Testing New Indirect CP Violation

Yuval Grossman,1,2 Yosef Nir,2 and Gilad Perez2

1 Institute for High Energy Phenomenology, Neum an Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA
2 Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

If new CP violating physics contributes to neutral meson mixing, but its contribution to CP violation in decay amplitudes is negligible, then there is a model independent relation between four (generally independent) observables related to the mixing: The mass splitting (x), the width splitting (y), the CP violation in mixing (|q=p|), and the CP violation in the interference of decays with and without mixing (δ). For the four neutral meson system, this relation can be written in a simple approximate form: \[x = \tan (y)\times |q=p|.\] This relation is already tested (successfully) in the neutral K system. It provides predictions for the B_s and D system. The success or failure of these relations will probe the physics that is responsible for the CP violation.

Introduction. The fact that the Standard Model depends on a single CP violating phase gives it a strong predictive power concerning CP asymmetric terms. The fact that CP is a good symmetry of the strong interactions makes the theoretical analysis of CP asymmetric terms often impossibly clean. These theoretical advantages combined with the huge experimental progress in measuring CP violation in B decays and in the search for CP violation in B_s and D decays, provide a powerful probe of new physics. Observing deviations from the Standard Model predictions will not only imply the existence of new physics, but also give detailed information about features of the required new physics.

CP violation in meson decays can be classified into indirect and direct CP violation. Indirect CP violation can be completely described by phases in the dispersive part of the neutral meson mixing amplitude (M_{12}). In contrast, direct CP violation requires that there are some phases in the decay amplitudes (A_f). Within the Standard Model, many CP asymmetric terms require (to an excellent approximation) only indirect CP violation. Examples include K ! B, B ! K, and B_s ! B. This situation persists in many (though not all) extensions of the Standard Model.

Indirect CP violation can manifest itself in two ways: CP violation in mixing, which is the source of CP asymmetric terms in semileptonic decays, and CP violation in the interference of decays with and without mixing, which is often the dominant contribution in decays into final CP eigenstates. When there is no direct CP violation, these two manifestations are not independent of each other. They are correlated in a way that depends on the mass- and width-splitting between the two neutral meson mass eigenstates. In this work, we derive this model independent relation, and analyze its applicability and implications in each of the four neutral meson systems (K, D, B, B_s).

The experimental parameters. We refer here explicitly to the neutral D system, but our formalism applies equally well to all four neutral meson systems. The two neutral D meson mass eigenstates, \(D_{1/2}\) and \(D_{1/2}\), which are linear combinations of the interaction eigenstates \(D_0^0\) (with quark content uu) and \(D_{*}^0\) (with quark content uu):

\[
D_{1/2} = \frac{p D_0^0 \mp i D_{*}^0}{2}.
\]

The average and the difference in mass and width are given by:

\[
m = \frac{m_1 + m_2}{2}, \quad \frac{1 + \mu}{2};
\]

\[
x = \frac{m_2 - m_1}{2}, \quad \frac{2 + \mu}{2};
\]

\[
y = \frac{y_{12}}{2} + \frac{1 + \mu}{2}.
\]

The decay amplitudes into a final state \(f\) are defined as \(A_f = h f H D_{1/2}\) and \(A_f = h f H D_{1/2}\). We define a complex dimensionless parameter \(\alpha_f = h f H D_{1/2}\).

A concrete example is the doubly-Cabibbo-suppressed decay \(D^0 \to K^+\), the singly-Cabibbo-suppressed decay \(D^0 \to K^*\), and the Cabibbo-favored decay \(D^0 \to K^*\). Let us assume that each of these direct CP violation is negligible, as even in the presence of new physics. On the other hand, new physics could easily generate indirect CP violation. The effects of indirect CP violation can be parameterized in the following way:

\[
1_{K} = r_d \frac{p-q}{i} \left(\frac{1 + \mu}{2} \right);
\]

\[
K \cdot K = r_d \frac{p+q}{i} \left(\frac{1 + \mu}{2} \right);
\]

\[
K \cdot K = \frac{p-q}{i} \left(\frac{1 + \mu}{2} \right).
\]

where \(r_d = \frac{p-q}{i} = A_K\). \(\frac{p-q}{i} \) is a strong (CP conserving) phase, and \(\frac{p+q}{i} \) is a weak (CP violating) universal phase. The appearance of a single weak phase that is common to all final states is related to the absence of direct CP violation, while the absence of a strong phase
\[D^0 (t) \rightarrow K^{+} \bar{K}^{-} = r_d + \frac{d}{q} (y^0 \cos x \sin) t + \frac{q}{2} y^2 + x^2 (t)^2; \]
\[D^0 (t) \rightarrow \bar{K}^{+} K^{-} = r_d + \frac{d}{q} (y^0 \cos x \sin) t + \frac{p}{2} y^2 + x^2 (t)^2; \]

where \(r_d = \bar{A}_K \cdot A_K \), \(y^0 = y \cos x \sin x \), and \(x^0 = x \cos x \sin x \).

\[\frac{D^0 (t) ! K^{+} K^{-}}{\overline{D^0} (t) ! K^{+} K^{-}} = e^{\frac{1}{2} \bar{A}_K \cdot A_K \int^{j_p} j_p} \left[1 \left(\begin{array}{c} -j_p = p \end{array} \right) y \cos x \sin x \right] t \];

\[\frac{D^0 (t) ! K^{+} \bar{K}^{-}}{\overline{D^0} (t) ! K^{+} \bar{K}^{-}} = e^{\frac{1}{2} \bar{A}_K \cdot A_K \int^{j_p} j_p} \left[1 \left(\begin{array}{c} -j_p = q \end{array} \right) y \cos x \sin x \right] t; \]

The overall phase of the mixing amplitude is not a physical quantity. It can be changed by the choice of phase convention for the up and down quarks. The relative phase between \(M_{12} \) and \(x_1 \) is, however, phase convention independent and has physics consequences. The three physical quantities related to the mixing can be defined as:

\[y_{12} = \frac{y_{12}}{y_{12}} \quad x_{12} = \frac{x_{12}}{x_{12}} \quad \text{and} \quad \text{arg}(M_{12}) = 12; \]

Given a physical model, one can calculate the three parameters \(y_{12}, x_{12}, \) and \(x_{12} \) as a function of the model parameters. We thus call them "theoretical parameters." Note that \(y_{12} \) is generated by neutral states that are common to \(D^0 \) and \(D^0 \) decays. Thus it is very likely that it is described by a very good approximate form of Standard Model physics (see, however, \([2] \)). On the other hand, \(x_{12} \) and \(x_{12} \) can be described by new physics parameters.

From theory to experiment. The following expressions give the experimental parameters in terms of the theoretical ones:

\[xy = x_{12} y_{12} \cos 12; \quad x^2 = x_{12}^2 y_{12}^2; \]

\[(x^2 + y^2) y_{12} = x_{12}^2 + y_{12}^2 = 2x_{12} y_{12}; \]

\[x^2 \cos^2 + y^2 \sin^2 = x_{12}^2 \cos^2 12: \] (9)

To obtain the last relation, we took into account the fact that, in the absence of direct CP violation, we have for neutral CP eigenstates:

\[\text{Im} \left(\begin{array}{c} 12 \bar{A}_f = A_f \end{array} \right) = 0; \quad \bar{A}_f = A_f j = 1; \] (10)

The relations that we derive below depend crucially on this condition. Even if, in general, there is direct CP violation in some decays, our relations apply for those modes where Eq. (14) holds.

We emphasize that the relation between the theoretical phase \(12 \) (as in Eq. (3)) and the 'experimental' phase \(12 \) (as in Eq. 6) is, in general, quite complicated. In particular, when \(x_{12} < y_{12} \), as might still be the case for the neutral system, the phase might be considerably smaller than \(12 \). In other words, the new physics contribution could violate CP with a phase of order one, yet small.

From experiment to theory. Given experimental constraints on \(x_1 y; j_p = p \) and \(y_1 y; (12) \), we use Eq. (6) to constrain \(x_{12} \) and \(y_{12} \) and subsequently the new physics m odelparameters. In particular, we derived the following equations for each of \(x_{12} \) and \(y_{12} \) in terms of \(x_1 y \) and \(y_1 y \):

\[x_{12}^2 = \frac{x^4 \cos^2 + y^4 \sin^2}{x^2 \cos^2 + y^2 \sin^2}; \] (11)

\[\sin^2 12 = \frac{\cos^2 + y^2}{x^4 \cos^2 + y^4 \sin^2}; \]

and, second, in terms of \(x_1 y \) and \(j_p = p \):

\[x_{12}^2 = \frac{x^2 \left(1 + \frac{j_p}{4} \right)^2 + y^2 \left(1 + \frac{j_p}{4} \right)^2}{16x^2 y^2 \frac{j_p}{4} + \left(x^2 + y^2 \right) \left(1 + \frac{j_p}{4} \right)^2}; \] (12)

Let us assume as is the case for \(D^0 \) decays at present, that \(x_1 y \) are measured, while the CP violating parameters \(1 + \frac{j_p}{4} \) and \(\sin^2 12 \) are constrained to be small. For small \(\sin^2 12 \) we obtain, to \(O(\sin^2 12) \),

\[x_{12}^2 = x^2 \left[1 + \frac{y^2 \left(x^2 + y^2 \right)}{x^4 \sin^2}; \right. \]

\[\sin^2 12 = \frac{\left(x^2 + y^2 \right)^2}{x^4 \sin^2}; \] (13)
For small \((1 \neq p)\) we obtain, to leading order:
\[
\begin{align*}
 x_{12}^2 &= x^2 + \left(1 + \frac{x^2 + y^2}{x^2}\right) \frac{q}{p} \\
 \sin^2 12 &= \frac{(x^2 + y^2)}{x^2 y^2} \left(1 + \frac{q}{p}\right)
\end{align*}
\]

A model independent relation. The fact that we are able to express the four experimental parameters in terms of three theoretical ones means that the experimental parameters fulfill a model independent relation. It depends solely on our assumption that direct CP violation can be neglected.

The relation can be extracted from Eqs. (11) and (12):
\[
\frac{(1 + \sin^2 p)^2}{16(y=x)^2 + [1 + (y=x)^2] (1 + \sin^2 p)^2} = \frac{1 + (y=x)^2}{1 + (y=x)^2} \tan^2
\]

The relation becomes very simple in two limits. Fortunately, each of the four neutral K meson system is subject to at least one of these two approximations. First, consider a system where
\[
y_{12} = x_{12}.
\]

This approximation applies to the B and B_s system. It gives, to leading order in \(y_{12} - x_{12}\):
\[
y = x = \cos 12 y_{12} = x_{12};
\]
\[
\tan 12 = \tan 12;
\]

The derivation of the sign for the CP violating observables starts from the definition of \(q = p\) (see, for example, [8]).

Second, consider a system where CP violation is small,
\[
\sin 12 \neq 1;
\]

This situation applies to the K system. Very recently, measurements in pply that it also applies (with limits of order 0.2) to the D system [1]. We obtain, to leading order in \(\sin 12\),
\[
y = x = \sin(\cos 12) y_{12} = x_{12};
\]
\[
\tan 12 = \frac{y-x}{1 + (y-x)^2}; \tan 12 = \frac{\tan 12}{1 + (y-x)^2};
\]

The two sets of equations, (11) and (13), lead to the same simple relation:
\[
y = x = \frac{1 + \sin^2 p}{\tan}.
\]

Eq. (12) is the main theoretical result of this work. If it is found to be violated, then new physics will have to provide not only indirect CP violation, but also direct one. That would exclude many classes of candidate theories.

In what follows, we analyze the applicability and implications of this relation in each of the four neutral meson systems.

The two ingredients that go into the relation (12) (small CP violation and the absence of direct CP violation) hold in the K system. Thus, this relation should hold in the neutral K system. Neglecting direct CP violation, and denoting
\[
A_0 = h(1) + K^0; \quad 0 = (q=p)(A_0 = A_0);
\]

the CP violating parameter corresponds to [8]
\[
\frac{1}{1 + \tan};
\]

Then we have
\[
\frac{1}{1 + \tan}; \quad \frac{1}{1 + \tan}.
\]

The relation (20) translates into the prediction
\[
\arg (\sin^2 p); \quad \frac{1}{y}\tan (\sin^2 p);
\]

where, for the numerical value, we used [9] \(m_K = 0.2590\) \(10^{-3}\) s^{-1} and \(m = 1.163 \times 10^{-3}\) s^{-1}. Indeed, the experimental value is [7]
\[
\arg (\sin^2 p) = 43.51 \pm 0.55;
\]

Thus, the relation (20) is tested in the neutral kaon system and works very well.

In the neutral B system, the width difference is constrained to be small (and consistent with zero within the present accuracy), \(= \pm 0.01 \pm 0.04\), while the mass splitting is m easured to be much larger, \(m = 0.78 \pm 0.01\) [9]. Thus \(y_{12} = x_{12} = 1\) and Eqs. (12) apply. One has to note, however, that the equation for holds only for modes where Eq. (11) applies. Since [6,8,10,11,12]

\[
\arg (\sin^2 p) = \frac{1}{y}\tan (\sin^2 p);
\]

the phase relates to modes whose phase is dominated by \(\arg(V_{u s}V_{ud})\). (The weak phase of B ! K is dominated by \(\arg(V_{u s}V_{ud})\) and, therefore, S K_s cannot be used to test (20).) The problem is that the approximation (26) gives \(\sin^2 p = 0\) and \(\sin^2 p = 0\) so that \(\tan x = x\sin^2 p\) is fulfilled in a rather trivial way.

If one wants to go beyond (26), the large relative phase between \(V_{u s}V_{ud}\) and \(V_{u s}V_{ud}\) has to be taken into account. It enters \(A_1 = A_1\) in different ways, and thus direct CP violation plays a role and (20) is violated. Nevertheless, the relation (20) could in principle provide interesting predictions if M_12 had significant contributions from new physics carrying a new phase. Experimental data constrain, however, such contributions to be smaller than 0.02 (10,11,12), which is the same order as the direct CP violation effects in [6,7,10,11,12].
\[B_s \rightarrow B_L \text{ mixing. Within the Standard Model the discussion the } B_s \text{ system follow a line of reasoning that is very similar to our discussion of the } B_d \text{ system. However, in contrast to the } B_d \text{ system, a situation where the indirect } CP \text{ violation is entirely dominated by new physics in } M_{12} \text{ is still possible for } B_s \rightarrow B_L \text{ mixing. A study, recent measurements in } D_0 \text{ and } CDF \text{ provide hints at a level higher than 2 to that this is indeed the case} \text{. If so, then the relation } (20) \text{ provides a very interesting probe of the new physics. Neglecting } s = \arg (V_{us}V_{ub})/(V_{cs}V_{cb}), \text{ the relation reads}
\]
\[A_{SL}^s = \text{sign}(\cos y)(2y=x)S = (1 \ s^2 y^2)^{-2} \]
\[= 2y=xS = (1 \ s^2 y^2)^{-2} \]
\[(27) \]

where \(A_{SL}^s \) is the CP asymmetry in semi-leptonic decays, and \(S \) is the CP violating parameter in the decays into \(\ell \bar{\nu}_{\ell} + \pi^- \). The second equality assumes that neither \(y \) nor \(b \) decays are signifi cantly affected by new physics, which implies that \(\text{sign}(y \cos y) = \text{sign}(y \cos) = 1 \). The experimental data read \(\text{Ref. } [2] \text{. The relation is also successfully tested in } K \text{ decays, where direct } CP \text{ violation is negligible, and is consistent with zero. In these cases, the } \alpha \text{ relation applies also to } B_s \text{ decays.} \text{ The phenomenological implications of this relation are the following:}
\]

1. The right hand side of this relation, which is calculated from theory, can be replaced by the experimentally measurable factor \(2y=x \cos y \). Thus, this becomes a theory-independent (in both the electroweak model and QCD uncertainty aspects) relation.

2. We make it clear that a failure of this relation must imply new direct \(CP \text{ violation.}
\]

\[D^0 \rightarrow D^0 \text{ mixing. Within the Standard Model, } CP \text{ violation in } D^0 \rightarrow D^0 \text{ is negligibly small (see, for example, Ref. } [13]). \text{ Thus, any signal of } CP \text{ violation requires new physics. It is quite likely that such new physics will contribute negligible to tree level } CP \text{ amplitudes, though new direct } CP \text{ violation is not in possible Ref. } [13]. \text{ Measurements of the time dependent decay rates } [3] \text{ and } [7] \text{ will allow us to extract } \lambda \text{ and put } [20] \text{ to the test.}
\]

Experimentally, there has been a very significant progress in determining the mixing parameters in the neutral system \([3] \):
\[x = (1.00 \ 0.25) \cdot 10^2; \]
\[y = (0.77 \ 0.18) \cdot 10^2; \]
\[1 \ y= \pm 0.06 \ 0.14; \]
\[= 0.05 \ 0.09; \]
\[(29) \]

The \(CP \text{ violating parameters are constrained to be small, and consistent with zero. In case, however, that } CP \text{ violation is observed in the future, the fact that}
\]
\[y=x \ 0.8 \ 0.3 \]
\[(30) \]

suggests that the \(CP \text{ violation in } m \text{ mixing is comparable in size to the } CP \text{ violation in the interference of decays with and without } m \text{ mixing. Whether or not the relation } (23) \text{ is fulfilled will teach us about the new physics and will disfavor or support models of the type discussed in Ref. } [18], \text{ where direct } CP \text{ violation can be generated.}

Conclusions. } CP \text{ asymmetries in neutral meson decays where direct } CP \text{ violation is negligible obey a relation. The relation involves four experimentally measurable parameters and is thus independent of the electroweak model and QCD uncertainties. It applies to neutral } K \text{ and } D \text{ decays in the form } (20). \text{ If new physics provides a large phase to } B_s \rightarrow B_L \text{ mixing, then the same relation applies also to } B_s \text{ decays.}

The phenomenological implications of this relation are the following:

The relation is already successfully tested in } K \text{ decays.

If a large } CP \text{ violating effect is measured in } B_s \text{, then there is a clean prediction for the } CP \text{ asymmetry in semi-leptonic decays } A_{SL}^s \text{ that is strongly enhanced compared to the SM.}

If, for neutral } D \text{ decays, } CP \text{ violation in either } m \text{ mixing or the interference of decays with and without } m \text{ mixing is observed, there is a clear prediction for } CP \text{ violation of the other type, of comparable size.}

If the relation fails in } D \text{ decays, it will be an unambiguous evidence that the new physics generates also } CP \text{ violation in the decay amplitudes.}

Acknowledgments. We are grateful to Alex Kagan for pointing out sign errors in the first version of this paper. We thank M onika Bander for pointing out a missing factor of 2 in Eq. (23). This work is supported by the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. The work of YG is supported by the NSF grant PHY-0757868. The work ofYN is supported by the Israel Science Foundation founded by the
Israel Academy of Sciences and Humanities, the Ger-
man-Israel Foundation for Scientific Research and Develop-
ment (GIF), and the Minerva Foundation. The work of GP
is supported by the Peter and Patricia Gruber Award.

[5] E. Barberio et al. [Heavy Flavor Averaging Group],
arXiv:0808.1297 [hep-ex], and online update at
SLAC Summer Institute on Particle Physics (1992).
[13] M. Bona et al. [UT Collaboration], JHEP 0803, 049
(2005) [hep-ph/0406184], updated results and plots available at: