16.0</td>
<td>+ 38:02:56.1</td>
<td>-275.4 8.9</td>
<td>-1.8</td>
<td>-1.21</td>
<td>2.7</td>
<td>21.3</td>
<td>22.8</td>
</tr>
<tr>
<td>00:58:15.5</td>
<td>+ 38:02:58.9</td>
<td>-285.6 14.1</td>
<td>-0.5</td>
<td>-1.45</td>
<td>3.0</td>
<td>20.9</td>
<td>22.4</td>
</tr>
<tr>
<td>00:58:14.7</td>
<td>+ 38:03:00.8</td>
<td>-277.3 20.0</td>
<td>-5.6</td>
<td>-1.49</td>
<td>1.5</td>
<td>21.5</td>
<td>22.8</td>
</tr>
<tr>
<td>00:58:16.0</td>
<td>+ 38:02:22.5</td>
<td>-285.8 2.3</td>
<td>-1.9</td>
<td>-1.41</td>
<td>8.9</td>
<td>20.4</td>
<td>22.1</td>
</tr>
<tr>
<td>00:58:15.2</td>
<td>+ 38:03:01.3</td>
<td>-295.7 9.5</td>
<td>-2.0</td>
<td>-1.39</td>
<td>5.3</td>
<td>21.0</td>
<td>21.7</td>
</tr>
<tr>
<td>00:58:14.4</td>
<td>+ 38:03:00.4</td>
<td>-294.1 3.9</td>
<td>-2.2</td>
<td>-1.48</td>
<td>2.9</td>
<td>21.6</td>
<td>22.9</td>
</tr>
</tbody>
</table>