Wave length A ccuracy of the K eck H I RES S pe ctrograph and M easur ing C hanges i n t he Fine Structure C ons t ant

K i m G r i e st 1, J o n a t h a n B . W h i t m o r e 1, A r t hur M . W ol f e 1, 2, J . X a vi e r P r o c h a s k a 2, 3, 4, J . C h r i s t o p h e r How k 2, 5, and G e or e y W . M a rc y 6
kgriest@ucsd.edu, jonathan.b.whitmore@gmail.com

A B ST R A C T

W e r e por t on an at t e m pt t o ac c ur at e l y wave l e ngt h c al i br at e four ni ght s of dat a t ake n wi t h t he K e c k H I RES s pe c t r ogr aph on Q SO P H L957, f or t he pu r pos e of de t e r mi ni ng wh e t he rt he ne s t r uc t ur e c ons t ant was di e r e nt i n t he pas t . U s i ng ne w s of t war e and t e c h ni que s , w e m e as ur e d t he r e ds hi f t s of var i ous N i I I , F e I I , S i I I , e t c . l i ne s i n a dam pe d Ly s ys t e m at z = 2:309. R ougl y hal ft he dat a w e r e t ake n t hr ough t he K e c k i odi ne c e l l w h i c h c ont ai n s t hous and s o f we l l c al i br at e d i odi ne l i ne s . U s i ng t he s e i odi ne e xpos ur e s t o c al i br at e t he nor m al Th- A r K e c k dat a pi p e l i ne out pu t w e f oun d abs ol ut e wave l e ngt h o s e t s of 500 m /s t o 1000 m /s w i t h dr i f t s o f m or e t han 500 m /s o v e r s e v e r al ni ght s . T h e s e o s e t s c or r e s pond t o an abs ol ut e r e ds hi f t o f fu nc t e r t ai n t y of ab out $z \approx 10^5$ (0.02 A), w i t h dai ly dr i f t s of a r ound $z \approx 10^6$ (0.94 A), a n d m ul t i day dr i f t s o f n e ar l y $z \approx 2 \times 10^5$ (0.04 A). T he ca us es of t he wave l e ngt h o s e t s a r e not kno wn , b u t si nc e cl ai m e d s hi f t s i n t he ne s t r uc t ur e c ons t ant w ou l d r e s ul t i n ve l oc i t y s hi f t s o f le s s t han 100 m /s , t hi s le ve lof sy s t e m at i c unc e r t ai nt y m ay m a ke i t di c ul t t o us e K e c k H I RES dat a t o c onst r ai n t he c hange i n t he ne s t r uc t ur e c ons t ant . U s i ng our c al i br at e d dat a, w e appl i e d bot h our own s t andar d s of t war e a n d s t andar d s of t war e t o m e as ur e ---, b u t di s c ove r e d t hat w e c oul d o bt ai n r e s ul ts r angi ng f r om s i gni f i cant d e tec t i on of e i t he r s i gn, t o s t r ong n u ll li mi ts , de pe ndi ng u p on whi c h s e t s of l i ne s a n d whi c h s t andar d s of t war e w a s u se d . W e t h u s s pe c ul at e t hat t he di s c r e pant r e s ul t s on --- r e por t e d i n t he l i t e r at ur e m ay be due t o r andom u nc t uat i ons com i ng f r om unde r- e s t i m at e d sy s t e m at i c e r r or si n wave l e ngt h c al i br at i on and s t andar d s of t war e.

1. In t roduct i on: V aryi ng Fine Structure C ons t ant

Th e ne s t r uc t ur e c ons t ant t oday , $\theta = 1=137.03599911$, i s u sual l y t hought of as a f u n- dam e nt al , u ncha nging, c onstant of n at u re, b u t re c e nt l y bo th ex pe r i m e nt al a n d th eo re t i c al pa- pers have chal l e n ge d this assum pt i on, (e g ., s e e t he r e vi e w by G ar c i a- Be r r o, I s e r n, a n d K ubysh i n (2007)). M ot i vat e d esp e c i al l y by t he po si s s i b l e e x- per i m e nt al d e t e c t i on (s e e be l ow) of a c hange i n θ, w e appl i e d f or and t ook f our ni ght s of K e c k H I RES dat a, h a l f o f i t t h ro u gh t he K e c k i odi ne c e l l, o n Q SO P H L957. O ur go al w a s t o ge t an e x t r e m e l y we l l c al i br at e d, h i gh si g nal/noi s e a bs or pt i on s pect r um o n a di s t ant dam pe d Ly (D LA) s ys t e m (z = 2:309) i n or de r t o m e as ur e t he va l u e o f t he
ne structure constant more than 10 billion years ago and compare it to the value today.

The basic method to determine \(\Delta = (z - \Delta_0) \) is to measure differences in redshifts between different atomic transitions of elements in the same physical system, and use the fact that for small changes in the energy level of a given atomic transition can be approximated as

\[
! = !_0 + 2q
\]

where \(!_0 = 1!_0 \) is the frequency of the transition on Earth, \(! \) is the frequency in the high redshift cloud, and the \(q \)-values measure the dependence of \(! \) on and have been calculated for many common transitions. (see for example, Murphy et al. 2001a; Dzuba et al. 2002, and Forsee et al. 2007 for more detailed discussion and Table 2 for the values of \(q \) for various transitions.) The values of \(q \) depend upon the electron orbital quantum numbers of the initial and final quantum states, and therefore different transitions have different values of \(q \).

If all transitions had the same \(q \), then all wavelength shifts would be the same and one could absorb any change in the relative redshifts of the physical system. However, since different transitions have different values of \(q \), the relative transition wavelengths will differ from what they are in the lab if \(q \neq 0 \).

For example, Murphy et al. (2001a; 2001b; 2003; 2004) used a many-multiplet method on Keck H IRES data of 143 absorption systems in the redshift range \(0.2 < z < 3.7 \) to nd a significant reduction of the past, \(\Delta = (5.43 \pm 1.6) \times 10^{-6} \), while Chand et al. (2004) and Srikanth et al. (2004), used the same method for a subset of transitions on VLT/UVES data on 23 absorbers to nd \(\Delta = (4.5 \pm 0.5) \times 10^{-6} \). This latter analysis was criticized by Murphy et al. (2008) who reanalyzed the Chand et al. data to get \(\Delta = (4.6 \pm 0.5) \times 10^{-6} \), consistent with their previous result. In the meantime other groups returned results, for example, Levenskikh, et al. (2006) used the VLT/UVES spectrograph to study Fe II lines in one system at \(z = 1.15 \) and found a null result, \(\Delta = (0.06 \pm 0.04) \times 10^{-6} \), and in another system at \(z = 1.8 \) to nd \(\Delta = (5.4 \pm 2.5) \times 10^{-6} \) (Levenskikh, et al. 2007). Murphy, et al. (2006) have also criticized these results, claiming that the data do not allow limits as strong as those reported.

Subsequently, the Levenskikh, et al. (2006) results were weakened to \(\Delta = (0.02 \pm 0.18) \times 10^{-6} \) for the \(z = 1.15 \) system and \(\Delta = (5.7 \pm 2.7) \times 10^{-6} \) for the \(z = 1.8 \) system (Molaro et al. 2008), still a null result inconsistent with the detections.

Given the above inconsistent results, we were particularly interested in the Fe II transitions 1608 and Fe II 1611 transitions since these have \(q \) values that are both large and common in a low redshift cloud. Thus, if \(! \) was di erent in the past, the relative positions of these two lines should be signi cantly shifted from their laboratory values. For our DLA at \(z = 2.309 \), a relative shift between Fe II 1608 and Fe II 1611 of about \(136 \pm 21 \) m/s is expected if the Murphy et al. value \(\Delta = (5.43 \pm 0.16) \times 10^{-6} \) is correct. (Fe II 1608 shifts by \(54 \pm 12 \) m/s, while Fe II 1611 shifts by \(82 \pm 18 \) m/s in the rest frame.) Thus our goal was to centroid these lines to better than \(50 \) m/s, so as to determine \(\Delta \) in a single ion in a single absorption system.

Our method, which is close to that used by Levshakov et al. (2006), contrasts with that of Murphy et al. (2001a; 2001b; 2003; 2004) and Chand et al. (2004) where the signal/noise was not high enough to detect the signal in any single pair of lines; they did a statistical averaging over many transitions in any absorption system, and thus might be subject to systematic errors in selection, calibration, or averaging procedures. Since we expected to have superlatively well-calibrated spectra, and these two Fe II lines appear in the same echelle order, we hoped we could give convincing evidence for or against a change in the ion structure constant.

For our work, in addition to the Fe II lines, there are also several Ni II, Si II, Al II, and Al III lines that fall in the wavelength range covered by the iodine cell and that we can use. In what follows, besides the Fe II 1608/1611 pair, various other sets of transitions are used. Potentially we could detect all 16 lines that have calculated \(q \) values and that appear in our spectra: Fe II 1608/1611/2344,N II 1709/1741/1751, Si II 1526/1808, Al III 1854/1862, Al II 1670, Cr II 2062/2056/2066, and Zn II 2026/2062. If we restrict ourselves to lines that occur at wavelengths for which we have iodine spectra we would use only the 9 lines: Fe II 1608/1611, Ni II 1709/1741/1751, Si II 1808, Al III 1854/1862, and Al II 1670.
worry that saturated lines (those with minimum intensity less than 10%) may not be accurately measured. We can restrict ourselves to the 7 lines that meet the above criteria and are unsaturated: Fe II 1611, N III 1709/1741/1751/1851/1862. Finally, we note that Al II has a systematically higher ionization potential than the other ions and is a sub-dominant ionization state of Al. It thus could exist in a physically different location. Thus, we most reliably consider the Fe II ions in physical regions where Fe II is restricted to the 7 lines that meet the above criteria and are unsaturated: Fe II 1611, N III 1709/1741/1751/1851/1862.

2. Data and Extraction

PHL957 is a bright (B=16.6) QSO at z = 2.7, with a dampened Ly alpha system at z = 2.509 (Beaver, et al. 1972). We obtained 5.5 hours of data on November 1, 2002, 4 hours on Oct 3, 2004, 4 hours on Oct 4, 2004, and 5 hours on Oct 5, 2004. Five of the 11 exposures taken in 2002 had the iodine cell in place, while 6 of the 13 exposures taken in 2004 were taken through the iodine cell. Table I shows the iodine cell exposures were interspersed with the non-iodine cell exposures. Table I also shows the times that the relevant Th-Ar calibration arcs were taken, as well as the time exposures inside the H I RES enclosure, and whether or not the echelle gratings were moved between the Th-Ar exposures and the relevant Th-Ar exposures. The data from 2002 were acquired through the C1 decker (FWHM ~ 6 km s⁻¹), with the kv380 blocking plate in place. The data from 2004 were also observed through the C1 decker, but with the kv418 blocking plate in place, and the CCD mosaic was binned by two in the spatial dimension.

The 2002 spectra were extracted and combined using MAKEE (Barlow 2002). The 2004 spectra were extracted and combined using the XIDL package H I RES (Bernstein, et al. in preparation). The 2002 and 2004 data cannot be easily combined since a new mosaic of CCD' is was installed in the spectrograph in between these runs. We note that the 2002 data have a substantially worse signal/noise per pixel (42 for the non-iodine cell exposures) compared to the combined 2004 non-iodine cell data which have a S/N of about 70 per pixel.

2.1. Iodine Cell

The Keck iodine cell has been used extensively in searches for extra solar planets using the Doppler technique (Butler, et al. 1996). The cell is placed in the beam and superposes several narrow absorption lines per Angstrom on the QSO spectrum between 4950Å and 5900Å. As pointed out by Murphy, et al. (2001b), the di erent optical paths of the Th-Ar lamp and the QSO spectrum are a possible source of systematic error in the wavelength calibration. Using the iodine cell, wavelength calibration errors can be dramatically reduced since issues such as atmospheric dispersion, guiding errors at the slit, and all changes to the optics of the spectrograph are shared by both the iodine lines as well as the QSO spectra. In addition, the Th-Ar lamp spectra are done at different times than the QSO spectra.

Figure 1 shows a sample of the iodine cell spectra taken with the Fourier Transform Spectrometer (FTS) at KPNO with a resolution of around 170,000 and a signal/noise of 700 per pixel (Butler, et al., 1996; Murray, 2008). This high resolution and S/N means that we do not expect the iodine spectrum to be a significant source of wave
duration and S/N means that we do not expect the 2002 data to be a significant source of wavelength calibration error. Figure 2 shows a portion of echelle order 67 taken both with and without the iodine cell. In the bottom panel of Figure 2 one can see the iodine lines as well as the Fe II 1608 and Fe II 1611 lines of the DLA towards PHL957. The top panel of Figure 2 does not contain the iodine lines.

2.2. Wavelength Calibration

In order to do the wavelength calibration we started from the XIDL Th-Ar calibration. XIDL takes Th-Ar wavelengths that have been transformed from vacuum values to air values so that lines can be identified. Using these identified lines a polynomial is overlayed on the full 2D spectrum. The wavelength scale found is then transformed back to vacuum values using the inverse Edlen formula.

\(^1\)http://www.ucolick.org/xavier/IDL
\(^2\)http://www.ucolick.org/xavier/HIReduc/HIRES4doc.html
After finding the Th-Ar wavelength scale we use our iodine measurements with two similar but independent methods to recalibrate. In both methods we convolved the high signal/noise iodine spectrum measured at KNPO (Butler et al. 1996) with a Gaussian and then minimized the \(\chi^2 \) of the difference between this convolved spectrum and the PHL957 spectrum shifted by an amount \(\text{cal} \).

In the first method a 3-parameter fit was performed in each wavelength bin of the PHL957 spectra, with bin sizes from 1 to 10 Angstroms being used. The fit returned the wavelength shift, \(\text{cal} \), the sigma of the convolution Gaussian, as well as a multiplicative continuum offset set and the formal errors of these quantities. Using this method, regions of the PHL957 spectra that had strong lines were not included in the fit since these could distort the results; a linear interpolation of bins on either side of the line region was used to aid a correction at the line center.

Using the second method, strong lines in the PHL957 spectra were cut and subtracted from the data before differencing with the convolved iodine spectra. This allowed direct determination of a wavelength correction even at line centers (except for saturated regions which are removed as above). Also, in the second method rather than fitting for both \(\text{cal} \) and the convolution sigma in each wavelength bin, a rolling 5 to 10 Angstrom bin iterative method was used that found the wavelength correction for each data point and also the one best convolution sigma for the entire echelle order. We also tried setting the sigma of our Gaussian convolution kernel to the resolution expected from the physical setup of the telescope, \(R = 50,000 \). This sigma was consistent with but slightly smaller than the sigma we found by fitting, but the wavelength offsets found either way agreed to within errors. In this method the errors in the wavelength calibration were found from the values of \(\text{cal} \) that caused the \(\chi^2 \) to increase by 1.

The methods of finding the continuum of the FTS iodine spectra were also somewhat different for the two methods. In the first method we used the highest flux value in a variable size wavelength bin as the continuum value. In the second method, we averaged the three largest flux values (and their corresponding wavelengths) in each one Angstrom bin, and then set the continuum by tting a spline.
through these averaged points.

Determining the continua of the PHL957 spectra taken with the iodine cell is difficult because of the large number of unresolved overlapping iodine lines. The first method used a 4th order polynomial to the set ux values within 2-sigma of the highest ux found over a certain wavelength range. The second method found the PHL957 continuum using a standard continuum fitting program, thus probably underestimating it. Because of this underestimate, we repeated our analysis using several different possible continua and discovered that our nal wavelength calibration results were robust for all plausible PHL957 continua.

A comparison between the results of the two methods showed agreement in with errors, and also good agreement in the reported errors on . We also tried a method that used a cross-correlation between the FTS and PHL957 spectra, which also worked, but did not seem as accurate as either of the other two methods.

We will use the results of our second method throughout the rest of the paper. Our nal recalibration shift data is obtained with a 5-Angstrom box to reduce tting noise.

Figure 3 compares a small portion of echelle order 67 of PHL957 with the convolved and shifted FTS iodine cell spectrum.

Note that the Th-Ar calibrated spectra used as input to our recalibration pipeline should not include the standard Keck H R E S heliocentric correction that accounts for the Doppler shift from the changing motion of the Earth around the Sun. We recalibrate in the lab frame, and then make our own, more accurate, solar system barycentric motion correction using the code developed by Marcy and Butler (2008). This barycentric correction should be good to better than 1 m/s.

We found that the accuracy of the wavelength recalibration as measured by our calculated error depended strongly on the size of the bin used for the convolution. Thus we report values from a 10A bin analysis as a compromise between small uncertainty and constancy of the wavelength calibration over the width of a single bin.

Figure 4 shows an example (exposure 3-1) of the resultant wavelength recalibration shift over the entire wavelength range for which we have both QSO and FTS iodine spectra. This figure is a major result of this work.

We see several interesting effects. First, the size of the shift is significant; typically from 500 m/s to 1000 m/s corresponding to a substantial fraction of a CCD pixel (roughly 1300 m/s/pixel or 0.023A/pixel at 5300A). Contrast these systematic velocity errors with an expected shift of 136 m/s between Fe II 1608 and Fe II 1611 due to the — claim described in the introduction. We note previous workers have found similar Keck H R E S shifts of 1000m/s or larger (e.g. page 734 of the night airglow line paper by Osterbrock et al. 2000), and Figure 4 of Suzuki et al. 2003) but this does not seem to be widely appreciated.

Second, there is a clear pattern seen in each echelle order, with the shift increasing from the edge of each order and reaching a maximum near the middle. For the purpose of ensuring — it is not the overall shift discussed above that is important, but the relative shift between the transitions being compared. Depending on the echelle order Figure 4 shows relative shifts of 300 m/s to 800 m/s within the same order. These shifts could be dangerous since, depending upon the lines being compared, they could result in a systematic relative velocity shift between lines, thereby mimicking a changing .

Next, we are interested in how this wavelength recalibration shift varies with time. Thus, Figure 5 shows a more detailed look at echelle order 67 which contains the Fe II 1608/1611 lines. In the figure, different lines are the recalibration shifts for each of the 17 exposures that used the iodine cell and are labeled by their ID’s, e.g. 3-0 is the first exposure of PHL957 taken on 10 Oct-3-2004. See Table 1 for more details.

We note that each exposure has a similar, but not identical shape as a function of wavelength, and that there is a different wavelength offset for each exposure. While the variation over this order for each exposure is typically 500 m/s or less, the shift between different exposures can be as much as 2000 m/s. This means that the Th-Ar wavelength calibration that gives us the wavelength solution as a function of pixel, is not stable and drifts with time.

It is of interest to note that recalibration offsets between nights are in general larger than the drifts during each night. One sees that on Oct 3 and
Fig. 3. A small portion of echelle order 67 of PHL957 (thick line) compared with the convolved and shifted FTS iodine cell spectrum (thin dashed line).

Fig. 4. Wavelength correction over entire wavelength range for exposure 3-1 of PHL957. The shift is between the standard Th-Ar wavelength calibration and the wavelength scale found by fitting to the FTS iodine spectrum. The echelle order is marked.

Fig. 5. Time evolution of iodine cell wavelength recalibration shift for echelle order 67. Each line is labeled by the day-observation number, with the solid line being the exposure taken earlier in the night.
4, when the iodine cell exposures were taken one after the other, the shift during the night was substantially smaller than the inter-day shifts, while on Oct 5, when there was three hours between iodine cell exposures, there was a larger shift.

Figure 4 is probably more in portant than the previous figure, since it shows that the Th-Arc calibration is not stable over time. If the wavelength shifts shown in Figure 4 were stable in time, they could be removed and would have little effect on the measurement of . But large systematic wavelength shifts during the night mean that measurement errors at the desired level of precision may be difficult with Th-Arc calibration alone.

It is important to note that even though some calibration errors reported here are much larger than the final velocity precision needed to determine , it is possible that these calibration errors average out and do not ruin the final determination. In the multipl method, any differential line is compared across all differential absorbers at any differential mesh. If the signs of the calibration errors are random, the calibration errors may average away. A complete discussion of this possibility is beyond the scope of this work, but will be presented elsewhere.

2.3. Understanding the Calibration Shifts

We made some preliminary attempts at understanding the causes of these unexpected wavelength calibration shifts. While some understanding of the causes and exploration of methods to correct for the shifts are beyond the scope of this paper, we report some ideas and preliminary results here. We hope to use additional data and analysis to nd a more complete understanding, which will then be published elsewhere.

First, it is interesting that during all three nights the shifts become more negative at about 500 m/s per hour. Thus we plotted the shifts vs time, and also vs. the various temperatures, etc. that HIRES reports. With only six iodine exposures it is difficult to discern a pattern and impossible to prove a pattern exists, and in fact we did not see any fully convincing trends.

The best partial trend is a decrease in calibration shift with Tempin, where Tempin is the difference in HIRES enclosure temperature between when the Th/Arc calibration exposure was taken and when the QSO exposure was taken. We plot this trend in Figure 4, where the QSO exposures are shown as asterisks and individually labeled. The data is given in Table 1. We see that the trend is badly broken by the 4th exposure on Oct 5 (5-3 or ID 2097), which originally led us to discount that exposure as the main culprit. However, we have some exposures of a star (HD 209833) taken the same nights through the iodine cell, and we plot the calibration shifts vs Tempin for them as small boxes. The complete analysis of these star exposures is beyond the scope of this paper, but we see that they fall on the same trend line, suggesting that exposure 5-3 seems to be an exception.

Next, we check whether or not the echelle gratings were moved between the time of the Th/Arc exposure and the QSO exposure. This is shown in Table 1. We see that only on Oct 3 (exposures 3-1 and 3-2) were the gratings not moved between Th/Arc calibration and the QSO exposures. In Figure 6 we see that the dispersion of exposures 3-1 and 3-2 from the trend line is smaller than for exposures 4-1 and 4-2. Exposure 5-0 is near the trend line, but of course 5-3 is way off, probably for some other reason. Thus we see a weak hint that moving the gratings between Th/Arc calibration and science exposure can cause a calibration error.

To understand the problem with exposure 5-3, we note that a different Th/Arc was used for 5-3 than for the other iodine exposure (5-0) taken that night. To check whether something went wrong with the arc exposure (ID = 2107) used to calibrate 5-3, we redid the iodine recalibration using arc exposure 2026, taken much earlier that same night. This point is also plotted in Figure 6 as a labeled triangle. The point shifts substantially, but keeps the same (large) distance from the trend line.

Thus we see that while temperature surely plays an important role and a correction perhaps can be made for this, there are other parameters that seem to be important, not all of which are understood at this point. Moving the gratings between Th/Arc and science exposures may increase the calibration error. In what follows we will not attempt to use the temperature trend to make any correction, though in future work this might be possible.

We note that other contributions to the calibration shifts are possible. N. Suzuki (private communication) suggested that the cause could
be that the HIRES spectrograph is mounted at a small angle with respect to the optical axis, so that the light path rotates as the telescope moves, resulting in variable vignetting in comparison to light from the Th-Ar lamp which is fixed to the spectrograph. Moreover, the optical path of the Th/Ar calibration light diverges from the optical path of the QSO light resulting in different wavelength to pixel mapping. P. Molnar (private communication) suggested that the cause could be the changing position of the QSO in age centroid in the slit. We hope to check this with additional exposures at a future date. M. Murphy (private communication) suggested that the cause could be temperature and pressure differences between the Th/Ar calibration exposures and the data exposures, as well as the resetting of the echelle gratings. The analysis presented above was, in large part, motivated by the comments of M. Murphy.

It would be useful to study and understand these wavelength calibration shifts, perhaps by analyzing other data, since it might then be possible to model and remove them. This will be pursued in more detail elsewhere.

Overall, the wavelength calibration errors reported here may seem to be a remarkable result, but we note that Osterbrock et al. (2000) recalibrated the Keck HIRES Th-Ar tube wavelengths using several night sky airglow lines and found similar (0.05 Å) calibration errors. In addition, both the magnitude and time variation of these shifts were detected using Ly alpha forest lines by Suzuki et al. (2003).

It is interesting to ask whether sky lines themselves could be used to calibrate the QSO spectra without use of the iodine cell. In fact, the current version of MAKEE data reduction pipeline includes an option to calibrate using sky lines. We used our iodine method to check on the wavelength accuracy of the MAKEE sky line calibration, but still found substantial wavelength shifts both within and across Echelle orders, and as a function of time.

2.4. Use of the Calibration

Our original hope was that if there would be a time-stable wavelength calibration found from the iodine cell exposures then that then could be applied to all the exposures. When the iodine cell

Fig. 6: Iodine recalibration shift v_{shift} vs Tempin for the PHL957 iodine exposures (labeled asterisks), and a star HD 209837 (small squares). The shift is the single best wavelength recalibration shift for echelle order 66 found by our iodine line fitting program. The quantity Tempin is the temperature inside the HIRES enclosure measured during the Th/Ar arc calibration exposure minus the same temperature measured during the data exposure. The solid trend line, $v_{\text{shift}} = 2459 \, \text{Tempin} + 853$, is a fit to the points excluding QSO exposure 5-3. Exposure 5-3 appears to be labeled by which Th/Ar calibration arc was used.
is in place we get well-calibrated wavelengths, but substantially less S/N. This is because iodine lines cover basically the entire spectrum, decreasing the number of photons, adding spurious components to line setting programs, and also making the continuum difficult to determine. So, it is the exposures without the iodine cell that carry the highest signal/noise and that we wish to use to test for a changing alpha. Since again, as Figure 5 shows, the wavelength calibrations vary substantially over the course of a night, it is not clear how to use the calibration in our ts. We tried several methods before settling on the following: 1) for exposures taken with the iodine cell we add the wavelength recalibration correction to each wavelength output by the standard HIRES pipeline. 2) For exposures taken without the iodine cell, we interpolate/ extrapolate the wavelength correction using the two iodine exposures nearest in time, and assuming that the correction changes linearly with time. 3) We then add the barycentric correction to every data point.

At this point we have wavelength corrected spectra that can be t. We can either add the spectra for each order together (rebinning since the spectra are no longer on a common wavelength scale) or just combine and sort the data files for each order together giving more measurements to be t.

We can check the effect of our recalibration by seeing how well sharp features in the spectra line up. For example, Figure 7 shows a close-up of the left edge of the saturated Fe II 1608 line before and after iodine recalibration. The panel labeled 'Th/Ar' (a) shows an overlay of the six iodine exposures calibrated with the standard HIRES pipeline, while the panel labeled 'Iodine' (a) show the same after our recalibration. The features line up significantly better after recalibration; spreads of more than 2000 m/s become significantly less than 1000 m/s.

The other two panels show overlays of the seven exposures taken without the iodine cell. The panel labeled 'Th/Ar' (b) is again the result from the standard HIRES calibration, while the panel labeled 'Iodine interp' (b) shows the same seven exposures, but recalibrated using the interpolation scheme described above. For the non-iodine exposures, there is some proven ent in aligning of the line edge, but not nearly as much as for the li-

Fig. 7. Close-ups of the left edge of the Fe II 1608 line for observations taken on October 3 (black), October 4 (blue), and October 5 (red). The panels labeled 'Th/Ar' show results from the standard Th/Ar wavelength calibration, while the panels labeled 'Iodine', or 'Iodine interp' show results after recalibration with the iodine cell. The two panels labeled (a) are for the 6 exposures with the iodine cell in place, while the two panels labeled (b) are for the 7 exposures taken without the iodine cell, but recalibrated either using the iodine lines (upper panel) or using interpolation as described in the text (lower panel). The extra bumps in the (a) panels are iodine lines, and the first part of the spectrum in exposure 5-0 is missing due to a cosmic ray. The iodine lines do not line up because of the barycentric correction needed for PHL957.
dine exposures. Here spreads of 1000 m/s or more seem to remain even after recalibration.

Since for signal/noise and fitting reasons, we must use mainly the non-iodine exposures, it is disappointing that our efforts to recalibrate may not pay off. Our inability to model the calibration shifts between iodine exposures seems to be the main culprit.

3. Fitting the Data

In what follows, we mostly just combine the recalibrated continuum subtracted spectra for all non-iodine exposures into one large one, and then sort by wavelength and t. In some cases we rebin the data combining several data points and adding the errors in quadrature, and in some cases we just use the co-added spectra from the standard H R E S pipeline. We treat the data from 2002 separately since it was taken on a different CCD chip. We also treat the data with and without the iodine cells separately since the iodine lines add significant effective noise to the PHL957 spectra.

3.1. Voigt profile fitting

We fit the spectra using a code we developed based upon the CERN library MINUIT minimization program and the humdev Voigt profile calculation routine (Wells, 1999). We compared our results with those of VPFIT (Carswell et al. 2008) and DUDE (Kirkman et al. 2003) and found agreement for individual lines. Using our own code allows us easily to do joint fits with the redshifts of transitions varying independently and also allows us to add additional parameters as needed. Figures 8 and 9 show results for several transitions for the combined 2004 data. The t parameters are the redshift, the line width (b-value), and the column density. We note that several of the lines are saturated, making wavelength centroiding more difficult and less accurate.

3.2. Limit on precision of

The S/N of each 2004 non-iodine spectra is approximately 25 per pixel, giving a total S/N for the 7 non-iodine exposures of about 70 per pixel. The individual iodine exposures have a S/N of around 19 per pixel for a co-added total of about 47 per pixel, though the iodine lines cause the effective S/N to be lower than this. The co-added 2002 data

Fig. 8. Voigt profile fitting results for several PHL957 lines using our fitting code. The velocity components are marked. These are unconstrained fits for each line so the velocity components of various transitions are not forced to agree with each other in these plots.
have S/N approximately 42 per pixel. Our total signal/noise is thus quite high for a high redshift object, and we want to first estimate the minimum possible error on — that could be obtained with these spectra.

To do this, we use a Fisher matrix type method suggested by Murphy, Webb, and Flambaum (2006), and Bouchy, Pepe, and Queloz (2001). For continuum normalized flux spectrum \(F(\lambda) \) with 1-sigma error array \(\epsilon(\lambda) \), the minimum possible uncertainty in velocity contributed by pixel \(i \) is:

\[
\nu(\lambda_i) = \frac{\epsilon(\lambda_i)}{\sigma(\lambda_i)};
\]

(2)

Thus more precise velocity measurements come from pixels with large flux gradients and small errors. The minimum possible uncertainty in the velocity of a portion of spectrum is thus:

\[
\nu = \sqrt{\frac{\sum \nu(\lambda_i)^2}{\nu^2}};
\]

(3)

where the sum is over pixels. Finally, the minimum uncertainty in can be found by performing a least-squares fit to a version of Equation 4:

\[
\nu_j = \nu_0 + \nu_j \times_j + \sigma_j \nu_j;
\]

(4)

where \(j \) numbers the lines that are being compared, \(\nu_0 \) is a constant set (degenerate with the system redshift), and the minimum error in — is just the uncertainty in the slope of this linear equation.

Murphy, Webb, and Flambaum (2006) performed this analysis for their data and for the data of Chand, et al. (2004), and Levshakov, et al. (2006), finding that while their own errors were (barely) within the allowable minimum, the reported uncertainties of the others were smaller than the minimum possible. The corrected version of the Levshakov results (Molaro, et al. 2008) does seem to be in agreement with the minimum error in it.

We would like to perform such an estimate, but first note that previous estimates of minimum errors did not include uncertainties in the \(q \) values. Table 2 shows that these uncertainties can be significant, and inclusion of these uncertainties will increase both the Fisher matrix minimum errors and also the error on —. One can include these

Fig. 9. Voigt profile fitting results for several PHL957 lines using our fitting code. The velocity components are marked.
uncertainties, \(q(j) \), in the \(t \) and obtain a more realistic minimum error estimate. In this case, rather than a simple linear least-squares \(t \) one must use a method that allows errors in both the ordinate and the abscissa. Since the uncertainties in \(q \) are theoretical estimates and not systematic errors, this method is not technically completely consistent, but it should give a reasonable idea of the size of the effect. As we noted below, the smallness of the claimed values for \(q \) imply that the uncertainties in \(q \)-values are not very important.

Table 2 shows the minimum values of \(\nu \) for the portion of the combined 2004 spectra containing each of the transitions that have a calculated \(q \)-value. These results were calculated using co-added spectra from the standard XIDL HRES pipeline that did not include the iodine cell wavelength recalibration; this simplies the calculation but has little effect on these minimum error results.

The values range from 25 m/s for the strong Fe II 1608 line to 153 m/s for the weak lines such as Fe II 1611. It is interesting to note that the minimum velocity precision obtainable with our data seem to be sufficient to measure the shifts predicted by a changing value of \(q \) at the level claimed by Murphy et al. (2003). However, we also see that the weakness of the Fe II 1611 line means that the precision obtained from using only the Fe II 1608/1611 pair may not be good enough for this purpose.

One can combine all these minimum \(\nu \) values using Equation 3 to get an overall minimum velocity error, but since \(q \) is determined by differences in redshifts this is not appropriate. If one just wanted to determine how accurately the redshift of the entire system could be determined, then one could combine the minimum errors in Table 2 to \(\nu \) (m in)(all) \(= 13 \) m/s. If we included only the lines for which we have iodine cell calibration the result is \(\nu \) (m in)(calib) \(= 15 \) m/s. The 2002 data alone would give 38 m/s precision, which if combined with the 2004 data would give an ultimate velocity precision of 12 m/s. Of course, as discussed below there are several important systematic errors that greatly increase these uncertainties.

Next we perform the least squares \(t \) to nd minimum possible errors on \(q \) from this data and display the results in Table 3. These uncertainties, e.g. \(1.2 \times 10^{-6} \), are reasonably consistent with errors quoted by Murphy et al. (2001a; 2003; 2004), with Chand et al. (2004), and with Levshakov et al. (2006). We again note that the latter two groups seem to have produced measurements of \(q \) with errors smaller than their minimum possible errors, something Murphy, Webb, and Florin (2006) have criticized, and which Levshakov et al. subsequently corrected (Molaro, et al. 2008).

We note that minimum possible error coming from analysis of the Fe II 1808/1611 pair is \((\pm 6.2 \times 10^{-6})\), substantially less precise than could be found using several lines. As mentioned this is mostly because the Fe II 1611 line is so weak (due to its rather low oscillator strength) and thus its redshift cannot be measured very precisely. Therefore, our original idea of using just these two lines is probably not that useful. In addition, examination of the lines shows that it is only the saturated regions of the Fe II 1608 line profile that are detectable in the Fe II 1611 line profile. Thus a joint \(q \) cannot accurately recover their relative velocity offset. It seems it is better to compare strong lines with other strong lines, and weak lines with other weak lines. We do this in the following section.

We can also test the importance of the uncertainties in \(q \) listed in Table 3, by doing a linear \(t \) that allows errors in both the abscissa and ordinate. In this case, the resulting minimum error depends upon the \(t \) value of \(q \), that is, the slope of the line given in Equation 4. This is to be expected since if \(q = 0 \), it does not matter what the values of \(x \) are, while if there is a large slope then uncertainty in \(x \) will propagate to uncertainty in \(\nu \), and therefore uncertainty in \(q \). A simple way to estimate the increase in \(q \) uncertainty is to just do this propagation of errors, that is, change:

\[
\frac{2}{\nu} \cdot \frac{2}{v} + \frac{2}{q} = \frac{2}{q}
\]

where \(x = 2q \cdot c \circ q \). The results of this error propagation are also shown in Table 3 for the M urphy, et al. (2003) value \(q = 5.4 \times 10^{-6} \). We note that because the slope \(q \) is small, the increase in uncertainty is also quite small, notably around 14\% depending on the set of lines used. Thus previous workers who ignored this effect are not making a large underestimation of
their uncertainties and limits. Because of the smallness of this effect, we will not consider the uncertainty in q in what follows.

It is important to realize that the minimum possible errors discussed above are never reached in a real observation for several reasons as follows:

1. As extensively discussed in Murphy et al. (2008, section 2.2.2), com parison between transitions with different degrees of saturation will give velocity uncertainties derived from Voigt profiles substantially greater than the Fisher matrix \min. This is because velocity precision coming from the sharp edges of the saturated profiles cannot be directly compared with the central regions of unsaturated profiles. Especially in multicomponent system s, this will result in degeneracy between the component t parameters, and make the redshift determination of any one component less accurate. This is evident when the covariance matrix \min for one of our 5 component t is examined. We see strong correlation between the redshifts of the various components and between these redshifts and various other parameters such as the b-values.

We can investigate this effect directly in our data by comparing the six component error t errors with the minimum errors calculated above. For example, a 5 component t of the saturated Fe II 1608 line using the co-added data gives a minimum possible redshift error of 33.4 m/s, while the fitting program returns an error of 184 m/s on the strongest component.

For Si II 1808, an unsaturated line, the effect is smaller but still pronounced: 32.6 m/s minimum error vs. 55 m/s result. We note that the minimum errors found from using formulas 2 and 3 on the individual exposures are quite consistent with the minimum errors found from the co-added data. For 3-component t to Fe II 1608 we find 32.6 m/s for co-added data, vs. 27.4 m/s from combining all 7 non-kodak cell exposures. For Si II 1808 the com parison is 50.4 m/s from the co-added component, vs. 49.9 m/s for individual exposures. Note that errors returned from the software are actually also overly optimistic because:

2. as discussed above there are other sources of error such as wavelength calibration,

3. the errors on the νx are not really Gaussian which means that larger than Gaussian deviations occur,

4. it is very difficult to determine the number of components needed to each transition, especially for saturated, or nearly saturated lines. The formal error returned on a component redshift does not include the possibility of another component, which may be apparent in some transitions and not in others. The $^{2}\text{ surface}$ can have several local minima, and small measurement errors can switch one between needing another component and not needing another component. Since it is the difference between component redshifts that is used to determine v, this can be a source of systematic error. For example, we find example where a region of a spectrum was found slightly better by two nearby components than by a single component, but the redshift of the components in the two cases shifted by around 1500 m/s, a value large compared to what is expected from νx. Murphy et al. (2008) investigated this effect in detail (see their Figure 7) and found that while this effect does exist if the the number of component is less than the true number of components, this systematic error is greatly reduced if the number of component is equal to or greater than the true number of components.

3.3. Fitting for v: simple method

We tried several methods of deriving a value of v from our Voigt profile ts. The simplest method is to do each of our N lines independently, and then do a least squares linear fit of Equation 4. The value of v_j can be found from

$$v_j = c = (z_{\text{ave}} - z_j)(1 + z_{\text{ave}}); \quad (6)$$

where z_{ave} is the redshift obtained by averaging over all the transitions detected in a given velocity component. The result of this simple direct method for component 1 is the line with the largest column density of the 9 lines for which we have both q-values and an iodine spectrum is shown as the solid line in Figure 10. Here we plot $v_1 = 2q_0 c_{0j}$ vs. the wavelength corrected velocity ν_{cor} for each line, as well as the best linear fit for the 9 lines (solid line) and the best linear fit for the 5 unsaturated lines, that are singly ionized (dashed line). For component 1 of the 9 lines, the slope is $S_1(\text{component 1}) = (186 \pm 63) \times 10^{-6}$, with $\nu^2 = \text{dof} = 264$, from a very strong detection, inconsistent with other measurements. For
component 1 and the 5 lines, the slope is \((\text{component 1}) = (4.5:9:3) \times 10^6\), with
\[2=\text{dof} = 1.09, \text{ form a null result consistent with, but much weaker than results in the literature, and a factor of 3 worse than the minimum possible error listed in Table 3.}

However, we do not believe either of these results. If a changing structure were the explanation for the variation in values of \(v_{\text{cor}}\) in the 9 lines, then the points in Figure 10 would lie on a straight line within errors. We see from the figure and from the terrible \(2=\text{dof}\) that this is not the case. When the goodness of \(t\) to a model is very bad, it means that the model is incorrect or that there are systematic errors not included in the data uncertainties. In such cases the errors derived from the \(t\) cannot be trusted, and a better way to estimate the uncertainty is to increase the errors on the data points until \(2=\text{dof} > 1\). Doing this for the 9 line \(t\) gives \((\text{component 1}) = (186:102) \times 10^6\) \((2=\text{dof} = 1.01)\), a null result with a more realistic error estimate, but far from the sensitivity we expected from our data.

Another way to see that the first result above is meaningless is to do the \(t\) including the errors in \(q\). This gives an entirely different answer which is also a terrible \(t\). However, when the errors are scaled as above, this \(t\) then gives nearly the same result as above but with larger errors.

The problem with the 9 line \(t\) seems to be the saturated lines Fe II 1608 and Al II 1670, as well as the aluminum lines Al III 1854 and 1862. Since Al III is in a different ionization state than the other ions, it might exist at a different physical location, and so maybe should be left out of the \(t\). We want to discuss in more detail the saturated lines that are far from the others, but before doing that we note that this pattern repeats also in the \(x\) vs. \(v_{\text{cor}}\) of the 2nd strongest component, the results of which are given in Table 4.

The redshifts of the first components of the Fe II 1608 and Al II 1670 lines differ from the dashed 5 line \(t\) by about \(z = 5 \times 10^5\). Some insight into possible reasons for this can be gained by noting that if we force this component of Fe II 1608 to be the same as the average of the unsaturated transitions, we also get a completely satisfactory \(t\) to the Voigt profile:
\[2=\text{dof} = 1495/7 = 213 = 395 \text{ for the free } t,

Fig. 10. Linear template method to find the strongest component of 9 calibratable lines and non-ion line spectra. The solid line is the best for all 9 lines, while the dashed line is the best for the 5 singly ionized unsaturated lines. The slope of the 9 line \(t\) is \((186:6:3) \times 10^6\), and the slope of the 5 line \(t\) is \((4.5:9:3) \times 10^6\).
and $^2 = \text{dof} = 1503.4 = 1496 = 1004 (Q = 0.43)$ for the 3 component t with one redshift forced to the average value. The reported formal errors on these redshifts are $\sigma = 4.4 \times 10^{-7}$, substantially smaller than the difference between the free t and the forced t. Thus we see another possible source of error in determining σ. The formal t errors seem to underestimate the true range of acceptable redshift values, and therefore overestimate the precision with which σ can be determined by this method. We note that when we force the redshift of the first component of Fe II 1608 to agree with the other lines, the 2nd and 3rd component also come into alignment. Thus there is a degeneracy where the redshift and b-value of one component can play the redshift and b-values of other components. Another way this can be seen is from the fact that the value derived for σ depends greatly on the error reported for the Fe II 1608 redshift. Figure 10 shows that the linear t for σ is driven by the tiny error on the Fe II 1608 redshift. Increasing that error by a factor of ten (to roughly equal the errors on the other redshifts) changes the value to $\sigma = (93 99) \times 10^{-6}$.

Exam ination of the Al II 1670 line shows a similar problem; again the line is saturated and in this case there are certainly more than 3 detectable components. We are only allowing 3 total components so that we can compare component to component across other transitions where only 3 components are detectable, but the fitting program can nd different nearly equivalent ways to t the line to 3 components since saturation means less shape information is available.

While the effect is largest for the saturated lines, we nd the same effect for the Al III 1864 and Al III 1862, unsaturated lines, where there are only 3 detectable components. Here again while the best t redshift is far from the others, we can get a component t acceptable t to the Voigt profile ($^2 = \text{dof} < 1$) even while forcing the first component to the average. Again, when one component is forced to agree, the other components then also agree.

Thus, we note a systematic error that can give trouble in this type of tting. When a system has two (or more) components nearby in redshift space, there can be a near degeneracy where the two redshifts can play the other, moving sig-ni cantly at the level of precision we are after, but yet still giving very good Voigt profile t.

Note that a linear t to the 5 line set that includes the t errors gives nearly the same answer as shown by the dashed line in Figure 10. This is to be expected since the slope of the line, σ, is small.

We can repeat the above analysis for the 2nd and 3rd strongest components. The results are given in Table 1 for various sets of lines. In these cases we mostly nd null results such as $\sigma = \text{dof} = 92$ for all nine lines. This is because the lower column densities mean larger formal t errors.

There are additional components detectable in some of the lines, but they are much weaker and do not contribute much. To get a nal answer using this method one could average the above results, which actually gives a result with larger formal error than from the rst component alone, again showing that systematic errors are dominating this procedure.

3.4. Fitting for σ: many parameter joint t

The above method, while useful for showing errors arising from tting degeneracies, is not really correct because for it to work one must match the various components t in different lines in order to properly compare their redshifts. As noted, these tting degeneracies allow the redshifts of two nearby components to be traded against each other and against the b-values, resulting in correlations that cause the uncertainty in the component redshifts to be larger than the formal t errors.

More properly, one should do a large joint t for all system components simultaneously, that is tie together the different velocity component. This is standard practice and is used by Murphy et al., Chand, et al. Levshakov, et al, etc. Thus, for example, the t to the 9 lines above by the previous method used a total of 81 parameter redshift, column density and b-value for each of 3 components of each of 9 lines. A global joint t might have 9 parameters for the redshift, column density, and b-value of each of 3 components, plus some column density offset sets to allow
for different elemental abundances (1 parameter per component per additional element or 12 including Fe II, Ni II, Si II, and Al II and Al III). An additional b-value set is probably necessary for each component of the Al III lines since these are in a different ionization state (3 more parameters). Then adding — as a null parameter, there would be a total of 25 parameters.

The results of such a global joint fitting method are shown in Table 4 for various sets of lines. Table 4 shows that results with vary over a wide range of values, from significant detection \(\equiv = (0.07 \pm 0.39) 10^6 \) for the Fe II 1608/Fe II 1611 pair, to a null result \(\equiv = (0) \) for the nine-line t. Looking over all the results in Table 4 we see that both the method used and the lines selected can make a significant difference in the final result. If our errors were under control, this should not be the case. Note that in most cases, the errors for the global method hover around 4 \(10^6 \); roughly half the errors of around \(10^6 \) found in the simple method described in the previous section. In Table 4 we display the Voigt profile components that resulted from one of our joint global fits.

3.5. Fitting for —: VPFIT global joint t

One might worry that the puzzling results we obtained from errors in our fitting program, so as a null check, we did our calculation of — using the new version of VPFIT (Carswell et al. 2008) which includes the possibility of doing a global joint fitting for —. These results are also shown in Table 4. For the 6 line set (Fe II 1611/1608, Ni II 1709/1741/1751, Si II 1808) we studied above we nd \(\equiv = (9 \pm 7.7) 10^6 \) \((2=di f f = 3; Q = 10^{139}) \), while for the set of all 16 lines we nd \(\equiv = (17 \pm 10) 10^6 \) \((2=di f f = 6; Q = 0) \). Both these results are within the range found by our di erent fitting methods.

4. Discussion

We tried and failed to give a de nitive answer to the question of whether the structure constant was di erent at early times in high redshift Ly alpha systems. In order to investigate this problem in detail we used data taken through the Keck iodine cell and wrote our own fitting software from scratch. Using the iodine cell for wavelength calibration we found a serious source of systematic error that did not allow calibration of the Keck HIRES spectrophotometer to the precision needed. We also found degeneracies in the fitting procedures that added to the calibration systematic errors.

Due to all the systematic errors we were able to derive various results, running from very signi cant detections, to strong null limits. Does this imply that a meaningful measurement of or limit on — is impossible using Keck HIRES? It is not clear. Perhaps more careful attention to Voigt pro le fitting, as advocated by M. Murphy (private communication 2008) will solve the degeneracy problem. Perhaps a careful selection of absorbers would also help, or trying to focus on system sw with a single component. Perhaps the wavelength calibration errors we discovered can be corrected, or perhaps they will average away if a large sample of absorbers is considered. In this paper we raise these questions, but do not answer them.

We also used a Fisher matrix technique to invest agent the minimum possible errors in — that our spectra’s signal/noise would allow. We found our t results did not exceed these limits. For example, for the set of 9 lines used in most of our analyses, the minimum possible error on —, as given in Table 4, is 2.52 \(10^6 \), a result consistent with our t results. Since the calculation of minimum possible errors is not di cult, we suggest that workers always calculate them and never report results with uncertainties smaller than the data theoretically can allow.

While we have not yet looked carefully at data or analysis done by other workers in the eld, we worry that some of the systematic errors and over estimation of precision we found here may also be present in other analyses. Thus one possible explanation for the discrepant ndings on — discussed in the introduction, is that several workers in the eld are overestimating the precision of their measurements and the discrepancies reported in the literature are due to random uctuations occurring within the larger, under-reported, systematic errors.

At this point it is not clear how to make further progress in this subject using Keck HIRES, but other techniques such as frequency combs (Steinmetz et al. 2008) may become available and be of use in resolving the question. In addition, pro-
posed new instruments (e.g., CODEX for E-ELT or ESPRESSO for the VLT) are being designed for Doppler measurement stability and will hopefully be free of these problems.

We thank David Kirkman, Bob Carswell, Marc Rafeiski, Joel Heinrich, John Johnson, and Michael J. Simmons for helpful discussions. We especially thank Michael Murphy for many insightful comments, suggestions and questions, including several that led to corrections of errors in early versions of this paper. Finally, we thank Nao Suzuki for discussion of an early version of this paper where we discovered that he had already understood and published several of the points made here.

K.G. and J.B.W. were supported in part by the DoE under grant DE-FG-03-97ER40546. J.X.P. is partially supported by an NSF CAREER grant (AST-0548180), and J.X.P. and A.M.W. are supported in part by NSF grant (AST-07-09235). The W.M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous nancial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very signi cant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

REFERENCES

Barlow, T. 2002, MAKEE Keck Observatory H I RES Data Reduction Software (Pasadena: Caltech) [http://spider.ipac.caltech.edu/sta tab/makee/index.htm]
Dzuba, V.A. & Flambaum, V.V., 2008, astro-ph/0805.0461v2
Murphy, M.T., et al., 2001a, M N RAS, 327, 1208
Murphy, M.T., Webb, J.K., Flambaum, V.V., Churchill, C.W., Prochaska, J.X., 2001b, M N RAS, 327, 1236
Murphy, M.T., Webb, J.K., and Flambaum, V.V., 2003, M N RAS, 345, 609
Murphy, M.T., Webb, J.K., and Flambaum, V.V., 2008, M N RAS, 384, 1053
Pozzetti, S.G., et al., 2007a, Phys. Rev. A 76, 052507
Table 1

<table>
<thead>
<tr>
<th>Date</th>
<th>ID</th>
<th>Iodine Cell?</th>
<th>Time (UT)</th>
<th>Exposure (s)</th>
<th>Temp in° (°C)</th>
<th>Arc ID</th>
<th>Arc Time (UT)</th>
<th>Moved?</th>
<th>Temp in° (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 nov 02</td>
<td>33</td>
<td>out</td>
<td>5:26</td>
<td>1800</td>
<td>3.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>34</td>
<td>out</td>
<td>5:58</td>
<td>1800</td>
<td>3.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>35</td>
<td>in</td>
<td>6:30</td>
<td>1800</td>
<td>3.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>36</td>
<td>in</td>
<td>7:01</td>
<td>1800</td>
<td>3.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>47</td>
<td>out</td>
<td>7:48</td>
<td>1800</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>48</td>
<td>out</td>
<td>8:10</td>
<td>1800</td>
<td>3.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>49</td>
<td>in</td>
<td>9:00</td>
<td>1800</td>
<td>3.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>50</td>
<td>in</td>
<td>9:34</td>
<td>1800</td>
<td>3.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>60</td>
<td>out</td>
<td>10:04</td>
<td>1800</td>
<td>3.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>61</td>
<td>out</td>
<td>11:04</td>
<td>1800</td>
<td>3.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nov 02</td>
<td>62</td>
<td>in</td>
<td>11:39</td>
<td>1800</td>
<td>3.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 oct 04</td>
<td>67/3-0</td>
<td>out</td>
<td>9:18</td>
<td>3600</td>
<td>4.26</td>
<td>09:15</td>
<td>no</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>3 oct 04</td>
<td>68/3-1</td>
<td>in</td>
<td>10:41</td>
<td>3600</td>
<td>4.21</td>
<td>09:15</td>
<td>no</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>3 oct 04</td>
<td>69/3-2</td>
<td>out</td>
<td>11:13</td>
<td>3600</td>
<td>4.07</td>
<td>09:15</td>
<td>no</td>
<td>0.236</td>
<td></td>
</tr>
<tr>
<td>4 oct 04</td>
<td>1906/4-0</td>
<td>out</td>
<td>9:25</td>
<td>3600</td>
<td>3.00</td>
<td>11:44</td>
<td>15:35</td>
<td>yes</td>
<td>-0.135</td>
</tr>
<tr>
<td>4 oct 04</td>
<td>1906/4-1</td>
<td>in</td>
<td>10:56</td>
<td>3600</td>
<td>2.97</td>
<td>11:44</td>
<td>16:35</td>
<td>yes</td>
<td>-0.135</td>
</tr>
<tr>
<td>4 oct 04</td>
<td>1909/4-2</td>
<td>in</td>
<td>11:57</td>
<td>3600</td>
<td>3.01</td>
<td>11:44</td>
<td>16:35</td>
<td>yes</td>
<td>-0.167</td>
</tr>
<tr>
<td>4 oct 04</td>
<td>1100/4-3</td>
<td>out</td>
<td>12:58</td>
<td>3600</td>
<td>2.93</td>
<td>11:44</td>
<td>16:35</td>
<td>yes</td>
<td>-0.083</td>
</tr>
<tr>
<td>5 oct 04</td>
<td>2094/5-0</td>
<td>in</td>
<td>8:25</td>
<td>3600</td>
<td>2.87</td>
<td>20:26</td>
<td>3:01</td>
<td>yes</td>
<td>0.125</td>
</tr>
<tr>
<td>5 oct 04</td>
<td>2095/5-1</td>
<td>out</td>
<td>9:27</td>
<td>3600</td>
<td>2.86</td>
<td>21:07</td>
<td>15:46</td>
<td>yes</td>
<td>0.435</td>
</tr>
<tr>
<td>5 oct 04</td>
<td>2096/5-2</td>
<td>out</td>
<td>10:29</td>
<td>3600</td>
<td>2.91</td>
<td>21:07</td>
<td>15:46</td>
<td>yes</td>
<td>0.375</td>
</tr>
<tr>
<td>5 oct 04</td>
<td>2097/5-3</td>
<td>in</td>
<td>11:30</td>
<td>3600</td>
<td>3.62</td>
<td>21:07</td>
<td>15:46</td>
<td>yes</td>
<td>-0.333</td>
</tr>
<tr>
<td>5 oct 04</td>
<td>2098/5-4</td>
<td>out</td>
<td>12:12</td>
<td>2700</td>
<td>3.55</td>
<td>21:07</td>
<td>15:46</td>
<td>yes</td>
<td>-0.264</td>
</tr>
</tbody>
</table>

a Temperature inside the the HIREN enclosure.

b Whether or not the grating was moved between Th/Ar arc and data exposures. This exposure was also calibrated with Th Ar arc 2026; see text.

Table 2

<table>
<thead>
<tr>
<th>Transition</th>
<th>Echelle order</th>
<th>q value (m m -1)</th>
<th>m in m /s (2004 data)</th>
<th>Iodine cell coverage?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe II 1608.45</td>
<td>67</td>
<td>1030 300</td>
<td>25.0</td>
<td>yes</td>
</tr>
<tr>
<td>Fe II 1611.20</td>
<td>67</td>
<td>1560 500</td>
<td>15.3</td>
<td>yes</td>
</tr>
<tr>
<td>Al I 1670.79</td>
<td>65</td>
<td>270 6</td>
<td>34.0</td>
<td>yes</td>
</tr>
<tr>
<td>Ni II 1709.60</td>
<td>63</td>
<td>20 250</td>
<td>83.1</td>
<td>yes</td>
</tr>
<tr>
<td>Ni II 1741.55</td>
<td>62</td>
<td>1400 250</td>
<td>48.7</td>
<td>yes</td>
</tr>
<tr>
<td>Ni II 1751.92</td>
<td>62</td>
<td>700 250</td>
<td>70.8</td>
<td>yes</td>
</tr>
<tr>
<td>Si II 1808.01</td>
<td>60</td>
<td>520 30</td>
<td>36.4</td>
<td>yes</td>
</tr>
<tr>
<td>Al III 1854.72</td>
<td>58</td>
<td>458 2</td>
<td>76.0</td>
<td>yes</td>
</tr>
<tr>
<td>Al III 1862.79</td>
<td>58</td>
<td>224 1</td>
<td>125</td>
<td>yes</td>
</tr>
<tr>
<td>Zn II 2026.14</td>
<td>53</td>
<td>2488 257</td>
<td>129</td>
<td>no</td>
</tr>
<tr>
<td>Zn II 2026.66</td>
<td>52</td>
<td>1585 257</td>
<td>229</td>
<td>no</td>
</tr>
<tr>
<td>Cr II 2056.26</td>
<td>52</td>
<td>1030 150</td>
<td>89.9</td>
<td>no</td>
</tr>
<tr>
<td>Cr II 2062.24</td>
<td>52</td>
<td>1168 150</td>
<td>102</td>
<td>no</td>
</tr>
<tr>
<td>Cr II 2065.16</td>
<td>52</td>
<td>1360 150</td>
<td>143</td>
<td>no</td>
</tr>
<tr>
<td>Fe II 2344.21</td>
<td>46</td>
<td>1540 400</td>
<td>41.7</td>
<td>no</td>
</tr>
</tbody>
</table>

a q-values marked are from Dzuba et al (2001); marked from Porsey et al (2007); marked from Murphy et al. (2001a); marked from Savukov & Dzuba (2007); marked from Dzuba & Flambaum (2008).
Table 3

Minimum possible errors in...

<table>
<thead>
<tr>
<th>Line set</th>
<th>(m in) (no error in q)</th>
<th>(m in) (including error in q)</th>
<th>(m in) (no error in q; w/o 12 exposures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 16 lines (2002 and 2004 data)</td>
<td>1:17 10^4</td>
<td>1:12 10^6</td>
<td></td>
</tr>
<tr>
<td>All 16 lines</td>
<td>1:21 10^4</td>
<td>1:16 10^6</td>
<td>1:50 10^6</td>
</tr>
<tr>
<td>7 calibratable lines</td>
<td>2:00 10^4</td>
<td>2:14 10^6</td>
<td>2:52 10^6</td>
</tr>
<tr>
<td>Fe II 1608/ 1611 pair</td>
<td>6:18 10^4</td>
<td>6:11 10^6</td>
<td>6:20 10^6</td>
</tr>
</tbody>
</table>

Note. | Values are for 2004 data only and include exposures with and without the iodine cell in place, except where noted.

Table 4

Fit results for...

<table>
<thead>
<tr>
<th>Method</th>
<th>Line set</th>
<th>(-10^6)</th>
<th>(2=\text{dof})</th>
<th>Probability (Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple (comp 1)</td>
<td>the (5)</td>
<td>4:25 9:13</td>
<td>1:29</td>
<td>0:35</td>
</tr>
<tr>
<td>Simple (comp 1)</td>
<td>(5)+Fe II 1608</td>
<td>213 7:11</td>
<td>3:23</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Simple (comp 1)</td>
<td>(5)+Al III 1854/ 1862</td>
<td>6:7 9:22</td>
<td>2:2 10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Simple (comp 1)</td>
<td>(5)+Fe II 1608</td>
<td>237 6:83</td>
<td>2:48</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Simple (comp 2)</td>
<td>the (9)</td>
<td>186 6:13</td>
<td>2:64</td>
<td>0</td>
</tr>
<tr>
<td>Simple (comp 2)</td>
<td>the (5)</td>
<td>7:1 12</td>
<td>0:66</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>Simple (comp 2)</td>
<td>(5)+Fe II 1608</td>
<td>15 12</td>
<td>7:5</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Simple (comp 2)</td>
<td>the (9)</td>
<td>14 12</td>
<td>9:2</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Simple (comp 3)</td>
<td>(5)+Fe II 1608</td>
<td>25 5:1</td>
<td>3:9</td>
<td>10^{-4}</td>
</tr>
</tbody>
</table>

VPPFIT global (w/o iodine) | (5)+Fe II 1608 | 9:1 7:7 | 3:1 | 10^{-7} |
| VPPFIT global (w/o iodine) | all 16 | 17 10 | 6:2 | 0 |

Note. | The five (5) lines included in almost all the fits are Fe II 1611, Ni III 1709/1741/1751, and Si II 1808. The nine (9) lines are the (5) plus Fe II 1608, Al III 1854/1862 and AI II 1670. The VPPFIT spectra were handled differently and did not include the iodine wavelength correction, so VPPFIT results are not expected to be the same as our joint global t results.

Table 5

Component fit values for a 3 component joint global fit of 9 lines.

<table>
<thead>
<tr>
<th>Component</th>
<th>redshift z</th>
<th>velocity with b (km/s)</th>
<th>log column density</th>
<th>log(N/H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Com p 1</td>
<td>2:39090291</td>
<td>9:58 10^{-7}</td>
<td>6:41 0:05</td>
<td>14:76 0:029</td>
</tr>
<tr>
<td>Com p 2</td>
<td>2:39091517</td>
<td>1:68 10^{-6}</td>
<td>7:75 0:12</td>
<td>14:563 0:035</td>
</tr>
<tr>
<td>Com p 3</td>
<td>2:3947903</td>
<td>9:49 10^{-7}</td>
<td>16:44 0:11</td>
<td>14:339 0:021</td>
</tr>
</tbody>
</table>

Note. | The 9 lines included in the t are the ones listed in the Introduction. Each component of each element has an additional t parameter (not listed) which is a column density of set to allow for different element abundances. This t resulted in a t value of \(-10^{-7} \) and \(-dof=14:138=13891=1:91 \).