Based on the Z_{12} orbifold compactification of the heterotic string theory, we construct a flipped-$SU(5)$ model with three families of the standard model matter and ingredients for dynamical supersymmetry breaking. The doublet-triplet splittings in the Higgs representations 5_2 and $\overline{5}_2$ are achieved by the couplings $10_1\cdot 10_2\cdot 5_2$ and $\overline{10}_1\cdot \overline{10}_1\cdot \overline{5}_2$, where 10_1 and $\overline{10}_1$ develop GUT scale vacuum expectation values, breaking the flipped-$SU(5)$ down to the standard model gauge group. In this model, all the exotic states are decoupled from the low energy physics, and $\sin^2 \theta_W = \frac{3}{8}$. Above the compactification scale, the flipped-$SU(5)$ gauge symmetry is enhanced to the $SO(10)$ gauge symmetry by including the Kaluza-Klein (KK) modes. The hidden sector gauge group is $SU(5)^0$. The threshold correction by the KK modes allow a very wide range for the hidden sector com-ning scale (10^{11} GeV to 10^{16} GeV). One family of hidden matter (10^0 and 5^0) gives rise to dynamical supersymmetry breaking.

PACS numbers: 11.25.Mj, 12.10.Kr, 12.60.Jv

Keywords: Orbifold compactification, Flipped SU(5), Hidden SU(5)0, KK masses, Gauge coupling unification
I. INTRODUCTION

The \textit{pped-SU(5)} model, called \textit{SU(5)} \textit{p}, was contrived for the alternative embedding of the standard model (SM) SU(2) singlets in the irreducible representations of the SU(5) grand unified theory (GUT) \cite{1,2,3,25} in contrast to the well-known Georgi-Glashow SU(5) \textit{G}. As a result, a distinctive feature of the \textit{SU(5)} \textit{p} is an interesting GUT breaking mechanism through the Higgs representation 10 of SU(5) rather than the adjoint 24, reducing the rank of the \textit{SU(5)} \textit{p} by one unit. A great virtue of the \textit{SU(5)} \textit{p} is the relative ease of the doublet/triplet splitting in the Higgs representations, 5 and 5, through a simple missing partner mechanism \cite{3}, which is also a result of such an embedding of the SM fermions. Another characteristic feature of the \textit{SU(5)} \textit{p} is the absence of predicted fermion mass relations between quarks and leptons in contrast to the \textit{SU(5)} \textit{G} GUT. As in the case of the SM, supersymmetric (SUSY) extension of the \textit{pped-SU(5)} \textit{G} achieves also the gauge coupling unification with the LEP values of coupling constants \cite{5}, if the normalization of the hypercharge is assumed to be that of the SO(10) GUT, \(\sin^2 \theta_W = \frac{3}{8}\).

With the advent of string constructions of the SUSY GUT models, and particularly, with the realization of the difficulty in obtaining adjoint Higgs for GUT breaking in string theory, the GUT breaking by the Higgs representations 10 and 10 in the \textit{SU(5)} \textit{p} became a great advantage. Earlier string construction obtaining 4-dimensional (4D) \textit{pped-SU(5)} GUTs was done in the fermionic construction \cite{6}. Recently, a realistic model has been obtained in a \(Z_{12}\) orbifold construction \cite{7}.

Since mid 1990s, dynamical SUSY breaking (DSB) toward phenomenological models has been advocated to resolve the SUSY flavor problem \cite{8}. The well-known simple dynamical SUSY breaking (DSB) representations in the hidden sector are 10 plus 5 of SU(5) \textit{G}, and 16 of SO(10) \textit{G} \cite{9}. Other hidden sector gauge groups may be possible, but here we concentrate on a simple SU(5) \textit{G} model with only one family, i.e. 10 plus 5, because of its relatively easy realization in heterotic string compactification. Recent DSB models at unstable vacua are known to be possible with vector-like representations in the hidden sector \cite{11}, which became popular because of our familiarity with SUSY QCD. For SU(N) \textit{G}, the DSB requirement on the number of flavors in the SUSY QCD is \(N + 1 - N_f < \frac{3}{2}N\). For SU(5) \textit{G}, \(N_f = 6\) and 7 satisfy this requirement. The DSB possibility from the heterotic string has been suggested by one of the authors at the unstable vacuum \cite{12} and at the
stable vacuum \[13\]. In particular, the minimal supersymmetric standard model (MSSM) obtained in \[13\] with the SU(5)0 gauge group and one family of $10^0 - 5^0$ in the hidden sector has many nice features such as the R-parity, one pair of Higgs doublets, and vector-like exotically charged states (exotics); but the bare value of the weak mixing angle is not $\frac{3}{8}$. The weak mixing angle would be, however, shifted to the observed one with the power-law type threshold effects contributed by the Kaluza-Klein towers \[14\], if relatively larger extra dimensions are assumed.

The so-called SUSY GUTs arise in two disguises: one is (usual) 4D SUSY GUTs such as the Dimopoulos-Georgi model \[13\] and the \textit{pped-SU(5)} \[2\], and the other GUTs in higher dimensions \(D > 4\) as discussed in \[16\]. In a 4D SUSY GUT, the SM gauge group is obtained by spontaneous symmetry breaking of the GUT, whereas in a higher dimensional GUT it is achieved by the boundary conditions. String constructions of the MSSM \[14,17,19,20,21\] actually provided the idea of the higher dimensional SUSY GUT. In this paper, we will study a 4D SUSY GUT from a string compactification. In particular, based on the Z_{12} orbifold compactification of the heterotic string theory, we will construct a SUSY model SU(5)$_\varphi$ SU(5)0, where the first (second) SU(5) indicates the gauge group of the visible (hidden) sector: The SU(5)$_\varphi$ for the visible sector is broken to the SM gauge group by the vacuum expectation values (VEVs) of Higgs fields $10^0_H + 10^0_H$, and the SU(5)0 in the hidden sector becomes connected at lower energies, achieving DSB with one family of $10^0 - 5^0$ \[13\]. This model yields MSSM fields plus one pair of $(10^0_H + 10^0_H)$ and one family of $(10^0 - 5^0)$ in the hidden sector. All the other states in this construction are vector-like under the \textit{pped-SU(5)}. A nice feature of the \textit{pped-SU(5)} model we present in this paper is that it gives a bare value $\frac{3}{8}$ for $\sin^2 \theta_W$. Above the compactification scale the visible sector \textit{pped-SU(5)} gauge symmetry is enhanced to SO(10) by including the KK modes.

This paper is organized as follows. In Secs. \[II\] and \[III\], we will construct a SUSY GUT model SU(5)$_\varphi$ SU(5)0 and present the massless spectra from the untwisted and twisted sectors. In Sec. \[IV\], we will discuss the Yukawa couplings needed for realization of the MSSM. Sec. \[V\] will be devoted for the discussion of gauge coupling constants. Finally we will conclude in Sec. \[VI\].

1 We use the one hidden sector matter notation as $(10^0 - 5^0)$ of SU(5)0 to distinguish it from the visible sector matter notation $(10^0 - 5^0)$ of the \textit{pped-SU(5)}.

3
II. Z_{12} ORBIFOLD MODEL AND U SECTOR FIELDS

We employ the Z_{12} orbifold compactification scheme for the extra 6D space, which preserves $N = 1$ SUSY in the non-compact 4D space [18, 19]. Z_{12} orbifolds are known to give phenomenologically interesting MSSM solutions [7, 14, 18, 20].

The Z_{12} orbifold is an SO(8) SU(3) lattice, and the Wilson lines W_3 and $W_4 (= W_3)$ can be introduced in the 2D SU(3) lattice [18, 19]. We take the following shift vector V and the Wilson line W_3,

\[V = 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 ; \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 ; \frac{1}{4} \ \frac{1}{4} \ \frac{2}{4} \ 0; \]
\[W_3 = W_4 \quad W = \frac{2}{3} \ \frac{2}{3} \ \frac{2}{3} \ \frac{2}{3} ; 0 \ -\frac{2}{3} \ \frac{2}{3} \ \frac{2}{3} \ \frac{2}{3} ; 0 \ -\frac{2}{3} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 ; \]

which are associated with the boundary conditions of the left moving bosonic string. For modular invariance in Z_{12} orbifold compactification, V and W should be specially related to the twist vector $= (\frac{a}{12} \ \frac{b}{12} \ \frac{c}{12})$, which is associated with the boundary conditions of the right moving superstrings, preserving only $N = 1$ SUSY in 4D. The twist vector $= (\frac{a}{12} \ \frac{b}{12} \ \frac{c}{12})$ specifies the Z_{12} orbifold. This model gives

\[V^2 = \frac{1}{6} ; \quad W^2 = \frac{16}{3} ; \quad V \ W = \frac{1}{6} \] (1)

Hence, the modular invariance conditions in Z_{12} orbifold compactification are satisfied [19]: 12 (V^2) = even integer, 12 W^2 = even integer, and 12 $V \ W$ = integer.

The string excited states are irrelevant to low energy physics. The massless conditions for the left and right moving strings on the orbifold Z_{12} are

left moving string: \[\frac{(P + k V_f)^2}{2} + \sum_i X_{N_f}^L \sim \ \phi_k = 0; \]
right moving string: \[\frac{(s + k)^2}{2} + \sum_i X_{N_f}^R \sim \ \phi_k = 0; \]

where $k = 0; 1; 2, \ldots; 11$, $V = (V + m \ W)$ with $m_f = 0; +1; 1$, and i runs over $f1; 2; 3; 1; 2; 3g$. Here $\sim_j k \ j \mod Z$ such that $0 < \sim_j 1$, and $\sim_j k \ j \mod Z$ such that $0 < \sim_j 1$. N_f^L and N_f^R indicate oscillating numbers for the left and right movers. P and s [$(s_0; s)$] are the $E_8 \ E_8$ and SO(8) weight vectors, respectively. The values of ϕ_k, ϕ_k are found in Refs. [6, 18, 19].

The multiplicity for a given massless state is calculated with the GSO projector in the
Z_{12} \text{ orbifold},

\[P_k(f) = \frac{1}{12} \sum_{l=0}^{X} \sim (k; l) e^{2\pi i k}; \]

where \(f = f_0; f_1; \ldots; f_g \) denotes twist sectors associated with \(kV_\ell = kV, k(V + W), k(V W) \). The phase \(k \) is given by

\[k = P \left(N_L^L \mid N_R^R \right) + (P + \frac{k}{2} V_\ell) W_\ell \left(s + \frac{k}{2} \right); \]

where \(\wedge_i \equiv j \) and \(\wedge_j \equiv j \). Here, \(\sim (k; l) \) is the degeneracy factor summarized in Ref. [6,13,19]. Note that \(P_k(f_0) = P_k(f_1) = P_k(f_2) \) for \(k = 0; 3; 6; 9 \). In addition, the left moving states should satisfy

\[P \mid W = 0 \mod Z \text{ in the } U; T_3; T_9 \text{ sectors; } \]

The massless gauge sector corresponds to the states satisfying \(P \mid V = \text{integer}, \) and \(P \mid W = \text{integer} \). They are

\[\text{SU(5)} : \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \end{pmatrix} (0^8)^0 \]

\[\text{SU(5)}^0 : \begin{pmatrix} 1 \end{pmatrix} (0^8) (0^8) (0^8) \]

\[\text{SU(2)}^0 : \begin{pmatrix} 1 \end{pmatrix} \]

where the underline means all possible permutations. Thus, the gauge group is

\[fSU(5) \mid U(1)_V \mid U(1)_W \mid SU(5) \mid SU(2) \mid SU(2); \]

where \(SU(5) \mid U(1)_V \) is identified with the \(\text{U(1)} \). The \(U(1)_V \) charge operator of the \(\text{U(1)} \) is \[4 \]

\[X = \frac{1}{40} \begin{pmatrix} 2 & 2 & 2 & 2 \end{pmatrix} (0^8)^0 \]

The normalization factor \[\frac{1}{40} \] is determined such that the norm of the \(X \) (in general all \(U(1) \) charge operators in the level one heterotic string theory [13]) is \[\frac{1}{40} \]. This value is exactly the one given as the normalization required for the \(SU(5) \mid U(1)_V \) embedded in \(SO(10) \). Since the standard model hypercharge is defined as

\[Y = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} (0^8)^0 \]
TABLE I: The U sector chiral states. There is no hidden sector chiral states and no \(\text{\overline{dip}} \)-SU(5) singlets.

The weak mixing angle at the string scale is \(\sin^2 0 = \frac{3}{8} \). From now on, we will drop the normalization factor \(\frac{q}{40} \) and \(\frac{3}{5} \) just for simplicity.

The massless chiral matter in the U sector (U) are the states satisfying \(P = \frac{5}{12} \) or \(\frac{4}{12} \) or \(\frac{1}{12} \)g, and \(P \ W = \text{integer} \). In Table I, the chiral fields in the U sector are tabulated. Note that there does not appear any \(\text{\overline{dip}} \)-SU(5) singlets in U. From the U sector, we obtain one family of the MSSM matter

\[
\text{10}_1 + \text{5}_3 + \text{1}_5; \quad \text{(and their CT P conjugates)}; \quad (9)
\]

where \(\text{10}_1, \text{5}_3, \text{1}_5 \) contain \(f d^c_c; q; \ L^c_c; h, \text{g}, \text{f}_l; l^c_l \), and \(e^c \), respectively. It is tempting to interpret this as the third (top quark) family, but the low dimensional Yukawa couplings prefer one in the twisted sector as the third family.

III. TWISTED SECTOR FIELDS

There are 11 twisted sectors, \(T_k \) with \(k = 1; 2; \ldots; 11 \). The CT P conjugates of the chiral states in \(T_k \) is provided in \(T_{12} \ k \). Thus, it is sufficient to consider \(k = 1; 2; \ldots; 6 \). While the U and T6 sectors contain both chiral states and their CT P conjugates, \(T_1, T_2, T_4, \) and \(T_7 \) \((T_{11}, T_{10}, T_8, \) and \(T_5) \) sectors yield only the left-handed (right-handed) chiral states. The \(T_3 \) sector includes both left- and right-handed chiral states. So we will take CT P conjugations for the right-handed states from the \(T_3 \) and \(T_5 \) sectors.
A. The tipped-SU(5) spectrum

The visible sector chiral states of the twisted sectors are

\[T_4 : 2(\overline{10}_1 + 5_3 + 1_5) ; 2(5_2 + \overline{5}_2) ; \]
\[T_3 ; T_9 : (10_1 + \overline{10}_1) ; \]
\[T_7 : (5_2 + \overline{5}_2) ; \]
\[T_6 : 3(5_2 + \overline{5}_2) ; \]

(10)

(11)

(12)

(13)

To get the left-handed states from the T_9 and T_7 sectors, we acted the CT P conjugations to the right-handed states of T_3 and T_5 sectors. From Table II (or Eq. (10)), we note that two families of the MSSM matter fields appear from T_4. Together with one family from the U sector, thus, they form a three family model, including the three right-handed neutrinos.

<table>
<thead>
<tr>
<th>(P = 4V)</th>
<th>((N^L, T_L))</th>
<th>(F_4)</th>
<th>(SU(5)_H)</th>
</tr>
</thead>
</table>
| \(\left(\begin{array}{c}
0 \\
0 \\
0
\end{array} \right) \) | L | 0 | 2 |
| \(\left(\begin{array}{c}
0 \\
0 \\
1
\end{array} \right) \) | L | 0 | 2 |
| \(\left(\begin{array}{c}
0 \\
1 \\
0
\end{array} \right) \) | L | 0 | 2 |
| \(\left(\begin{array}{c}
0 \\
1 \\
1
\end{array} \right) \) | L | 0 | 2 |

<table>
<thead>
<tr>
<th>(P = 4V)</th>
<th>((N^L, T_L))</th>
<th>(F_4)</th>
<th>(SU(5)_H)</th>
</tr>
</thead>
</table>
| \(\left(\begin{array}{c}
0 \\
0 \\
0
\end{array} \right) \) | L | 0 | 3 |
| \(\left(\begin{array}{c}
0 \\
0 \\
1
\end{array} \right) \) | L | 0 | 3 |
| \(\left(\begin{array}{c}
0 \\
1 \\
0
\end{array} \right) \) | L | 0 | 2 |
| \(\left(\begin{array}{c}
0 \\
1 \\
1
\end{array} \right) \) | L | 0 | 2 |

<table>
<thead>
<tr>
<th>(P = 4V)</th>
<th>((N^L, T_L))</th>
<th>(F_4)</th>
<th>(SU(5)_H)</th>
</tr>
</thead>
</table>
| \(\left(\begin{array}{c}
0 \\
0 \\
0
\end{array} \right) \) | L | 0 | 3 |
| \(\left(\begin{array}{c}
0 \\
0 \\
1
\end{array} \right) \) | L | 0 | 3 |
| \(\left(\begin{array}{c}
0 \\
1 \\
0
\end{array} \right) \) | L | 0 | 2 |
| \(\left(\begin{array}{c}
0 \\
1 \\
1
\end{array} \right) \) | L | 0 | 2 |

<table>
<thead>
<tr>
<th>(P = 4V)</th>
<th>((N^L, T_L))</th>
<th>(F_4)</th>
<th>(SU(5)_H)</th>
</tr>
</thead>
</table>
| \(\left(\begin{array}{c}
0 \\
0 \\
0
\end{array} \right) \) | L | 0 | 3 |
| \(\left(\begin{array}{c}
0 \\
0 \\
1
\end{array} \right) \) | L | 0 | 3 |
| \(\left(\begin{array}{c}
0 \\
1 \\
0
\end{array} \right) \) | L | 0 | 2 |
| \(\left(\begin{array}{c}
0 \\
1 \\
1
\end{array} \right) \) | L | 0 | 2 |

<table>
<thead>
<tr>
<th>(P = 4V)</th>
<th>((N^L, T_L))</th>
<th>(F_4)</th>
<th>(SU(5)_H)</th>
</tr>
</thead>
</table>
| \(\left(\begin{array}{c}
0 \\
0 \\
0
\end{array} \right) \) | L | 0 | 3 |
| \(\left(\begin{array}{c}
0 \\
0 \\
1
\end{array} \right) \) | L | 0 | 3 |
| \(\left(\begin{array}{c}
0 \\
1 \\
0
\end{array} \right) \) | L | 0 | 2 |
| \(\left(\begin{array}{c}
0 \\
1 \\
1
\end{array} \right) \) | L | 0 | 2 |

TABLE II: Chiral matter states in the \(T_4^2, T_4^1 \), and \(T_4 \) sectors. The multiplicities are shown as the entry in the last column.

In Table III, some Higgs doublets are shown. Altogether, there appear six pairs of Higgs doublets from \(T_4 ; T_7 \) and \(T_6 \), among which therefore the candidates of the MSSM Higgs
doublets are chosen. We will explain in Sec. IV that except one pair of $f_{5/2} \tilde{5}_{2}g$, the other pairs of ve-plets with $X = 2$ in the T_4, T_5, and T_6 sectors achieve superheavy masses, when some singlets under $[SU(5) \times U(1)_X]$ or $[SU(5) \times SU(2)]$ obtain VEVs of order the string scale. We regard the remaining one pair of $f_{5/2} \tilde{5}_{2}g$ as the Higgs containing the MSSM Higgs. We will explain also how to decouple the triplets appearing in such ve-plets in Sec. IV.

<table>
<thead>
<tr>
<th>$P \times SU$</th>
<th>$(W^+)_{\mu}$</th>
<th>P</th>
<th>$SU(5)_{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(1, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(0, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(0, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(0, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE III: Massless states satisfying $P \cdot W = 0 \mod Z$ in T_4.

To break the flipped-SU(5) down to the SM, we need 10_1 ($10_{{\tilde R}}$) and $\overline{10}_1$ ($\overline{10}_{{\tilde R}}$), which appear from T_3 and T_9 as shown in Table IV. As explained later, they couple to the $f_{5/2} \tilde{5}_2g$ ($f_{5/2} \tilde{5}_2g$) so that the pseudo-Goldstone mode $f_{5/2} \tilde{5}_2g$ included in $f_{10_{{\tilde R}}} \overline{10}_{{\tilde R}}g$ pair up with the triplets contained in $f_{5/2} \tilde{5}_2g$ to be superheavy.

<table>
<thead>
<tr>
<th>$P \times SU$</th>
<th>$(W^+)_{\mu}$</th>
<th>P</th>
<th>$SU(5)_{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(1, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(0, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(0, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(0, 0, 0, 0, 0) \langle 0, 0, 0, 0, 0 \rangle$</td>
<td>L 0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE IV: Massless states from T_3. The starred chirality R states in T_3 can be represented also by un-starred chirality L states with the opposite quantum numbers in T_9.

8
TABLE V: Chiral matter states satisfying \(f_0; g = 0 \) in the \(T_2^{f_0}; g \) sectors.

B. The hidden-sector SU(5)^0 spectrum

The hidden sector fields appear from twisted sectors. The chiral multiplets under SU(5)^0 SU(2)^0 are listed as follows.

\[
T_4 : 3(5^0;1^0)_{5=3}; \ 3(5^0;1^0)_{5=3}; \ 2(1^0;2^0)_{5=3}; \ 2(1^0;2^0)_{5=3}; \\
T_2 : (1^0;2^0)_{5=3}; \ (1^0;2^0)_{5=3}; \\
T_1 : (10^0;1^0)_{0}; \ (5^0;2^0)_{0}; \ (5^0;1^0)_{0}; \ (1^0;2^0)_{0}; \ (5^0;1^0)_{5=3}; \ (1^0;2^0)_{5=3}; \ 2(1^0;2^0)_{5=3}; \\
T_7 : (5^0;1^0)_{5=3}; \ 2(1^0;2^0)_{5=3}; \ (1^0;2^0)_{5=3}; \\
\]

(14) (15) (16) (17)

Here, we replaced again the right-handed states in the T_5 sector by the left-handed ones in T_7 by CTP conjugations. We have not included non-abelian group singlets. The vector-like representations in the above achieve superheavy masses when the neutral singlet under the flipped-SU(5) develop VEVs of order the string scale. We will discuss it in Sec. IV.

Removing vectorlike representations from Eqs. (14)(17), there remain

\[
(10^0;1^0)_{0}; \ (5^0;2^0)_{0}; \ (5^0;1^0)_{0}; \ (1^0;2^0)_{0}; \\
\]

(18)

The hidden sector SU(2)^0 is broken by a GUT scale VEV of \((1^0;2^0)_{0}\) of (18). Then, out of the representations of (18), there remain one hidden sector family of SU(5)^0

\[
10^0_0; 5^0_0; \]

(19)

which is the key toward the DSB with SU(5)^0 [3]. Representations in [19] do not carry
TABLE VI: Chiral matter states satisfying $\epsilon_{0}; g = 0$ in the $T_{1}^{0}; g$ sectors.

any visible sector quantum numbers and the flipped-SU(5) is not broken by the DSB in the hidden sector. Our construction of one family SU(5) with $N_{f} = 0$ or 1 vector-like pair of 5^{0} and $\overline{5}^{0}$ does not change the fate of DSB due to the index theorem. But inclusion of supergravity effects gives a runaway solution at large values of the dilaton, e.g. [35]. But the barrier separation between the SUSY breaking minimum and the runaway point must be very high. The barrier separation is controlled by the hidden sector scale.

Finally, in Table VII we list the so-far neglected components of the vectorlike representations of the hidden sector e.g.s carrying nonvanishing hypercharges.
The remaining charged states under the flipped-$SU(5)$ are the singlets of $SU(5)$ $SU(5)^0$ $SU(2)^0$. They are listed as follows.

\begin{align}
T_4 & : 4 \quad 1_{5=3}; 4 \quad 1_{3}; \\
T_2 & : 1 \quad 1_{10=3}; 2 \quad 1_{3}; 1_{10=3}; 2 \quad 1_{5=3}; \\
T_1 & : 1_{10=3}; 3 \quad 1_{5=3}; 1 \quad 1_{10=3}; 2 \quad 1_{3}; \\
T_7 & : 1_{10=3}; 2 \quad 1_{5=3}; 1 \quad 1_{10=3}; 3 \quad 1_{3}.
\end{align}

These are singlet exotics. Since they are also vector-like under the flipped $SU(5)$, however, they could obtain superheavy masses, if the needed neutral singlets develop VEVs of order the string scale. Hence, we can get the same low energy field spectrum as that of the MSSM. Such vector-like superheavy exotics could be utilized \[22\] to explain the recently reported high energy cosmic positron excess \[23,24\].

| $P+SU$ | $|N^\top\rangle$ | $SU(5)^0$ |
|--------|----------------|-----------|
| (0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0) | R 0 | 1 3; |
| (1 0 0 0 0; 1 0 0 0 0; 0 0 0 0 0) | R 0 | 1 5; |
| (0 0 0 0 0; 1 0 0 0 0; 0 0 0 0 0) | R 21 | 1 3; |
| (0 0 0 0 0; 0 0 0 0 0; 1 0 0 0 0) | R 21 | 1 3; |

| $P+SU$ | $|N^\top\rangle$ | $SU(5)^0$ |
|--------|----------------|-----------|
| (0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0) | R 0 | 1 3; |
| (1 0 0 0 0; 1 0 0 0 0; 0 0 0 0 0) | R 0 | 1 5; |
| (0 0 0 0 0; 1 0 0 0 0; 0 0 0 0 0) | R 21 | 1 3; |
| (0 0 0 0 0; 0 0 0 0 0; 1 0 0 0 0) | R 21 | 1 3; |

C. The other vector-like exotic states

The remaining matter states from the $T_5^{(0)}$ sectors. All of them are right-handed states. The CTP conjugates with the left-handed chirality are provided by the states in the T_7 sector.
IV. SINGLET S AND YUKAWA COUPLINGS

It is necessary to make exotics vectorlike and heavy. For this purpose, any singlets are required to develop large VEVs. In Table V III, we list singlet fields. At least, the following exotics are given large VEVs at the string scale,

\[S_2; S_3; S_4; S_5; S_7; S_{11}; S_{12}; S_{15}; S_{16}; S_{17}; S_{18}; S_{21}; S_{22} : \]

These VEVs are possible through higher dimensional terms in the superpotential.

<table>
<thead>
<tr>
<th>singlet states</th>
<th>(W, L)</th>
<th>P (I 3)</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_1]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_2]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_3]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_4]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_5]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_6]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_7]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_8]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_9]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{10}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{11}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{12}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{13}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{14}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{15}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{16}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{17}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{18}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{19}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{20}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{21}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{22}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{23}]</td>
</tr>
<tr>
<td>[(0 0 0 0 0; 0 0 0)]</td>
<td>L 0</td>
<td>3</td>
<td>[\phi_{24}]</td>
</tr>
</tbody>
</table>

TABLE V III: Left-handed SU (5) U (1)_X SU (5)_II SU (2)_II singlet states. The right-handed states in T_3 and T_5 are converted to the left-handed ones of T_3 and T_7, respectively.
A. Conditions

Neglecting the oscillator numbers, H-momenta of states in various sectors, $H_{\text{mom}} \rho = (s + k + r)$ are assigned as

$$
U_1: (1;0;0); \quad U_2: (0;1;0); \quad U_3: (0;0;1); \\
T_1: \left(\frac{1}{12};\frac{1}{12};\frac{1}{12}\right); \quad T_2: \left(\frac{1}{6};\frac{1}{6};\frac{1}{6}\right); \quad T_3: \left(\frac{3}{4};0;\frac{1}{4}\right); \\
T_4: \left(\frac{3}{3};\frac{3}{3};\frac{3}{3}\right); \quad T_5: \left(\frac{1}{12};\frac{1}{12};\frac{1}{12}\right); \quad T_6: \left(\frac{3}{2};0;\frac{1}{2}\right); \\
T_7: \left(-\frac{1}{12};\frac{1}{12};\frac{1}{12}\right); \quad T_9: \left(-\frac{1}{2};0;\frac{1}{2}\right); \\
$$

(25)

from which T_5 will not be used since the chiral eIds there are right-handed while the other eIds are represented as left-handed. With oscillators, the H-momentum \((R_1; R_2; R_3) \) are

$$
(H_{\text{mom}})_j = \langle H_{\text{mom}} \rho \rangle_j (N^1)_j + (N^2)_j; \quad j = 1;2;3; \\
$$

(26)

The superpotential terms by vertex operators should respect the following selection rules\(^{13}\):

(a) Gauge invariance

(b) H-momentum conservation with \(x = \frac{1}{12};\frac{1}{12};\frac{1}{12} \),

$$
X \quad R_1(z) = 1 \text{ mod } 12; \quad X \quad R_2(z) = 1 \text{ mod } 3; \quad X \quad R_3(z) = 1 \text{ mod } 12; \\
z \quad z \quad z
$$

(27)

where \(z(A;B;C;\ldots) \) denotes the index of states participating in a vertex operator.

(c) Space group selection rules:

$$
X \quad k(z) = 0 \text{ mod } 12; \\
X^2 \quad [k m \ell_j] (z) = 0 \text{ mod } 3; \\
$$

(28) (29)

If some singlets obtain string scale VEVs, however, the condition (b) can be merged into Eq. (28) in (c). Our strategy is to construct composite singlets (CSs) which have H-momenta, \((100),(100),(010),(010)\), using only singlets developing VEVs of order at the string scale M_{string}. Then, with any integer set \((l m n)\), we can attach an appropriate number of CSs such that they make the total H-momentum \((111)\). Since their VEVs are of order M_{string}, the Yukawa couplings multiplied by them are not suppressed.

13
B. Composite singlets

Specifically, let us consider a CS composed of \(S_2 \) with \((N^L)_j = 1\), \(S_{21} \) with \((N^L)_j = f_2, l_2g\), and \(S_{22} \) with \((N^L)_j = 2\) from \(T_4^0, T_1^0, \) and \(T_7^0 \), respectively. The CS, \(S_2 S_{21} S_{22} \) fulfills the selection rules (a) and (c) and its H-momentum is calculated as

\[
\frac{1}{3} \frac{1}{3} \frac{1}{3} + (1 0 0) \frac{2}{12} \frac{2}{12} + (0 1 2) \frac{1}{12} \frac{1}{12} + (2 0 0) = (2 0 1).
\]

The CS composed of \(S_3 \) with \((N^L)_j = 1\) or \(l_2 \) or \(l_3, S_5 \) \((N^L)_j = 0\), and \(S_{17} \) \((N^L)_j = 2\) from \(T_4^0, T_6, \) and \(T_2^0 \), respectively. \(S_2 S_5 S_{17} \) fulfills also (a) and (c) and its H-momentum is given by \((0 1 1), (1 0 1), \) or \((1 1 2)\). Similarly, \(S_5 S_7 \) satisfies \((a)\) and \((c)\) and gives the H-momentum of \((1 0 1)\). By multiplying properly \(S_2 S_{21} S_{22}, S_{3} S_{17} S_5, S_5 S_7 \) (and their higher powers), thus, one can indeed construct CSs, whose H-momenta are \((1 0 0), (1 0 1), (0 1 0), \) \((0 1 1)\), \((0 0 1)\). For instance, \((1 0 0)\) can be obtained from \((2 0 1) + (1 0 1)\), namely \(S_{21} S_{22}(S_5 S_7) \). \((0 0 1)\) is achieved from \(S_{21} S_{22}(S_5 S_7)^2 \).

Then, we do not have to take care of the H-momentum conservation in the selection rule (b) for the superpotential. One can easily see that all the states in \(T_4^+ \) and \(T_4 \) achieve string scale masses by \(hS_4 i \). The states in \(fT_2^+ \); \(T_2 g, fT_1^+ \); \(T_7 g \) and \(fT_1 \); \(T_7^+ g \) pair up to be superheavy by \(hS_2 i, hS_3 i, \) and \(hS_4 i \). Similarly, the singlet states in \(fT_1^+ \); \(T_7 g \) and \(fT_1 \); \(T_7^+ g \) pair up to be superheavy.

In order to break the \(SU(5) \) to the SM gauge group, we need GUT scale (string scale in our case) VEVs of \(T_{10}^H \) and \(T_{10}^L \). We have them from \(T_3 \) and \(T_9 \), respectively. The term \(10^H T_{10}^L \) and terms with its higher powers are allowed. Thus, SUSY vacua where \(h10^H i = h10^L i \) M\(_{\text{string}}\) M\(_{\text{GUT}}\) exist.

We regard a pair of \(5_h \) and \(3_h \) in \(T_4^0 \) as the Higgs doublets containing two Higgs doublets of the MSSM. For the missing partner mechanism, we need the couplings \(10^H T_{10}^H 5_h \) and \(10^H 10^H 5_h \). These couplings are allowed in the superpotential by multiplying CSs, \(S_{15} S_{11} S_{16} \) and \(S_{17} S_{12} S_{15} \), respectively.

The vector-like veplets appearing in the \(T_6 \) sector obtain string scale masses. By \(hS_{21} i \) one pair of veplets in \(T_7^0 \) can pair up with one pair of veplets in \(T_4^0 \) to be superheavy. The remaining one pair of the veplets in \(T_4^0 \), i.e., \(f5_h \bar{f}5_hg \) can get mass terms (or terms) by \(S_{17} S_{18} \) and \(S_1 \). While a VEV \(S_{17} S_{18} \) has been assumed, a VEV \(S_1 \) is not yet assumed. It can be determined by soft terms such that \(hS_{17} S_{18} + S_1 i = m_{32} \) as in the next MSSM.

The MSSM matter states in the \(T_4^0 \) sector couple to the Higgs \(5_h \) and \(3_h \) in the same sector.
tor. Additionally $hS_2 S_3 S_4 i$ can be multiplied to suppress the size of the Yukawa couplings. The matter states in the untwisted sector also can couple to them by S_2, S_3, and S_4: $\overline{10} \ [10] \ [5_h \ hS_2^2 i, \overline{10} [5_3 S_4 \ hS_2 S_4 i, \] [15_3 S_5 \ hS_2 S_3 i. Since there are in total 21 states in $S_2, S_3,$ and S_4, they can be utilized to suppress the size of the Yukawa couplings.

C. White dwarf axions and one pair of Higgsino doublets

In this subsection, we comment how the needed horizontal symmetry can arise from our heterotic string compactification. But, we will not endeavor to discuss accidental global symmetries arising at some specific vacua \[27, 28, 29\]. In our previous paper \[25\], we introduced a variant very light axion to enhance the axion-electron coupling. This enhancement was motivated from the unexpected extra energy loss from the white dwarf evolution \[30\]. It is needed to distinguish families by the quantum numbers of an Abelian horizontal gauge symmetry $U(1)_H$ so that the mixing angles are of $0 \ (10^{-1}) \ O \ (10^{-3})$. The Peccei-Quinn symmetry broken at 10^{11} GeV cannot achieve this goal due to the small mixing $F_a=\frac{\alpha}{\sqrt{2}} 10^{-7}$. Let us choose the H direction as

$$H = \frac{1}{2} (1 1 1 1 3 \ 1 1) (0 0 0 0 0 a b c)^0 \quad (30)$$

where

$$b = 2a \ 20; \ c = \frac{3}{2}a \ 7: \quad (31)$$

Then the H quantum numbers of the visible sector quark and Higgs fields are shown below in the square brackets.

$$U : \overline{10}_1 [0]; \ T_4 : 2 \overline{10}_1 [0]; \ U : 5_3 [0]; \ T_4 : 2 5_3 [1]; \ T_4 : 2 5_2 [1]; \ T_4 : 2 5_2 [0]; \ T_7 : 5_2 [2]; \ 5_2 [1] \quad (32)$$

which has a $U(1)_H \ SU(5)^2$ anomaly. But this anomaly is cancelled by the Green-Schwarz mechanism \[31\]. The H quantum numbers of \[32\] are minus of those anticipated in Ref. \[25\], and hence can act as the needed horizontal gauge symmetry.

As seen in the previous subsection, one pair of quintet and anti-quintet in T_7 are coupled to one pair of quintet and anti-quintet in T_4 via $hS_2 i$, and the remaining the other pair in T_4 was assumed to contain the MSSM Higgs. In this subsection, we will assume that $hS_2 i$
and hS_4S_{16} is fine-tuned to be zero. It is possible because the quantum numbers of S_{21} and S_4S_{16} are the same. Instead we need the following singlet VEVs to remove two pairs of Higgs quintet and anti-quintet,

$$T_4 : S_{1} [1] \text{and=or } S_{2} [1];$$
$$T_1 : S_{19} [2] \text{and=or } S_{20} [2];$$

The $U(1)_H$ invariant couplings of the form $T_4T_4T_4$ remove two pairs of Higgs quintet and anti-quintet of T_4. Note that in the previous subsection hS_{1} was adjusted to give a light mass term (\textit{\textbackslash term}) of one pair of the quintet and anti-quintet in T_4. The $U(1)_H$ invariant coupling of the form $T_1T_4T_7$ removes one pair of Higgs quintet and anti-quintet out of T_4 and T_7. Thus, the 3×3 Higgsino mass matrix takes the form,

$$
\begin{array}{ccc}
S_{1} [1] & S_{1} [1] & 0 \\
S_{1} [1] & S_{1} [1] & 0 \\
\end{array}
\begin{array}{c}
5^a_2 [1](T_4) \\
5^b_2 [1](T_4) \\
5^c_2 [2](T_7) \\
\end{array}
\]

It is obvious that 5^E_2 is massless at this level. If $hS_{1} = V_1$ and $hS_{19} = V_2$ and the Yukawa couplings are set to 1, the matching massless 5^E_2 is a linear combination of\n
$$5^E_2 = \frac{V_2(5^a + 5^b) + 2V_15^c}{4V_1^2 + 2V_2^2} \quad (34)$$

where the superscripts $a; b$ and c denote their origins from T_4 and T_7 as indicated in Eq. (33).

V. KALUZA-KLEIN SPECTRUM

The relatively light KK modes ($M_{KK} < 1 \text{TeV}$) associated with the relatively large extra dimensions can arise only in the non-prime orbifolds such as the Z_{12} orbifold. It is because KK excitations are possible only under trivial (untwisted) boundary condition, which leads to $N = 2$ (or $N = 4$) SUSY spectra. In the Z_{12} orbifold, for instance, the boundary conditions associated with the SU(3) sub-lattice of the 6D compact space in U, T_3, T_6, and T_9 sectors become trivial and allow $N = 2$ SUSY sectors [14].
FIG. 1: The SU (3) lattice (a) and its dual lattice (b): (a) The torus is inside the yellow parallelogram and the fundamental region is the green parallelogram.

The KK modes associated with the relatively large extra dimensions \(R_3 = R_4 \) of the SU (3) sub-lattice, whose masses compose KK tower of \((\text{integer})/R\), should also satisfy the massless conditions \([14]\). Hence, the KK modes in the U sector still arise from the E\(_8\) E\(_8^0\) root vectors\(^2\). But P W = integer is not necessary for the KK states in decompactification limit. In addition, the GSO projection condition in the U sector is relaxed from \(P V = \text{integer} \) to \(P 3V = \text{integer} \)[14]. The E\(_8\) E\(_8^0\) roots satisfying this are

\[
\begin{align*}
\text{SO (10)} & : (1 \ 1 \ 0 \ 0 \ 0 ; 0 \ 0 \ 0) (0^8)^0 \\
\text{SO (6)} & : (0 \ 0 \ 0 \ 0 \ ; 1 \ 1 \ 0 \ 0) (0^8)^0 \\
\text{E}_6^0 & : (0^8) (1 \ 1 \ 0 \ 0 \ 0 ; 0 \ 0 \ 0)^0 \\
& \quad (0^8) (+ + + ; + + +)^0 \\
& \quad (0^8) (+ + + ; + + +)^0 \\
& \quad (0^8) (+ + + ; + + +)^0 \\
\text{SU (2)}_K & : (0^8) (0 \ 0 \ 0 \ 0 \ 0 ; 1 \ 1 \ 0)^0.
\end{align*}
\]

Thus, the gauge group is enhanced to

\[
[\text{SO (10)} \quad \text{SO (6)}] \quad [\text{E}_6 \quad \text{SU (2)}_K \quad U (1)]^0:
\]

\(^2\) The states of E\(_8\) E\(_8^0\) weights, not satisfying \(P^2 = 2 \), are the string excited states with the masses of \((\text{integer})= \frac{P}{3}\).
In the visible sector, the \(\text{su}(5) \) in the massless case are embedded in a simple group \(\text{so}(10) \). Therefore, between the GUT scale (compactification scale) and string scale, the MSSM gauge couplings are unified in \(\text{so}(10) \), including the \(U(1)_X \) coupling. \(\text{su}(5)^0 \) and \(\text{su}(2)^0 \) in the hidden sector are embedded in \(E_6^0 \). Note that the \(\text{su}(2)^0_{K} \) emerging in 6D space is different from the \(\text{su}(2)^0 \) gauge symmetry observed from the massless spectrum. The \(\text{su}(2)^0 \) is embedded in the \(E_6^0 \). The condition for KK matter states (\(N = 2 \) hyper multiplets) from the U sector is also relaxed from \(P = V = \frac{5}{12}; \frac{4}{12}; \frac{1}{12} (m \text{ mod } Z) \) to \(P = 3V = \frac{1}{4} (m \text{ mod } Z) \) [14]. The KK matter states from the U sector are shown in TABLE IX.

<table>
<thead>
<tr>
<th>Visible States</th>
<th>4D</th>
<th>SO (10)</th>
<th>SO (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({16;+}) ((0^8)^0)</td>
<td>L,R</td>
<td>((16;4))</td>
<td></td>
</tr>
<tr>
<td>({16;++}) ((0^8)^0)</td>
<td>L,R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hidden States</th>
<th>4D</th>
<th>(E_6^0)</th>
<th>(\text{su}(2)^0_{K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0^8)(16;+)^0)</td>
<td>L,R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((0^8)(10^0 0 0 0;10 0)^0)</td>
<td>L,R</td>
<td>((27;2)^0)</td>
<td></td>
</tr>
<tr>
<td>((0^8)(0 0 0 0 0;10 1)^0)</td>
<td>L,R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((0^8)(0 0 0 0 0;1 0 1)^0)</td>
<td>L,R</td>
<td>((1;2)^0)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IX: The KK spectrum from the U sector. \(16 \) collectively denotes \((+++++) \), \((++++) \), and \((++++) \), which are 5, \(10 \), and 1, respectively, in terms of SU(5). Here we drop the CTP conjugates.

Among the twisted sectors, only \(T_3, T_6 \) and \(T_9 \) can provide KK states in \(Z_{12} \). The KK states from \(T_9 \) are all the CTP conjugates of the KK states from \(T_3 \). As in the U sector, the KK modes from \(T_3, T_6 \), and \(T_9 \) should also satisfy the massless conditions. However, the required GSO projection is also relaxed. Following the guide of Ref. [14], one can derive the KK spectrum from the twisted sectors \(T_3 \) and \(T_6 \). The results are presented in TABLE IX. One can check that the KK spectra in TABLE IX and TABLE IX cancel the 6D gauge anomalies.

The beta function coefficients \(b_N^{SO(10)} \) of SO(10) and \(E_6^0 \) by KK modes with \(N = 2 \) SU SY are

\[
b_N^{SO(10)} = 2 \ 8 + 2 \ (2 \ 8 + 1 \ 10) = 36; \quad (40)
\]

\[
b_N^{E_6} = 2 \ 12 + 2 \ 3 \ 2 = 12; \quad (41)
\]

The KK masses are nothing but the excited momenta \(= m_3, m_4 \) in the SU(3) dual
TABLE X: The KK spectrum from the T₃ and T₆ sectors. All the states are the singlets under E₆. 16 in T₆ collectively denotes (+——), (+ ++ —), and (+ ++ + +), which are 5, 10, and 1, respectively, in terms of SU(5). In the T₆ sector, we drop the CP conjugates.

<table>
<thead>
<tr>
<th>P + 3V</th>
<th>Tₖ</th>
<th>(N^L)ₖ</th>
<th>4D</th>
<th>SO(10)</th>
<th>SO(6)</th>
<th>SU(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0^5; 1+ ——)</td>
<td>T₃</td>
<td>0</td>
<td>L,R</td>
<td>4</td>
<td>(1;4;2^0)</td>
<td></td>
</tr>
<tr>
<td>(0^5;</td>
<td>T₃</td>
<td>0</td>
<td>L,R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P + 6V</td>
<td>Tₖ</td>
<td>(N^L)ₖ</td>
<td>4D</td>
<td>SO(10)</td>
<td>SO(6)</td>
<td>SU(2)</td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
<td>--------</td>
<td>----</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>(0^5; 1 0 0)</td>
<td>T₆</td>
<td>0</td>
<td>L,R</td>
<td>3</td>
<td>(1;6;2^0)</td>
<td></td>
</tr>
<tr>
<td>(1 0^4; 0^3)</td>
<td>T₆</td>
<td>0</td>
<td>L,R</td>
<td>5</td>
<td>(10;1;2^0)</td>
<td></td>
</tr>
</tbody>
</table>

The Wilson line W^I lifts some KK spectra and breaks the gauge symmetry, say G to H. It is because the momentum vectors m₃, m₄ are shifted by P^IW^I, where P^I indicates the E₈, E₆ weight vectors. It is clearly seen from the expression for KK masses [14]:

$$ M_{KK}^2 = \frac{2g_{ab}}{3R^2} \left(m_a P W (m_b P W) \right) $$

(42)

where R is the radius of the SU(3) torus, mₐ, mₐ (a;b = 3;4) are integers, and g_{ab} is defined as,

$$ g_{ab} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} $$

(43)

We list the masses of the first two excited KK states for P = integer:

$$ M_{KK}^2 = \frac{4}{3R^2} \text{ for } (m_3;m_4) = (1;0); (0;1); (1;1); (44) $$

For P = \frac{1}{3} + \text{ integer, we have:}

$$ M_{KK}^2 = \frac{16}{3R^2} \text{ for } (m_3;m_4) = (1;1); (1;1); (1;1); (45) $$

19
In the next excited level, there are 6 KK states, whose mass-squareds are $\frac{28}{9\alpha'}$. The KK mass-squareds of the states with $P \ W = \frac{1}{3} + \text{integer}$ and $(m_3; m_4)$ are the same as those of the states with $P \ W = \frac{1}{3} + \text{integer}$ and $(m_3; m_4)$. Non-vanishing vectors $(m_3; m_4)$ do not affect the GSO projection conditions. In TABLE XI, we display the KK states satisfying $P \ W = \text{integer}$. Except the states in TABLE XI, thus, the other KK states in
TABLE XI: The KK spectrum satisfying $P\ W = $ integer. Here we drop the CTP conjugates.

TABLE \Box and \Box are the states of $P\ W = \frac{1}{3} + $ integer.

By the constraint $P\ W = $ integer, in the visible sector 6D SO (10) is broken to the \(\mathbb{Z}_2\) SU (5), and SO (6) to SU (2) $U (1)^2$. The 6D hidden sector gauge group E_6^0 is also broken to SU (5)0 SU (2)0 $U (1)^0$. But $P\ W = $ integer still leaves intact $N = 2$ SUSY. While the root vectors of the \(\mathbb{Z}_2\) SU (5), and SU (5)0 SU (2)0 are those of Eqs. (42), (44), and (45), the roots of the 6D SU (2) in the visible sector are \((0^5; 0 1 1)(0^5)^0\). It is broken to $U (1)$ below the compactification scale. The beta function coupling $b_{H}^{N = 2}$ by states of $P\ W = $ integer, thus, are:

\[
\begin{align*}
 b_{SU (5)}^{N = 2} &= 2 \ 5 + 2 \ \frac{1}{2} \ 12 + \frac{3}{2} \ 5 = 17; \\
 b_{U (1)}^{N = 2} &= \frac{1}{40} \ 2 \ 3^2 \ 10 + 1^2 \ 10 + 1^2 \ 40 + 2^2 \ 50 = 17; \\
 b_{SU (5)^0}^{N = 2} &= 2 \ 5 + 2 \ \frac{1}{2} \ 3 = 7;
\end{align*}
\]

The beta function coupling $b_{G_{\text{eff}}}^{N = 2}$ by the matter states with $P\ W = \frac{1}{3} + $ integer are $b_{G_{\text{eff}}}^{N = 2} = b_{H}^{N = 2}$. Since $b_{SU (5)}^{N = 2}$ is the same as $b_{SU (5)}^{N = 2}$ and both are included in $b_{SU (10)}^{N = 2}$ in Eq. (46), the KK modes in this model do not affect the gauge coupling unification of SU (5) and $U (1)_x$. Accordingly, only the states in $N = 1$ SUSY sector, which have no corresponding KK states, affect the unification.
From the beta function coefficients, we can expect that the MSSM gauge couplings rapidly increase in the ultraviolet region. On the other hand, the hidden sector gauge coupling is asymptotically free. Therefore, a large disparity in the visible and hidden sector couplings at the compactification scale can be unified to a single coupling at some scale above the compactification scale. It is interpreted as the string scale. In other words, starting with a unified coupling at string scale, the hidden sector SU(5)0 coupling can be of order one at a large scale.

When a gauge group G is broken to a subgroup H by Wilson line and further broken to H_0 by orbifolding ($H_0 = H$ in our model), the RG evolution of the gauge coupling of H_0, including the effects by KK modes, is described at low energies by

$$
\frac{4}{H_0} = \frac{4}{\pi} + h_{N=1}^{H_0} \log \frac{M^2}{\lambda} + h_{N=0}^{H_0} + h_{G=H}^{N=2} ;
$$

We assume that dilaton has been stabilized by a non-perturbative effect [32]. It can be discussed also in the context of SUSY breaking of Ref. [35]. In Eq. (49), $h_{N=0}^{H_0}$ denotes the threshold correction by KK modes of $P \mu = 0$ ($\frac{1}{3}$) mod integer, respecting $N = 2$ SUSY. $h_{N=0}^{H_0}$ in Eq. (49) is the beta function coefficient contributed by $N = 1$ SUSY sector states. As discussed above, the KK mass towers by the states with $P \mu = \frac{1}{3}$ + integer and with $P \mu \nu = \frac{1}{3}$ + integer are the same. $h_{G=H}^{N=2}$ is given by $h_{G=H}^{N=0} h_{N=2}^{H_0}$.

As seen in Eqs. (46), (47), and (48), the beta function coefficients by KK modes are quite large. Accordingly, only the KK states residing in the lowest a few layers in the KK mass tower would be involved in the RG evolution of the visible SU(5) gauge coupling, before it reaches $O(1)$. So we will keep only such relatively light KK modes for RG analysis of the gauge couplings.

If $16 = 9R^2 < M^2 < 28 = 9R^2$, thus, include the contributions by 6 KK modes with the mass-squared $4 = 3R^2$, while (and also) 3 KK modes of $4 = 9R^2$ and 3 of $16 = 9R^2$. Thus, the threshold corrections by such KK modes are given by

$$
h_{H}^{N=2} = 17 \log \frac{9R^2 M^2}{4} ;
$$

$$
h_{G=H}^{N=2} = 19 \log \frac{9R^2 M^2}{16} + \log \frac{9R^2 M^2}{16} ;
$$

where $H = SU(5)$ and $G = SO(10)$. We assume $1 = R_{\text{M GUT}}$ and $1 = W_{\text{SU(5)}} = \frac{1}{25}$, we estimate $R^2 M^2 \approx 25$, which is consistent with our assumption $16 = 9R^2 < M^2 < 28 = 9R^2$.

3 Considering the first excited KK mass-squared is $4 = 9R^2$, one could denote the effective compactification
With $R^2M^2 \approx 19$, and

$$h^N_{SU(5)^0} = 3 \left(5 + \frac{1}{2} \right) 3 + \frac{3}{2} = 12$$

by $\left(\begin{array}{c} 10 \end{array} \right)^0, \left(\begin{array}{c} 5 \end{array} \right)^0, \left(\begin{array}{c} 1 \end{array} \right)^0$ in Eq. (19), one can estimate also the conforming scale of the hidden SU(5)0. It is just below $4 = 3R \approx 0.8M$. Therefore, e.g. if $M = 2 \times 10^{16}$ GeV, the conforming scale of the hidden sector is 1.6×10^{16} GeV. Indeed, the string scale can be much lowered than 10^{18} GeV in the strongly coupled heterotic string theory (or the heterotic M theory), if the eleventh space dimension is sizable [33].

However, the hidden sector conforming scale is very sensitive to R^2M^2. If $M = 2 \times R^2$, all the KK modes do not contribute to the RG evolution of the gauge couplings up to the string scale M, and so we should adopt only the usual 4D RG equation. If $M = 2 \times 10^{16}$ GeV and so $h^N_{SU(5)^0} = 25$ at that scale, the conforming scale can be much lower down to 10^{11} GeV. Here, we assumed SU(2)0 is broken and only 10^0 and 5^0 draw down the conforming scale.

Below the conforment energy scale, the order parameters are composite fields rather than SU(5)0 gauginos and quarks. As noticed in Ref. [25], gaugino condensation scale or $N = 1$ SUSY breaking scale can be much lower than the conforment scale. Let us briefly discuss this issue in the following section.

VI. THE HIDDEN SECTOR SUPERSYMMETRY BREAKING

Now, let us proceed to consider the one family SU(5)0 model, with 10^0 and $\bar{5}^0$ plus N_f copies of 5^0 and $\bar{5}^0$. For $N_f = 0$ we can consider two composite chiral fields which are SU(5)0 singlets [13, 34],

$$W W ;$$

$$W W 10^0 \bar{5}^0 10^0 \bar{5}^0 ;$$

where W is the hidden sector gluino super field, satisfying $W = 0 ; (= 1 ; 2 ; \ldots ; 5)$. There is no more SU(5)0-invariant independent chiral combination. For $N_f \neq 0$ also, due to the flavor symmetries of 5^0 and $\bar{5}^0$, SU(N_f) SU($N_f + 1$), we consider only two composite SU(5)0
FIG. 4: A possible shape of the effective potential in terms of effective fields Z and Z^0. The lower curve is a schematic view including supergravity effects [35].

Singlet directions acted by instantons [36],

$$Z \ W \ W ;$$

$$Z^0 \ W \ W \ 10^0 \ 5^0 \ 10^0 \ 10^0 \ (5^0 \ 5^0) ;$$

where the lower indices and represent antisymmetric combinations. In terms of these composite chiral fields, it is known that the connecting SUSY theory with one family is known to break SUSY dynamically [35,36]. In this F-term breaking scenario, we can depict the SUSY breaking minimum as the local minimum in Fig. 4. In the lower curve, we show a schematic view including supergravity effects [35], which has a runaway piece at large values of Z^0.

The dynamically generated effective superpotential, respecting these global symmetries plus the 5^0 avor symmetry SU(N_ℓ) and the 5^0 avor symmetry SU($N_\ell + 1$), can be written as [36]

$$W_{SU(5)} = Z \ \log \ \frac{Z^2 N_\ell Z^0}{3 N_\alpha \ 2 N_\ell}$$

where α is a coupling. It was shown that for $N_\ell = 3$, the SUSY conditions cannot be satisfied and SUSY is dynamically broken [36]. Due to the index theorem, for any value of N_ℓ, SUSY is dynamically broken, in particular in the SU(5^0) theory with one 10^0 and one 5^0. The model with the fields of Secs. II and III has weeipped-SU(5) families. But four of them carry the exotic U(1)$_X$ charges. So such four pairs should be assumed to be
superheavy to keep the gauge coupling unification. Nonetheless the model still contains the ingredients for the dynamical breaking of SUSY included. Inclusion of supergravity effects has been analyzed by one of us \[35]\.

As discussed in Sec. V, the threshold correction by the KK modes allows a very wide range of the SU(5)\(^0\) confinement scale, from \(10^{13}\) GeV to \(10^{16}\) GeV. Moreover, as noticed in Ref. \[35]\, the gaugino condensation scale can be quite low compared to the confinement scale. Thus, even in the case where the confinement scale is above \(10^{13}\) GeV, one can obtain \(N = 1\) SUSY breaking effects in the visible sector of order \(10^2 \ 3\) GeV via the gravity mediation. If the condensation scale is below \(10^{13}\) GeV, SUSY breaking effects in the visible sector by the gauge mediation can dominate over those by the gravity mediation, and here one may resort to the gauge mediation scenario \[13]\.

V II. CONCLUSION

We have constructed the \(\text{\textit{zipped}}\)-SU(5) SU(5)\(^0\) model with three families of the MSSM matter states, based on the Z \(_{12}\) orbifold compactification of the heterotic string theory. The \(\text{\textit{zipped}}\)-SU(5) breaks down to the SM gauge group by non-zero VEVs of \(10_H\) and \(\overline{10}_H\). The doublet/triplet splitting problem is very easily resolved, because the missing partner mechanism simply works in \(\text{\textit{zipped}}\)-SU(5). In this model, we could obtain \(\sin^2 \theta_W = \frac{3}{8}\) at the string (or GUT) scale as desired. We have shown that all the extra states beyond the MSSM field spectrum are vector-like under the \(\text{\textit{zipped}}\)-SU(5) and obtain superheavy masses by VEVs of some neutral singlets.

In this model, the KK modes do not affect the gauge coupling unification in the visible sector, because the \(\text{\textit{zipped}}\)-SU(5) gauge symmetry is enhanced to the SO(10) gauge symmetry above the compactification scale. On the other hand, they could cause a big difference between the visible and hidden gauge couplings at the compactification scale. Depending on the size of such disparity between the visible and hidden gauge couplings at the compactification scale, a wide range of the confinement scale of SU(5)\(^0\) is possible, \(10^{11}\) GeV (\(10^{16}\) GeV). With the hidden matter \(10^0\) and \(5^0\), the gaugino condensation scale or the \(N = 1\) SUSY breaking scale can be a few orders lower than the hidden sector SU(5)\(^0\) confinement scale.
Acknowledgments

This work is supported in part by the Korea Research Foundation, Grant No. KRF-2005-084-C00001. B.K. is also supported by the BK 21 Program of the Ministry of Education, Science and Technology.

 P. Langacker and M. Luo, Phys. Rev. D 44, 817 (1991);
 M. Dine and A.E. Nelson, Phys. Rev. D 48, 1277 (1993);

L. J. Hall and Y. Nomura, Phys. Rev. D 64 (2001) 055003;

S. Forste, H. P.Nilles, P. K. S. Vaudrevange, and A. Wingerter, Phys. Rev. D 70, 106008 (2004);

27