Resonant leptogenesis and tribimaximal lepton mixing with A_4 symmetry

G. C. Branco,1 R. G. Gonzalez Felipe,2,3 M. N. Rebelo,4 and H. Serôdio5

1Departamento de Física and Centro de Física Teórica de Partículas (CFTP),
Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
2Area Centro de Física, Instituto Superior de Engenharia de Lisboa,
Rua Conselheiro Emídio Navarro 1, 1599-007 Lisboa, Portugal

We investigate the viability of all leptogenesis in type-I seesaw models with lepton avour symmetries that lead to tribimaximal neutrino mixing. We consider an effective theory with an $A_4 \times Z_3 \times Z_4$ symmetry, which is spontaneously broken at a scale much higher than the electroweak scale. At the high scale, lepton Yukawa interactions lead to exact tribimaximal mixing and the heavy Majorana neutrino mass spectrum is exactly degenerate. In this framework, leptogenesis becomes viable once this degeneracy is lifted either by renormalization group effects or by a soft breaking of the A_4 symmetry. The implications for low-energy neutrino physics are discussed.

PACS numbers:

I. INTRODUCTION

Fermion masses and mixing have been even more puzzling with the recent discovery of neutrino masses and large leptonic mixing. One of the approaches often adopted in the search for a possible solution for the avour puzzle consists of the introduction of family symmetries which constrain the avour structure of Yukawa couplings and lead to predictions for fermion masses and mixings. Harrison, Perkins and Scott (HPS) [1] have pointed out that leptonic mixing at low energies could be described by the so-called tribimaximal mixing matrix, which is a good representation of the present data within 1. The special form of this matrix is suggestive of a symmetry related to possible subgroups of SU(3) [2]. This fact prompted any attempt at inducing an underlying symmetry leading to this special pattern of mixing [3]. Of particular interest are models based on A_4 symmetry, which was not introduced [4] as a possible family symmetry for the quark sector and is now mostly used for the lepton sector [5,6,7,8,9,10,11]. In the leptonic sector, neutrino masses are known to be much smaller than the masses of all other fermions and, in addition, leptonic mixing includes large mixing, thus drastically differing from the quark sector. An elegant explanation for the smallness of neutrino masses is the seesaw mechanism [11], which has also the advantage of providing a simple and attractive leptogenesis mechanism for the generation of the observed baryon asymmetry in the Universe, through the decay of heavy Majorana neutrinos [12,13]. In such a scenario, a relationship between low-energy observables and the size of the leptonic asymmetry can only be established in some special cases [14,15,16,17].

In this paper, we address the question of the viability of leptogenesis in models with lepton avour symmetries leading to the HPS mixing matrix in the framework of the seesaw mechanism. Our starting point is an effective Lagrangian with an $A_4 \times Z_3 \times Z_4$ symmetry which is spontaneously broken by the vacuum expectation values (VEV) of SU(2)$_L$ $U(1)_Y$ singlet scalar fields at a scale much higher than the electroweak scale. The resulting Yukawa couplings at this high scale correspond to exact HPS mixing with the possibility of a Majorana-type CP violation, as well as exact degeneracy of the heavy Majorana neutrinos. In this model, leptogenesis becomes viable once this degeneracy of the heavy Majorana neutrinos is lifted. We analyze two possible different ways of lifting this degeneracy, either radiatively, when renormalization group effects are taken into account, or through a soft breaking of the A_4 symmetry. An interesting feature of our model is the fact that the combination of Yukawa couplings appearing in the leptonic CP asymmetry relevant for avoured leptogenesis [18,20,21,22,23,24] does not vanish at this high scale. This is a particular feature of our framework.

Our paper is organized as follows. In the next section, we present our framework, including the avour symmetry, together with the matter content of the model. In Sec. III, we describe the implications of the avour symmetry on mixing angles, neutrino mass spectrum and other low-energy observables. Section IV deals with leptogenesis where we describe two mechanisms to obtain viable leptogenesis in our framework, namely through radiative leptogenesis and through soft breaking of the family symmetry. Our conclusions are summarized in Sec.V.

II. FRAMEWORK: SYMMETRY AND MATTER CONTENT

We work in the framework of an extension of the standard model (SM), consisting of the addition of three right-handed neutrinos. The scalar sector, apart from the usual SM Higgs doublet, is extended through the
introduction of four types of heavy scalar elds, , , and , that are singlets under SU (3) SU (2)h. U (1)y. Further, one, we impose an A4 Z3 Z4 symmetry to the Lagrangian. As is well known, A4 is a discrete symmetry corresponding to the even permutation of four objects having four irreducible representations: three in-
equivalent one-dimensional representations (1, 10, 1) and a three-dimensional representation (3). The following multiplication rules hold: 10 10 = 1, 10 10 = 10, 10 10 = 1 and 3 1 10 10 3 3. Therefore, the product of two triplets, a = (a1; a2; a3) and b = (b1; b2; b3), yields

\[(a \cdot b)_{i} = a_{i}b_{i} + a_{i}b_{i} + a_{i}b_{i}; \]
\[(a \cdot b)_{i} = a_{i}b_{i} + a_{i}b_{i} + a_{i}b_{i}; \]
\[(a \cdot b)_{i} = a_{i}b_{i} + a_{i}b_{i} + a_{i}b_{i}; \]
\[(a \cdot b)_{i} = a_{i}b_{i} + a_{i}b_{i} + a_{i}b_{i}; \]
\[(a \cdot b)_{i} = a_{i}b_{i} + a_{i}b_{i} + a_{i}b_{i}; \]
where \(i \) is the cube root of unity, i.e., \(i = e^{2\pi i/3} \). For the symmetric product of three triplets one has

\[(a \cdot b \cdot c)_{i} = \sum_{i \geq j \geq k} a_{i}b_{j}c_{k}; \quad \text{with } \sum_{i \geq j \geq k} \]

<table>
<thead>
<tr>
<th>Field</th>
<th>A4</th>
<th>Z3</th>
<th>Z4</th>
<th>SU (2)h</th>
<th>U (1)y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>3</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>Z3</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>Z4</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>SU (2)h</td>
<td>U (1)y</td>
<td>(2;1-2)</td>
<td>(1;1)</td>
<td>(1;0)</td>
<td>(2;1-2)</td>
</tr>
</tbody>
</table>

Table 1 shows how the various elds transform under the di erent symmetry groups. It is clear from Table 1 that it is not possible to introduce SM-like Yukawa couplings for the charged leptons since these would break the A4 as well as the Z4 symmetry. Similar couplings for the neutral leptons are forbidden by the Z4 symmetry. A Majorana mass term for the right-handed neutrinos is not allowed, but a Yukawa-type interaction term can be built with the A4 singlet eld . Direct couplings of the right-handed neutrinos to , and are also forbidden by the discrete symmetry. It is necessary to introduce higher dimension operators to get nonzero charged-lepton masses and to allow for the generation of Dirac mass terms for the neutrinos. We assume e that above a cutoff scale there is unknown physics, which for scales below is expressed in terms of higher dimension operators. The scale at which A4 Z4 is broken is assumed to be lower than the cutoff, but still close to

\[h \mid i = u; \quad h \mid i = (s; s; s); \quad h \mid i = (0; t; 0); \]

thus breaking the A4 Z4 symmetry. The Z3 symmetry is only broken when the singlet eld develops a VEV. Needless to say that the choice of VEV directions in Eq. (3) requires a stable vacuum alignment of the triplet elds and . Yet, the presence of terms like \(y \cdot 3_{y} \cdot 3_{y} \cdot 3_{y} \cdot 3_{y} \cdot 3_{y} \cdot 3_{y} \) would clearly distinguish between the different vacuum directions. Such an alignment can be naturally achieved for instance in supersymmetric dynamical completions \(\tilde{\mathcal{E}} \) \(\tilde{\mathcal{R}} \) or in the presence of extra dimensions \(\mathcal{M} \).

The effective Lagrangian will then lead to the following Yukawa-type couplings and direct mass terms:
where $M = y_R h$ and the following definitions have been introduced:

$$f^{a}_{i} = \frac{S_{i}}{e^{a}_{i}}, \quad u^{a}_{i} = \frac{u}{e^{a}_{i}}, \quad t^{a}_{i} = \frac{t}{e^{a}_{i}} \quad (i = 1; 2; 3):$$

These effective Yukawa couplings are assumed to be within the perturbative regime, i.e. $f^{(\mu, \tau)}$. 1. The effective Yukawa couplings and Majorana mass matrix are of the form

$$Y = \begin{pmatrix} 0 & 1 \\ f_{1}^{\tau} & f_{2}^{\tau} & f_{3}^{\tau} \end{pmatrix}; \quad Y' = \begin{pmatrix} 0 & 1 \\ f_{1}^{\tau} & f_{2}^{\tau} & f_{3}^{\tau} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ f_{1}^{\tau} & f_{2}^{\tau} & f_{3}^{\tau} \end{pmatrix} Y.$$ (7)

$$Y = \begin{pmatrix} 0 & M \beta \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & M \beta \\ 0 & 0 \end{pmatrix}$$ (8)

$$M_R = \begin{pmatrix} B & C \\ 0 & 0 \end{pmatrix}$$ (9)

where v denotes the vacuum expectation value of the usual SM Higgs doublet, $h = v$, and x and y stand for the real and positive quantities

$$x = \frac{v}{M} f_{i}^{\tau} j \quad \text{and} \quad y = \frac{v}{M} t^{\tau}.$$ (10)

The phases 1 and 2 are the arguments of f^{τ} and t^{τ}, respectively, and 3 is the only physical phase remaining in Y, since the global phase 1 factored out in Eq. (3), can be rotated away. Similarly, the phases in f_{i}^{τ} can be eliminated through the rephasing of the e^{a}_{i}, etc. Therefore, there is no loss of generality in working with real f_{i}^{τ} and with the only phases remaining in Y, due to 1 and 2. We shall see that the phase together with the phase in Y are the only phases which violate CP.

The neutrino Yukawa matrix can be rewritten as

$$Y = V K^{1} = \begin{pmatrix} 0 & -1 \beta_j \end{pmatrix}$$ (11)

with

$$V = \begin{pmatrix} B & C \\ 0 & 0 \end{pmatrix}$$ (12)

where $K^{1} = \begin{pmatrix} 0 & -1 \beta_j \end{pmatrix}$ and $\beta_j = \frac{v^2}{M} \beta_j$.

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) leptonic mixing matrix at low energies is thus given by

$$\begin{pmatrix} 0 & \beta_j \end{pmatrix}$$ (13)
with \(i = 1 \) and \(j = 2 \). We can ask that the phases factored out to the left have no physical meaning, since they can be eliminated by a redefinition of the physical charged-lepton fields. Therefore, the only phases appearing in \(U_{PMNS} \) are the Majorana phases \(x \) and \(y \). A further factoring out the additional M a prana-type CP violating phases, this mixing matrix coincides with the HPS matrix. The zero entry in \(U_{PMNS} \) implies that there is no Dirac-type CP violation.

In the limit of vanishing \(x \), there is no CP violation in \(U_{PMNS} \). However, the remaining phase of \(y \), entering in \(m_{D} \), does influence CP violation at high energies. This can be seen by recalling that, in this class of models, the necessary and sufficient condition for having CP invariance is that in the W B where \(m_{1} \) and \(M_{R} \) are diagonal and real, the condition \(\text{arg}(m_{0}m_{1})_{ij} = 2(2p_{i} + 1) - 4 \) is satisfied with arbitrary \(i \) and integer numbers \(p_{j} \). It can be readily verified that the matrix \(m_{D} \) given by Eq. (17) does not satisfy this condition even for \(x = 0 \).

The light neutrino masses \(m_{1}, m_{2} \), and \(m_{3} \) are given by

\[
m_{1} = x^{2} + y^{2} + 2xy \cos \; ;
\]
\[
m_{2} = x^{2} \; ; \tag{21}
\]
\[
m_{3} = x^{2} + y^{2} - 2xy \cos \; .
\]

The three charged-lepton masses are determined by the three Yukawa couplings \(f_{i} \). Note that the present model is highly constrained. The nine physical quantities consisting of the three light neutrino masses, the three mixing angles and three CP-violating phases (contained in a general \(U_{PMNS} \) matrix) are entirely fixed in terms of three real parameters, namely \(x, y \) and \(\theta \).

One has the following constraints on the mixing matrix \(U_{PMNS} \) and the light neutrino masses:

(i) The mixing angles are entirely fixed by the \(A_{4} \), \(Z_{4} \) symmetry, leading to the HPS structure at the scale of the breaking of this symmetry and, consequently, predicting no Dirac-type CP violation;

(ii) The remaining \(x \) physical quantities \(x, y, x = y \), and through Eqs. (13) and (21).

We shall see that only a normal neutrino ordering is allowed in this model, and, furthermore, the two existing experimental constraints, to wit the two neutrino mass-squared differences, strongly correlate the allowed values for the parameters \(x \) and \(y \). The knowledge of the absolute neutrino mass scale would be crucial.

Clearly, the relations written in this subsection would be exact provided that there was no running of the coefficients defined at the scale of \(A_{4} \) and \(Z_{4} \) symmetry breaking. Yet the light neutrino masses and the charged-lepton masses are only generated after spontaneous symmetry breakdown, when the field acquires a VEV. In particular, the zero entry in \(U_{PMNS} \) is not exact. Such deviations are, however, negligible.

In order to see how the experimental knowledge on the neutrino mass spectrum constrains the allowed parameter space, let us recall the following experimental constraints at 2 \(\sigma \) confidence level [23]:

\[
m_{2}^{2} = (2.18 \pm 0.64) \times 10^{-3} \; \text{eV}^{2} ; \tag{22}
\]

with the best-fit values [25]

\[
m_{2}^{2}_{\text{best fit}} = 2.46 \times 10^{-3} \; \text{eV}^{2} ;\]

\[
m_{2}^{2}_{\text{max}} = 7.55 \times 10^{-3} \; \text{eV}^{2} ; \tag{23}
\]

The sign of \(m_{3} \) is dictated by the ordering of the neutrino masses, i.e., positive for normal ordering and negative for inverted ordering.

Let us first consider the case of normal ordering, with \(m_{1} > m_{2} > m_{3} \). In this case, one obtains from Eq. (21) the following constraint:

\[
y + 2x \cos \theta > 0 ; \tag{24}
\]

while the condition \(m_{2} > m_{1} \) leads to

\[
y + 2x \cos \theta < 0 ; \tag{25}
\]

It is clear that Eqs. (24) and (25) cannot only be satisfied if \(y + 2x \cos \theta < 0 \), since \(x \) and \(y \) are positive. Thus, normal ordering requires the parameter \(\theta \) to be in the second or third quadrant.

Similar considerations applied to the case of inverted ordering, implying

\[
y + 2x \cos \theta < 0 ; \tag{26}
\]

together with Eq. (23), since one would still require \(m_{2} > m_{1} \). Since Eqs. (25) and (26) cannot be simultaneously verified, one concludes that the present model does not accommodate an inverted ordering for the neutrino mass spectrum.
The ratio \(\frac{m_{\text{sol}}}{m_{\text{atm}}} \) also implies a strong correlation between the allowed values for \(r \) and \(\cos \). Indeed, from Eqs. (21) and (22) one obtains
\[
\frac{m_{\text{sol}}^2}{m_{\text{atm}}^2} = \frac{1 + 2r(\cos \theta) - 2r(\cos \theta)}{1 + 2r(\cos \theta) + 2r(\cos \theta)} ;
\]
where we have taken into account that \(\cos \theta < 0 \). This correlation is presented in Fig. 1 (left plot), for the best values of the solar and atmospheric data given in Eq. (23). Hereafter, we only use these central values since their experimental dispersion would only contribute to a small enlargement of the allowed region. The light (red) shaded area is currently disfavored by cosmological observational data. The recent WMAP 5-year data [26] alone constrains the sum of light neutrino masses below 1.3 eV. When combined with baryonic acoustic oscillation and type-Ia supernova data this bound is more restrictive, \(m_1 < 0.61 \text{ eV} \). In Fig. 1, we also show the \((x,y)\) parameter region allowed by the model (right plot). This region has a lower bound for \(x^2 \) and an upper bound for \(y^2 \) that can be easily understood through the use of the relation
\[
m_3^2 + m_1^2 - 2m_3^2 = m_{\text{atm}}^2 - m_{\text{sol}}^2 ;
\]
Clearly, \(x^2 = m_3^2 + m_{\text{sol}}^2 - (m_{\text{atm}}^2)^2 \), \(8.7 \times 10^3 \text{ eV} \). This lower limit corresponds to \(m_3 \). Moreover, in this limit \((x + y)^2 \) is very small when compared with \(m_3^2 \). Therefore, one has
\[
y^2 \sim (m_{\text{atm}}^2)^2 \sim (m_{\text{sol}}^2)^2 ;
\]
(29)
implying \(y^2 \), i.e. \(10^2 \text{ eV} \). The corresponding light neutrino masses are plotted in Fig. 2 as a function of the phase. Since their dependence on \(\theta \) is expressed only in terms of \(r \), we only need to analyze one quadrant, chosen here to be the third quadrant. The lightest neutrino mass has a lower bound given by
\[
m_1 \sim 2(m_{\text{sol}}^2)^{1/4} - (m_{\text{atm}}^2)^{1/4} ;
\]
(30)

The neutrino mass hierarchy is maximal when \(= 1 \), while an almost degenerate spectrum is obtained for \(= 2 \) or \(= 3 \). Finally, the cosmological bound restricts the phase to the range \(1.04 \pm 2.0 \text{ eV} \). The dependence of the Majorana phases \(= 1,2,3 \), which are the only sources of low-energy CP violation in the leptonic sector, is shown in the right plot of Fig. 1.

An important low-energy observable is neutrinoless double beta decay \((0^{-} \beta \beta) \). In our framework, with no additional sources ofavour violation, its rate is proportional to the modulus of the (11) entry of the effective neutrino mass matrix, denoted by \(j_{ee} \), in the W. B. where the charged-lepton mass matrix is diagonal and real. The value of \(j_{ee} \) is given by
\[
j_{ee} = m_{1}U_{11}^2 + m_{2}U_{12}^2 + m_{3}U_{13}^2 ;
\]
(31)
where \(U_{ij} \) are the elements of the leptonic mixing matrix \(U_{PMNS} \). Although with large uncertainties from the poorly known nuclear mass elements, data available at present set an upper bound on \(j_{ee} \) in the range 0.2 to 1 eV at 90% C.L. [27,28,29]. The existence limit will be considerably improved in the forthcoming experiments, with an expected sensitivity of about \(10^{-3} \text{ eV} \) [30].

Since in the present model the phase (13) is zero in leading order, the only contribution from the Majorana phases to the decay amplitude will come from the phase \(1 \). We may then write Eq. (31) as
\[
j_{ee} = \frac{1}{3} 2m_{1} + m_{2} e^{i\phi_1} ;
\]
(32)
In Fig. 3, we can see the evolution of \(j_{ee} \) as a function of \(\phi_1 \). We obtain \(4.65 \times 10^{-3} \text{ eV} \) at \(j_{ee} = 0.20 \text{ eV} \), where the upper limit comes from imposing the cosmological bound and it corresponds to an almost degenerate neutrino spectrum.

IV. Leptonogenesis

Lepton asymmetries produced by out-of-equilibrium decays of heavy neutrinos in the early Universe, at temperatures above \(T \sim 10^{12} \text{ GeV} \), do not distinguish lepton
Therefore, all $\ln (H^2_{ij})$ would vanish and un avoured leptonogenesis could not take place. Further more, the heavy neutrino masses would be exactly degenerate, thus preventing leptonogenesis to occur. Favoured leptonogenesis becomes viable once we lift the degeneracy of the heavy Majorana neutrino masses. This is due to the fact that avoured leptonogenesis is sensitive to additional sources of CP violation, as can be seen from the formula for the corresponding CP asymmetry, written below. Notice also that avoured leptonogenesis requires $M < 10^{12}$ GeV. From the definition given in Eq. (17) and Fig. (where we see that $x \approx 0.55$) we are able to estimate if we require this bound on M to be verified, that

$$f_{ij} = 0.08$$

This condition for the effective Yukawa couplings is more restrictive than just the need to be in the perturbative regime.

For an almost degenerate heavy Majorana neutrino mass spectrum, leptonogenesis can be naturally implemented in the so-called resonant leptonogenesis framework [32,33]. In this case, the CP asymmetry generated by the i-th heavy Majorana neutrino decaying into a lepton avour is dominated by the one-loop self-energy contributions so that [24]

$$i' = \frac{1}{8} \frac{X}{j_6 i} \ln \left[\frac{1 + z}{z} \right] (M_{ij}^2 M_{ij}^2 + M_{ij}^2 M_{ij}^2) \ln \left[H_{ii} \right];$$

where $M_{ij}^2 = M_{i}^2 - M_{j}^2$ and $j = H_{jj} M_{j} = (8)$. Defining the mass splitting paramaters

$$R_{ij} = \frac{M_{ij}^2}{M_{ij}} 1;$$

the CP asymmetries [33] can be conveniently rewritten in the form

$$i' = \frac{1}{16} \frac{X}{j_6 i} \ln \left[\frac{R_{ij}}{L_{ij}} \right] \ln \left[H_{ii} \right];$$

FIG. 2: (color online). Low-energy neutrino parameter. On the left plot, the light neutrino masses m_i are plotted as a function of the high-energy phase ϕ, while on the right plot, the low-energy CP-violating Majorana phases β_i are displayed as a function of the phase ϕ.

FIG. 3: (color online). Neutrinoless double beta decay parameter β_1 as a function of ϕ.

avours. The lepton number asymmetry generated by the i-th heavy Majorana neutrino, provided the heavy neutrino masses are far from almost degenerate, would then be given by [31]

$$I_i = \frac{1}{8} \frac{X}{j_6 i} \ln \left[\frac{1 + z}{z} \right] \ln \left[\frac{1 + z}{z} \right]$$

where

$$f(z) = \frac{z}{z} \ln \left[\frac{1 + z}{z} \right] (M_{ij}^2 M_{ij}^2 + M_{ij}^2 M_{ij}^2) \ln \left[H_{ii} \right];$$

and $y = y Y$, with y the Yukawa matrix for the neutrino sector, leading to the Dirac-type neutrino mass matrix, in a $\nu \nu \nu$ where M_R is diagonal and real. Notice that H does not depend on whether or not m_1 is real and diagonal.

In our framework, if the relations written in Sec. III were exact at all energy scales, H would be real and equal to:

$$H = \frac{M}{\sqrt{2}} \begin{pmatrix} 0 & x^2 + y^2 & 0 \\ x^2 + y^2 & 0 & 2xy \cos \phi \\ 2xy \cos \phi & 0 & 1 \end{pmatrix} :$$

$$H = \frac{M}{\sqrt{2}} \begin{pmatrix} 0 & x^2 + y^2 & 0 \\ x^2 + y^2 & 0 & 2xy \cos \phi \\ 2xy \cos \phi & 0 & 1 \end{pmatrix} :$$

$$H = \frac{M}{\sqrt{2}} \begin{pmatrix} 0 & x^2 + y^2 & 0 \\ x^2 + y^2 & 0 & 2xy \cos \phi \\ 2xy \cos \phi & 0 & 1 \end{pmatrix} :$$
Notice that when the mass splitting \(r \) and the Yukawa matrix \(Y \) are independent quantities, \(r \) is resonantly enhanced for

\[
\frac{R_{ij}}{c_{ij}}, \quad \frac{H_{ii}}{16} \quad ; \quad (40)
\]

implying (41)

\[
\frac{1}{2} j_{ij} \frac{\text{Im} [H_{ij} Y_{i} Y_{j}]}{H [H_{jj}]} ;
\]

In such a case, the CP asymmetry is independent (up to RG running effects) of the absolute heavy Majorana neutrino mass scale \(M \).

In Ref. (14), WB invariant CP-odd conditions sensitive to the presence of CP violation required for leptogenesis were derived. This type of conditions are a powerful tool for model building since they can be applied to any model without the need to go to a special basis. In the case of unavoured leptogenesis the CP asymmetry is only sensitive to phases appearing in the matrix \(H \) and the relevant WB invariant conditions are given by

\[
I_1 \quad \text{Im} \text{Tr}[H M M R M R H M R] = 0;
\]

\[
I_2 \quad \text{Im} \text{Tr}[H (M R M R) M R H M R] = 0;
\]

\[
I_3 \quad \text{Im} \text{Tr}[H (M R M R) M R M R (M R M R)] = 0;
\]

For avoured leptogenesis, the phases appearing in \(H \) are also relevant. There is however still the possibility of generating the required CP asymmetry even for \(H \) real. In this case, additional CP-odd WB invariant conditions are required since those written above cease to be necessary and sufficient. A simple choice are the WB invariants \(I_i \) (i = 1, 2, 3), obtained from \(I_1 \) through the substitution of \(H \) by \(H = Y \cdot \tilde{h} \cdot Y \), where \(h = Y \cdot \tilde{Y} \cdot Y \).

For instance, one has (14)

\[
I_1 = \text{Im} \text{Tr}(Y M R M R Y M R Y M R); \quad (43)
\]

and similarly for \(I_2 \) and \(I_3 \). As it was the case for \(I_1 \), CP invariance requires that \(I_i = 0 \). The latter CP-odd WB invariant conditions are sensitive to the additional phases appearing in avoured leptogenesis. The well-known Casas-Ibarra parametrization (33) makes it clear that the matrix \(U_{PMNS} \) cancels in \(H \). Such is not the case for \(Y \cdot \tilde{Y} \cdot Y \). Therefore, avoured leptogenesis is sensitive to CP violation present at low energies even without any constraints imposed from avoured symmetry. In the case of unavoured leptogenesis such a connection can only be established in specific models.

In the next subsection we show that the running of parameters from the scale of the \(A_4 \), \(Z_4 \) breaking to the scale of the heavy neutrino masses leads to the breaking of the exact degeneracy of the heavy neutrinos. We then study the case of radiative avoured leptogenesis, where the mass splitting is generated through renormalization group effects. In the avoured case, leptogenesis depends on \(Y \) computed in the WB where both \(M_R \) and \(M_1 \) are diagonal, since in this case the
\(\text{nailed charged lepton is well defined, with no sumation done. This brings in additional CP violating sources. Notice that } Y \) is proportional to \(M_1 \) and Eq. (17) shows that the matrix \(U \) appears in \(Y \) in this WB,

\[
Y = \frac{p^M B}{3V} x + ye^i x + ye^i + x \frac{C}{x + x^2 y e^i x y e^i + x^2 y e^i}
\]

A. Radiative Leptogenesis

Radiative effects due to the renormalization group running from high to low scales can naturally lead not only to a heavy Majorana mass splitting, but also to nonvanishing diagonal terms in the matrix \(H \), which are necessary ingredients for a successful resonant leptogenesis mechanism. In the present framework, the mass splitting generated through the relevant RG is given by (16, 34, 35)

\[
\frac{R_{ij}}{c_{ij}} = 2 \left(\frac{H^{T} - H} {H^{T} + H} \right) t_i \left(\frac{1}{16} \right)^{1/2} \ln \left(\frac{0}{M} \right) ; \quad (45)
\]

where \(H^{T} = \frac{V H V^{T}}{V} \) and \(V \) is defined in Eq. (14). The cutoff scale \(0 \) is chosen to be equal to the \(A_4 \), \(Z_4 \) symmetry breaking scale and close to the GUT scale, \(10^{16} \text{ GeV} \). From the form of the matrix \(H \) in
Eq. (35), we then find
\[R_{12} = \frac{2M}{V^2} y^2 2xy \cos t; \]
\[R_{23} = \frac{2M}{V^2} y^2 + 2xy \cos t; \]
\[R_{13} = \frac{8M}{V^2} xy \cos t; \]

Notice however that a nonvanishing CP asymmetry also requires \(\Im [\hat{H}_{ij} \tilde{Y}_i Y_1]\) 0 with \(\tilde{Y} = Y V^T \) and \(Y \) defined in Eq. (44). Therefore, to have a viable radiative leptogenesis we need to induce nonvanishing \(\hat{H}_{ij} \) \((i \neq j) \) elements at the leptogenesis scale. This is indeed possi-

\[H_{ij} = 3y^2 y_{0}^{2} \hat{Y}_{i} \hat{Y}_{j}; \quad (47) \]

The CP avoured asymmetries can then be obtained from Eqs. (39), (46) and (47).

The radiatively induced CP asymmetries \(\hat{A} \) are shown in Figs. 4-6. Each plot contains two types of contours. The contours represented by lines (solid, dotted and dashed) correspond to the maximum allowed ratio \(j_{1} = y^2 j' 10^{-1} \) for the decay of each of the three heavy neutrinos into a lepton avour. The color gradient contours are representative of the size of the radiatively induced mass splitting, chosen for illustration to be equal to \(\frac{\pi}{12} \) in all cases. Each contour is depicted as a function of the phase \(\chi_{3} \) and the heavy neutrino mass scale \(\mathcal{M} \). We notice that for temperatures below \(10^{12} \) GeV, where avoured leptogenesis is in effect, the induced mass splitting is \(10^{5} \). Such values are sufficiently small to enhance the CP asymmetry up to values \(j_{1} j' 10^{5} \) (assuming \(y \sim 10^{-2} \)), which in turn can easily lead to the required baryon asymmetry \(B = \frac{n_{B}}{n_{\gamma}} = 6 \times 10^{-10} \), even for washout factors of the order of \(10^{-3} \). We also remark that for temperatures in the range \(10^{9} \). \(T > 10^{12} \) GeV it succeeds to consider the leptonic asymmetry \(\hat{A} \), since in this temperature window only the \(-\)Yukawa coupling is in thermal equilibrium and \(\frac{\pi}{12} = \beta \). Below \(T = \frac{1}{10} 10^{9} \) GeV, all charged-lepton avours are distinguishable and each asymmetry should be independently considered.

B. Leptogenesis through soft breaking

In this section we explore the possibility of implementing the mechanism of resonant leptogenesis through a soft breaking of the A\(_{4} \) symmetry at the Lagrangian level. To be specific and simplify our discussion, we shall introduce a single soft-breaking term of the form \(\mathcal{M} \bar{c}_{1} \bar{c}_{2} \bar{c}_{3} \) in the Lagrangian of Eq. (3). This term modifies the right-handed neutrino mass matrix and, in turn, its inverse matrix, parametrized here as

\[M_{R} = \frac{1}{M} \begin{pmatrix} 1 & e^{i \beta} & 0 \\ 0 & 1 & e^{i \beta} \\ 0 & 0 & 1 + e^{i \beta} \end{pmatrix}, \quad (48) \]

where the complex number \(e^{i \beta} \) characterizes the soft breaking. The effective neutrino mass matrix obtained through the seesaw mechanism now reads

\[m = V K M V^T, \quad (49) \]

with

\[M = \begin{pmatrix} m_{1} 1 + e^{i \beta} & 0 & 0 \\ 0 & m_{2} 1 + e^{i \beta} & 0 \\ 0 & 0 & m_{3} 1 + e^{i \beta} \end{pmatrix}, \quad (50) \]
and the parameters \(m_i \) defined in Eq. (21).

![Graph](image)

Figure 7: (color online). The parameter region in the case that the A_3 symmetry is softly broken. We take \(\theta = 0 \) and consider different values for the soft-breaking phase \(\phi \). The dashed line \((\phi = 0) \) corresponds to the curve depicted in the right plot of Fig. 4.

The matrix \(M \) can be diagonalized by the rotation matrix

\[
V = \begin{pmatrix}
0 & c & 0 \\
-1 & 0 & 0 \\
0 & s & 0 \\
\end{pmatrix}
\]

\[
\begin{align*}
(m_1)^2 &= m_2^2 + \frac{1}{2} m_3^2 m_1^2 + m_1 m_3 \frac{2}{\sqrt{2}} m_2 \text{ atm} + m_2 \text{ sol} \\
(m_2)^2 &= m_2^2 \\
(m_3)^2 &= m_3^2 + \frac{1}{2} m_3^2 m_1^2 + m_1 m_3 \frac{2}{\sqrt{2}} m_2 \text{ atm} + m_2 \text{ sol} \\
\end{align*}
\]

with \(c \cos \theta \) and \(s \sin \theta \),

\[
= \arctan \frac{(m_2 m_1 \sin \phi)}{(1 + \cos \phi)(m_3 + m_1)};
\]

and

\[
\tan 2 = \frac{m_1 e^{i \phi} + m_3 e^{i \phi}}{2(m_1 m_3) + \frac{2}{\sqrt{2}} m_2 \text{ atm} + m_2 \text{ sol}}.
\]

In the above expression,

\[
1 + \cos \phi + \frac{2}{4}:
\]

The light neutrino masses are given in this case by

Notice that there are now free parameters to be constrained. Besides \(x, y \) and \(z \), already present in \(m_1 \), two new soft-breaking parameters, \(\alpha \), also appear in Eqs. (25). To further simplify our discussion and illustrate the main features of the present case, in what follows we assume \(\theta = 0 \) and consider \(\phi = 0 \); \(\alpha = 2 \). The allowed parameter region is presented in Fig. 7. For comparison, the case without soft breaking, i.e. when \(\phi = 0 \), is also plotted (dashed line). The three solid curves correspond to different values of \(\phi \): real positive \((\phi = 0)\) and negative \((\phi = -\pi/2)\). We note that, for a real value of the soft-breaking parameter, neither the present cosmological bound nor the constraints on \(m_3 \) yield a bound more restrictive than the one already imposed by neutrino oscillation data. On the other hand, for \(\phi = -\pi/2 \), as in the \(\phi = 0 \) case, there is a large region disfavoured by 0 and cosmology (light area).

Since Eq. (55) does not change the physical meaning of the parameter \(\alpha \), namely, \(x^2 = m_2 = m_3 \), the bounds observed in Fig. 7 for \(x^2 \) and \(y^2 \) are easily explained, noticing that Eq. (25) now reads

\[
m_1^2 + m_3^2 + m_3 m_1 \frac{2}{\sqrt{2}} m_2 \text{ atm} + m_2 \text{ sol} \\
2 m_2 = m_2 \text{ atm} + m_2 \text{ sol}.
\]

There are two interesting limits arising from this relation. The limit \(\chi \) was already studied for the case without soft breaking, and can be straightforwardly analyzed in the present case by substituting \(m_2 \text{ atm} \) and \(m_2 \text{ sol} \) in Eq. (25). The dependence of \(y^2 \) on \(\alpha \) would then explain the small splitting between the various curves in Fig. 7, leading to the relations \(y^2(\phi = 0) < y^2(\phi = -\pi/2) < y^2(\phi = \pi) \). The second limit, \(y = 0 \), is new and leads to completely different phenomenological predictions. In this limit one gets the approximat
FIG. 8: (color online). The lightest neutrino mass as a function of the high-energy CP-violating phase when $\varphi = 0$ and $\varphi = \pi$. There are two distinct regions: one similar to the case without soft breaking and a second one where the light neutrino masses have constant values (with respect to φ) for a fixed value of φ in the range $-2 \leq \varphi \leq 2$. The latter region is obtained in the limit $\gamma = 0$, and corresponds to the vertical branches in Fig. 3 (shown for $\varphi = 0$ and -2). In this limit, the light neutrino masses are almost degenerate and $m_1 \propto x^2$. Clearly, for $\varphi = -2$ this region is disfavoured by 0° and cosmological data. The splitting of the mass for the various values of φ when γ is easily understood through the use of Eq. (29) with the real rotation $m_{\text{tree}} = m_{\text{tree}} = 0$.

After diagonalizing the matrix M given in Eq. (50), the lepton mixing matrix can be found,

$$U_{\text{PMNS}} = U_Y V_K Y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and the remaining low-energy observables determined.

The effective mass parameter relevant for 0° decay [cf. Eq. (51)] is presented in Fig. 9 for different values of φ. The analysis of the plot is similar to the one of Fig. 8. Once again, there are two distinct regions. In particular, when $\gamma = 0$ and $\varphi = -2$, the effective mass parameter m_{eff} tends to a constant value given by $m_{\text{eff}} \propto x^2$.

A further feature of this case is the prediction of a non-vanishing U_{PMNS} matrix element. Its absolute value, $|U_{\text{PMNS}}|$ is plotted in Fig. 10 as a function of φ for the various values of φ. We notice that the phenomenological region that predicts constant values of $|U_{\text{PMNS}}|$ is already disfavoured by the neutrino oscillation data, which implies the constraint $|U_{\text{PMNS}}| \leq 0.02$ at 2σ level. Indeed, from Eq. (53) and in the limit $\gamma = 0$ we get $\varphi = -4$, which then yields $|U_{\text{PMNS}}| \approx 0.3$. This upper bound is reduced when the small corrections due to γ are taken into account. From Fig. 10 we estimate the maximum value to be $|U_{\text{PMNS}}| \approx 0.07$. On the other hand, in the region where $\varphi = -2$ and y^2, x^2 we get

$$y_{\text{eff}} = \frac{P_i}{m_{\text{atm}}} m_{\text{atm}}^{2i} = \frac{2i}{m_{\text{atm}}} m_{\text{atm}}^{2i}$$

For $\varphi = 0$ we have $x^2 = 0$, while for $\varphi = -2$ the contribution comes only from the second order term in and gives $x^2 = 0.5$, which is clearly disfavoured by the decay and cosmological data. Notice also that the above limit is not valid for $\varphi = -2$, as can be seen from Eq. (57). Nevertheless, the right end point of the x^2 curve can be estimated from Eq. (56) since it corresponds to $\varphi = -2$ or $\varphi = 2$.
which explains the splitting of the three curves and also leads to the allowed range of values θ_{13}, θ_{23}, δ. The corresponding mixing angles θ_{13} and θ_{23} are presented in Figs. 11 and 12, respectively. In these figures, the light (red) shaded regions are presently excluded at 2 σ by the global analysis of neutrino oscillation data [25].

Finally, in order to identify the low-energy Dirac phase and the Majorana phases δ, we rewrite the PMNS mixing matrix [39] in the standard parametrization [38]. The following relations hold:

$$\sin^2 \theta_{12} = \sin^2 \theta_{23} \sin^2 \delta$$

with δ defined in Eq. (53). We recall that in the limit where there is no soft-breaking term one has $\delta = \pi$, which is not obvious from Eq. (60), since the phases and have no physical meaning in this limit. The dependence of the low-energy Dirac phase on the high-energy phase is shown in Fig. 13 for different values of δ. We note that is quite sensitive to $\sin \delta$. The constant lines for $\sin \theta_{23} = 0$ correspond to the vertical branches in Fig. 14, so that for $\delta = \pi/2$ they are excluded by the cosmological and 0 bounds. The dependence of the Majorana phases δ on the phase is not such a acted by the soft-breaking term and is quite similar to the one shown in Fig. 14.

Let us now analyze the viability of leptogenesis and its possible connection with low-energy neutrino observables. We start by evaluating the Dirac neutrino Yukawa coupling matrix Y in the basis where the charged leptons and heavy Majorana neutrinos are real and diagonal. In this case, Y defined in Eq. (44) becomes $Y = \mathrm{diag}(1; 1; e^{i \pi/2})$, where $\theta_{12} = \theta_{23} = 0$. The matrix $H = Y^T Y$ now becomes complex:

$$H = \begin{pmatrix} 0 & x^2 & 0 \\ x^2 & 0 & y^2 \\ 0 & y^2 & 0 \end{pmatrix}$$

where $H = \begin{pmatrix} 0 & x^2 & 0 \\ x^2 & 0 & y^2 \\ 0 & y^2 & 0 \end{pmatrix}$.

Therefore, a crucial difference from the radiative leptogenesis case studied in the previous section is the possibility of having un avoured leptogenesis. To illustrate its main features, in what follows we restrict our discussion to the resonantly enhanced CP asymmetries given in Eq. (61), provided that the condition (60) is satisfied. This will also allow us to estimate the maximal value of the leptonic asymmetries that can be reached in the present framework.

For small values of δ, the resonant condition given by
Eq. (40), together with the definition of the mass splitting β ($\beta j = 1; 3$) in Eq. (39) and the matrix M^\dagger in Eq. (48), imply the relation

$$\mathcal{P} \cos \gamma + \frac{J \beta}{\mathcal{P}} \frac{1}{16} \frac{M}{\nu^2} (m_3 + m_1) : \quad (62)$$

From the above equation we can estimate the heavy neutrino mass scale necessary to resonantly enhance the leptonic asymmetries. We obtain

$$M' = 15\times 10^{15} \text{ GeV}$$

(63)

In Fig. 14 we present the contours of constant M in the $(\cos \gamma)$ plane for $\beta = -2$ or $3 = 2$. The contour line $M = 10^{12} \text{ GeV}$ sets the transition from un-avoured to avoured leptogenesis, while $M = 10^{9} \text{ GeV}$ corresponds to the temperature below which the charged-lepton avours are distinguishable. As can be seen from the figure, when $\beta = -2$ or $3 = 2$, the un-avoured leptogenesis region shrinks, and the avoured leptogenesis one shifts to higher values of $\cos \gamma$. There is in each case an upper bound on the heavy Majorana neutrino mass $M' = 3\times 10^{15} \text{ GeV}$ for $\beta = -2$ or $3 = 2$.

Denoting $\rho_{\text{res}} = \frac{1}{\rho_{\text{res}}} \left(\rho_{\text{res}} = 0 \right)$, the un-avoured CP asymmetry is given in this case by

$$\rho_{\text{res}} \rho_{\text{res}} = \frac{1}{2} \frac{m_3 m_1}{m_3 + m_1} \sin \gamma : \quad (64)$$

and attains its maximal value $(\rho_{\text{res}})_{\text{max}} = 10^{-45} \sin \gamma$ when neutrinos are hierarchical. For the avoured CP asymmetry we find:

$$\rho_{\text{res}} = \frac{1}{3} \frac{m_3 m_1}{m_3 + m_1} \sin \gamma : \quad (65)$$

which has the maximal value $(\rho_{\text{res}})_{\text{max}} = 4 \times 10^{-2} \sin \gamma$. The β and γ avoured asymmetries are given by

$$\rho_{\text{res}} = \frac{1}{3} \frac{m_3 m_1}{m_3 + m_1} \sin \gamma : \quad (66)$$

which, clearly, are not suppressed by the soft-breaking parameter and can reach values up to 7×10^{-2} for hierarchical neutrinos.

Finally, in Fig. 15 we present the correlation between the low-energy observable $\mathcal{M}_{\nu 3}$ and the absolute value of ρ.
of the unavowed leptonic asymmetry \(j_{\text{res}} \) for different values. The curves are shown for \(' = -2 \), which yields the maximum asymmetry [cf. Eq. (4)]. As can be seen from the figure, in the region of phenomenological interest \(j_{\text{res}} \approx 10^6 \), a variation of the soft-breaking parameters plays a role in planes of the curves, once both quantities, \(U_{\alpha j} \) and \(j_{\text{res}} \), are proportional to an order.

V. CONCLUSIONS

Recently, models based on discrete 2-flavour symmetries \(E_6, U_6, E_7, E_8, S_3, S_4 \) have attracted much attention due to the possibility of predicting in-plane solutions that lead to the HPS signal in leading order. The implications of these symmetries for leptogenesis depend on the specific details of the model. Among these models, those based on type-I seesaw realizations have in general the common prediction of vanishing leptonic CP asymmetry, since the combination \(Y^2 Y \), relevant for leptogenesis, is proportional to the unit matrix. Thus, higher-dimensional operators, suppressed by additional powers of the cutoff scale, are usually required to allow for leptogenesis in these models \([40, 41] \). We have presented an explicit example, based on the 4-flavour symmetry, where the above limitations can be overcome. The model is based on an electroweak theory with an \(A_4 \) \(Z_3 \), \(Z_4 \) symmetry, which is spontaneously broken at a high scale, leading to exact tribimaximal leptonic mixing in leading order. A particular feature of the model is the degeneracy of the heavy Majorana neutrino mass spectrum. Therefore, for leptogenesis to become viable this degeneracy must be lifted. This can be easily achieved either by renormalization group effects or by a soft breaking of the \(A_4 \) symmetries, which naturally leads to a viable resonant leptogenesis mechanism.

We have also studied the implications for low-energy neutrino physics. The model can accommodate a hierarchical or an almost degenerate light neutrino spectrum. It also gives definite predictions for the 0° decay mass parameter \(M_{\alpha j} \). In the so-called radiative leptogenesis scenario, the HPS mixing pattern is exact up to negligible running \(\Delta \theta \) terms. Further, one, only a single lepton, leptogenesis, is allowed. If the \(A_4 \) asymmetry is softly broken, e.g., by a mass-term that lifts the heavy Majorana neutrino degeneracy, then both non-avowed and avowed leptogenesis can be in play. In this case, corrections to tribimaximal mixing would lead to a non-vanishing \(U_{\alpha j} \) and definite predictions for the low-energy CP-violating phases.