THREE-DIMENSIONAL $N=4$ SUPERCONFORMAL SUPERFIELD THEORIES

B. M. Zupnik

Bogolubov Laboratory of Theoretical Physics, JINR, Dubna, Moscow Region, 141980, Russia; E-mail: zupnik@theor.jinr.ru

Abstract

The mirror map in the $D=3; N=4$ supersymmetry connects the left and right $SU(2)$ automorphism groups and also the superfield representations of the corresponding $N=4$ supermultiplets. The mirror $N=4$ harmonic superspaces use the harmonicics of two $SU(2)$ groups and two types of the Grassmann analyticity. The irreducible left and right $N=4$ supermultiplets are defined in these harmonic superspaces. We analyze the $N=4$ superconformal interactions of the gauge and matter superfields and the spontaneous breakdown of the superconformal symmetry. The most interesting superconformal action possesses the mirror symmetry and contains two nonlinear terms of the abelian left and right gauge superfields, and also the mixing $N=4$ BF interaction which yields the topological masses of the gauge fields and the nontrivial interaction of the scalar and pseudoscalar fields. The minimal interactions of the left and right $N=4$ supermultiplets can be included to this abelian gauge theory. We consider also the nonlinear $N=4$ gauge superfield interactions.

Keywords: Harmonic superspace, extended supersymmetry, superconformal symmetry

1 Introduction

Three-dimensional superconformal field theories with $N=6$ and $N=8$ supersymmetries describe worldvolume of the M 2-branes at low energies [1,2,3]. The Lagrangians of these theories contain matter the scalar and spinor fields interacting with the Chern-Simons gauge vector fields for a specific choice of the gauge groups. The three-dimensional $N=4$ Chern-Simons models were studied in the $N=1$ superspace [4]. The algebras of higher supersymmetries in these models close on the mass shell only.

The manifestly supersymmetric description of the three-dimensional Chern-Simons matter system is possible for $N=3$ supersymmetry in the framework of the superspace approach [5],[6],[7],[8]. These superfield constructions are universal for any gauge groups. The P-parity is preserved in the gauge group G. If we choose the difference of two superfield Chern-Simons actions corresponding to each G.

The $N=6$ Chern-Simons model for the gauge group $U(N)$ and $SU(N)$ (ABJM model) and the $N=8$ BLG model for the gauge group $SU(2) 	imes SU(2)$ were investigated in the $N=3$ harmonic superspace [9]. The $N=3$ supersymmetry is manifest in this formalism, the higher supersymmetry transformations connect different superfields and the corresponding algebra of transformations closes on the mass shell.

The superfield description of the $N=6$ Chern-Simons theory is possible in the $SO(5)=U(2)$ or $SO(6)=U(3)$ harmonic superspaces [14],[15]. In the first version, the $N=6$ supersymmetry is realized on the $N=5$ superfields. In the second version, the $SU(3)$ triplet of the harmonic $N=6$ gauge superfields contains the Chern-Simons vector field.
eld and the infinite number of auxiliary elds, for instance, the unusual fermion eld with three spinor Lorentz indices and the SO (6) indices. All auxiliary elds vanish on the mass shell in these variants of the Chern-Simons theory; however, we do not know how to include the super eld matter interaction.

The D = 3; N = 8 Yang-Mills theory for the group U (N) can be constructed in the N = 4 hamonic superspace by the analogy with the four-dimensional case [11], however, this theory is not superconformal in three dimensions. In this paper, we analyze the possible constructions of the N = 4 superconformal models in the three-dimensional hamonic superspace [8], [13].

The D = 3; N = 4 superspace is covariant with respect to the Lorentz group SO (2; 1) SL (2; R) and the automorphism group SU L (2) SU R (2). The important property of the N = 4 superspace is the discrete symmetry with respect to the mirror map

\[M : SU L (2) \rightarrow SU R (2) \tag{11} \]

which connects the representations \((r; l)\) and \((l; r)\) of the group SU L (2) SU R (2). Different coordinate bases of the N = 4 superspace are defined in appendix, for instance, the central basis (CB) is invariant under the M -map. The irreducible D = 3; N = 4 supermultiplets correspond to different super eld constraints, and the mirror map connects the left and right versions of these constraints. Respectively, we have the left and right hypermultiplets or the left and right vector multiplets [13].

The left and right versions of the N = 4 hamonic superspace use the corresponding hamonic us or \(v_{a}^{(l)}\). In the appendix we define the left analytic basis (LAB) and the mirror right analytic basis (RAB) using left and right conditions of the Grassmann analyticity. The left and right analytic super elds describe the mirror irreducible supermultiplets. In the next section, we consider the superconformal transformations in different representations of the N = 4 superspace.

Section 3 is devoted to the superconformal interactions of the N = 4 gauge super elds. The left abelian gauge prepotential is defined as the analytic scalar super eld \(Y^{+}\) in the left hamonic superspace. The corresponding pseudoscalar super eld strength \(W_{ab}^{\pm}\) satisfies the constraints of the right tensor multiplet. The abelian super eld \(W = W^{|ab}\) plays the role of the dilaton super eld which helps us to construct the superconformal actions in the N = 4 superspace. We use \(W\) as a dynamical coupling constant in the superconformal version of the N = 4 abelian super eld gauge action \(S_{ab}^{\pm}\) [13] and also in the superconformal interaction of the N = 4 nonabelian gauge super elds.

It is not difficult to obtain the right analytic gauge super eld \(A_{0}^{(++)}\) and the corresponding scalar left super eld strength \(L^{k}\) using the mirror map. The mirror abelian superconformal action \(S_{0}^{\pm}(A_{0}^{(++)}\) contains the second dilaton \(L = L^{k}L_{k}\).

The superconformal interactions of the left hypermultiplet and the improved tensor multiplet are studied in Sec. 4 by the analogy with the corresponding interactions of the D = 4; N = 2 supermultiplets. The left D = 3; N = 4 hypermultiplet has the minimal interaction only with the left vector multiplet. It is shown that the superconformal abelian action \(S_{0}^{+}\) is equivalent to the analytic action of the improved tensor multiplet, which is dual to the free action of the left hypermultiplet.

In Sec. 5 we consider the N = 4 super eld terms generalizing the Dirac-Born-Infeld interactions with the derivatives of the vector and scalar elds. These terms are invariant under the nonlinear transformations of the N = 8 supersymmetry.
We analyze the $N = 4$ superconformal abelian BF term S^0_{BF} which connects the left $U_L(1)$ scalar gauge super multiplet V^+_{μ} and the right $U_R(1)$ pseudoscalar gauge super multiplet $A^{(+)\mu}$ [18]. This term was considered earlier in components [16], [17]. Note that the $N = 4$ action S^0_{BF} can be rewritten as the difference of two abelian Chern-Simons terms in the $N = 3$ super BF formalism [9]. In this case the transform actions of parity and the fourth supersymmetry connect the mirror abelian gauge super fields defined in the single $N = 3$ analytic superspace.

It is not possible to present the action S^0_{BF} as the difference of two actions in the $N = 4$ superspace, so we consider it as the \(M \)-symmetric analog of the Chern-Simons action for the group $U_L(1) \times U_R(1)$. The independent interactions of the mirror $N = 4$ hypermultiplets and the corresponding gauge multiplets can be easily included to this picture. The term S^0_{BF} yields the specific superconformal interaction of the left and right $N = 4$ abelian gauge super fields in the composite M-symmetric action S^0_{BF}. This action describes the nontrivial interactions of the left pseudoscalar and right scalar fields with the topologically massive vector and pseudovector fields in the bosonic sector.

It is not possible to formulate the non-abelian Chern-Simons models in the $D = 3; N = 4$ superspace.

2 Superconformal $D = 3; N = 4$ Transformations

The CB coordinates of the $N = 4$ superspace $z^M = (x^a; \theta^a_{\dot{a}a})$ are defined in appendix. The in nitesimal $N = 4$ superconformal transformations of these coordinates have the form

$$x = c + a x + b x + c k x + b \frac{1}{2} x k x + \frac{1}{4} x k x + \frac{1}{8} x k x$$

where $c^a; \theta^a_{\dot{a}a}; k^a; b$ are parameters of the conformal group $SO(3, 2)$, $\theta^a_{\dot{a}a}$ and $\theta^a_{\dot{a}a}$ are parameters of the group $SU_L(2) \times SU_R(2)$, k_a and k_a describe the Q and S supersymmetric transformations, and $k_a = k_a$.

The standard notation of this superconformal group is $OSp(4|4)$, but we omit it as use the short notation SC. The superconformal transformation of the full-superspace integral measure $\int d^{11}z = j(z) d^{11}z$ contains the super BF parameter

$$j(z) = \Theta^m_m \Theta^{\dot{a}a}_{\dot{a}a} = b K^a x^a + i \theta^a_{\dot{a}a} \theta^a_{\dot{a}a} :$$

The superconformal transformations of the vector differential $! = dx$ and the spinor derivative D^a have the covariant form

$$\nabla^a \equiv j^a + d^a + i a^a + i a^a :$$

Three traceless 2 2 transformation matrices are constructed from the parameters of $OSp(4|4)$

$$= \frac{1}{2} a + \frac{1}{2} (x k + \frac{1}{2} x k) + i k a k + i k a k + \frac{1}{2} k a k ;$$

$$= \frac{1}{2} a + \frac{1}{2} (x k + \frac{1}{2} x k) + i k a k + i k a k + \frac{1}{2} k a k ;$$

$$= \frac{1}{2} a + \frac{1}{2} (x k + \frac{1}{2} x k) + i k a k + i k a k + \frac{1}{2} k a k ;$$
\[\begin{align*}
bc &= b c \quad \frac{i}{2} b b c \quad k \quad \frac{i}{2} (b b c + k b c) ; \\
kl &= M \quad b c = k l \quad \frac{i}{2} k c k \quad \frac{i}{2} (k c k + k k c)
\end{align*} \]
(2.4)

and satisfy the simple relations

\[\begin{align*}
D^k a &= D^k a j + \frac{1}{2} D^k a j; \quad D^{k a} b c = \frac{1}{2} n c D^k a j + \frac{1}{2} n a c D^a k j; \\
D^{n b} k l &= \frac{1}{2} n b k D^{b j} + \frac{1}{2} n b l D^{b j}; \quad D^{b j}(z) = i b k \quad i b :
\end{align*} \]
(2.5)

By analogy with [11], we define the following \(\text{O} \text{Sp}(4|j) \) transformations of the left hamonics:

\[\begin{align*}
sc u^+_k &= ++ u_k^+ ; \quad sc u^+_k = 0 ; \\
++ &= u_j^+ u_n^+ j(z) = ++ \quad \frac{i}{2} + a ^+ a \quad k \quad i + a ^+ a :
\end{align*} \]
(2.6)

The SC transform actions of the coordinates \(x^m_L \); \(^+ a \) in \(\text{LAB} \) (A.5) are manifestly analytic

\[m = sc x^m_L = \frac{1}{2} (m) \quad sc x^m_L = b x^m_L + (x^m_L k) x^m_L \quad \frac{1}{2} x^2_L k^m \]
\[2i (m) b ^+ b i (m) (n) b ^+ b x^m_L i (m) ! ^+ b ; \quad 2.7 \]
\[^+ a = sc ^+ a = ^+ a + \frac{1}{2} D^+ a + ! ^+ a ^+ a ^+ b + \frac{1}{2} x^a_L k \quad i ^+ a _k \]
\[i ^+ a _b b ; \quad 2.8 \]

where the standard Poincare transform actions are omitted. We define the SC transform action of the left analytic integralmasure

\[\begin{align*}
s c d ^4 u &= (@^m_n m L + @ ^+ ^+ a _a ^+ a) d ^4 u = 2 c ^4 u ; \\
&= i ^+ \quad \frac{1}{2} (b + k _a x^m_L) + i ^+ a a ; \quad D ^+ = ^+ ;
\end{align*} \]
(2.9)

The superconfomal paramters in \(\text{CB} \) (2.2) and \(\text{LAB} \) are connected by the simple relations

\[j(z) = 2 \quad D ^+ ; \quad = \frac{i}{2} j + u_j^+ u_n^+ j_n(z) ; \quad 2.10 \]

We consider the superconfomal transformation of the non-analytic spinor coordinates

\[a = sc a = a + \frac{1}{2} b a + a a a ^+ a + ! a + \frac{1}{2} x^a_L a k \quad + i a _b ^+ b k + \frac{1}{2} x^a_L a + i a _b ^+ b + i b ^+ b a i a _b ^+ b ; \quad 2.11 \]

This formula yields the \(\text{O} \text{Sp}(4|j) \) transformation of the spinor derivative \(D ^+ b \)

\[sc D ^+ b = (D ^+ b sc c) d ^+ c = D ^+ b + b ^+ c D ^+ c + D ^+ b ; \quad 2.12 \]

where the \(\text{LAB} \) superconfomal matrices and \(^+ b \) are identical to the corresponding matrices in \(\text{CB} \) (2.3).

We obtain the SC transformations of the higher spinor derivatives from this formula

\[sc D ^+ = D ^+ + 2 D ^+ + (D ^+ b j) D ^+ b + (D ^+ b j) D ^+ b ; \]
\[sc D ^+ a b = (D ^+ a) D ^+ b (D ^+ b j) D ^+ + a ^+ b c D ^+ c + b ^+ a c + 2 D ^+ a b ; \quad 2.13 \]

\[sc (D ^+)^4 = 4 (D ^+)^4 ; \]
The superconformal transformations of the left harmonic derivatives are

\[\text{sc} D^{++} = +^+ D^0; \quad \text{sc} D = (D^{++})^D \quad (2.14) \]

The SC transformations in the right harmonic superspace can be obtained by the mirror map from the LAB transformations, for instance,

\[\text{sc} V^{(+)}_a = (+^+) V^{(+)}_a ; \quad \text{sc} V^{(+)}_a = 0; \quad \text{sc} V^{(+)}_a = M \; \text{sc} a; \quad \text{sc} X^m_R = M \; \text{sc} x^m_L; \quad \text{sc} V^{(+)}_a \; (+^+) = V^{(+)}_a \; V^{(+)}_b \; \frac{1}{2} \; (+^+) \; k \; \bar{l} \; (+^+) \quad (2.15) \]

3 Superconformal N = 4 superfield gauge interactions

We consider the superfield constraints of the left hypermultiplet \(\phi^a \) and the left tensor multiplet \(L^a = L^a \) and their SC transformations in CB

\[D^{ab}_a \quad \text{sc} D^{ab} = +^+_a \; D^0_b + \text{sc} Q^{ab} = 0; \quad \text{sc} Q^{ab} = \frac{1}{2} q^{ab} + q^{ab} + \text{sc} r^{ab}; \quad (3.1) \]

\[D^{ab}_a + D^{ab} L^a + D^{ab} L^b = 0; \quad \text{sc} L^{ab} = j L^{kl} + k L^{nl} + l L^{kn}; \quad (3.2) \]

The mirror map (1.1) allow us to obtain the superfield constraints for the right hypermultiplet \(Q^a \) and the right tensor multiplet \(W^{ab} \)

\[D^{ab}_a Q^a + D^{ab} Q^a = 0; \quad (3.3) \]

\[D^{ab}_a W^{ab} + D^{ab} W^{ab} = 0; \quad (3.4) \]

The superfield \(W^{ab} \) can be treated as the superfield strength of the left abelian spinor gauge superfield, and the mirror superfield \(L^a \) has a similar interpretation. The mirror map can be combined with the P-parity, then the mirror superfields \(W^{ab} \) and \(L^{ab} \) have opposite parities.

In the N = 4 harmonic superspace, the left non-abelian gauge supermultiplet is described by the matrix analytic prepotential \(V^{++} (L; u) \)

\[V^{++} = D^{++} [V^{++}]; \quad (V^{++})^\dagger = V^{++}; \quad Tr V^{++} = 0; \quad (V^{++})^\dagger = V^{++}; \quad Tr V^{++} = 0; \quad (3.5) \]

where \((L; u)\) is the analytic superfield matrix parameter of the gauge group SU(N). We analyze the off-shell component superfields \(\phi^a A_m; \phi^a X^a \) and \(X^{kl} \) in the W Z-gauge of the prepotential

\[V^{++}_W = +^+_a +^+_b \; +^+_m A_m + 2 i +^+_a u_k^a \; k + 3 i (+)^4 u_k^a u_l^a X^{kl} \quad (3.6) \]

where \(+^+_a\) and \((+)^4\) are defined in appendix. The component superfields of the P-even superfield \(V^{++}\) include the pseudoscalar \(+^+_a\), spinor \(+^+_a\), vector \(A_m\) and auxiliary scalar \(X^{kl}\).

The non-analytic harmonic connection \(V \) can be constructed in terms of the prepotential [12]

\[V (z; u) = \frac{\text{X}^Z}{\text{n}+1} \; \text{du}_1 \cdots \text{du}_n \; V^{++} (z; u_1) V^{++} (z; u_2) \cdots V^{++} (z; u_n) \quad (u^+ u^+_1) (u^+_1 u^+_2) \cdots (u^+_1 u^+_n) \quad (3.7) \]
where the harmonic distributions \((u_1^+ u_2^+)\) are used.

The LAB representation of the nonabelian gauge super \(\epsilon\)d strength is [8, 13]

\[
W_{\text{ab}}^{\text{ab}} = \frac{i}{4} D^{a} D^{b} V; \quad W_{\text{ab}}^{\text{ab}} = [; W_{\text{ab}}];
\]

\[
D^{++} W_{\text{ab}}^{\text{ab}} + [V^{++}; W_{\text{ab}}] = 0; \quad (3.8)
\]

The abelian \(N = 4\) super \(\epsilon\)d action contains the imaginary prepotential \(V_0^{++}\) and the coupling constant \(g_3\) of dimension \(\frac{1}{2}\)

\[
S_{\text{QED}}^{\text{ab}} = \frac{1}{4g_3^2} d^4 z d u V_0^{++} V_0
\]

\[
= \frac{1}{4g_3^2} d^4 x \left[\text{ab} + 2A^m @^n F_{nm} + 2i_\text{ka} @^n + X^{kl}X_{kl} \right] \quad (3.9)
\]

where \(F_{nm} = @_n A_m - @_m A_n\).

We consider the passive form of the superconformal transformations of the harmonic connections [11]

\[
\text{sc} V^{++} = 0; \quad \text{sc} V = (D^{++}) V \quad (3.10)
\]

or the active (local) form of the same transformations

\[
\text{sc} V (z; u) = (m @^c + + k_a @^k + D) V (z; u) + \text{sc} V; \quad (3.11)
\]

where functions \(\text{sc}\) and \(\text{sc}^{++}\) are defined in the previous section. The action \(S_{\text{QED}}^{\text{ab}}\) is not invariant under these transformations.

The abelian super \(\epsilon\)d strength has the simple form

\[
W_{\text{ab}}^{\text{ab}} (V) = \frac{1}{4} d u D^a D^b V_0^{++} (z; u);
\]

\[
W_{\text{ab}}^{\text{ab}} = 0; \quad \text{sc} W_{\text{ab}}^{\text{ab}} = W_{\text{ab}}^{\text{ab}}; \quad (3.12)
\]

The super \(\epsilon\)d \(W_{\text{ab}}^{\text{ab}} (V)\) is \(P\)-odd if the corresponding gauge super \(\epsilon\)d \(V^{++}\) is \(P\)-even. We consider its decomposition in the left coordinates

\[
W_{\text{ab}}^{\text{ab}} (x_+; u) = ab \text{ sc} i a^+ b^c @^L \text{ bc} i b^+ @^L \text{ ac} + + \text{sc} ab + + cd
\]

\[
+ \frac{1}{2} \left(b + a + a + b \right) F + \frac{1}{2} \left(a^+ u_k^a a^+ u_k^b \right) + \frac{1}{2} \left(a^+ u_k^b b^+ u_k^b \right) + i^a + u_k^a u_1 X^{kl} + i^a b^+ u_k^a X^{kl} + i^a b^+ u_k^a X^{kl} + i^a + u_k^a X^{kl}
\]

\[
+ \text{higher derivative terms}; \quad (3.13)
\]

where \(F = @^L A + @^L A\).

The super \(\epsilon\)d \(W_{\text{ab}}^{\text{ab}}\) can be connected with the right analytic super \(\epsilon\)d \(W^{++}(r; v) = v_1^{(+)}) v_0^{(+) W_{\text{ab}}^{\text{ab}}\). The component decomposition of this super \(\epsilon\)d representation is very short in the right analytic coordinates (A.15).

The SC transformation of the nonabelian super \(\epsilon\)d strength can be obtained using (3.10) and (2.13)

\[
\text{sc} W_{\text{ab}}^{\text{ab}} = \frac{1}{4} \text{sc} (D^{++}W^{ab} V) = j W_{\text{ab}}^{\text{ab}} + \frac{a^c}{d} W_{\text{cd}}^{\text{ac}} + \frac{b^c}{d} W_{\text{cd}}^{\text{ac}} \quad (3.14)
\]
The important SU\(_R\) (2) invariant abelian dilaton super field

\[W = \mathbf{P} \mathbf{W}_{ab}; \quad \text{sc} W = j(z)W \]

satisfies the super field constraint \(D^+ (W^{-1}) = 0 \).

The super field \(W \) is used in the superconformal abelian gauge action [13]

\[S^W_0 (V) = \frac{1}{4} \int d^1zdud_1 \frac{1}{W} V^{++} (z;u)V^0 (z;u); \]

The SC invariance of \(S^W_0 \) can be checked straightforwardly using transformations of the integral measure and all super fields.

The spontaneous breakdown of the superconformal symmetry arises if we redefine the pseudoscalar super field \(W^{ab} \)

\[W^{ab} = \left(C^{ab} + w^{ab} \right); \quad C^{ab}C_{ab} = 2; \]

\[W = \mathbf{P} \left(2 + 2C^{ab}w_{ab} + w^{ab}w_{ab} \right) \]

where \(w_{ab} \) is the improved super field strength, \(\mathbf{P} \) is the scaling parameter of dimension 1 and \(C^{ab} \) are dimensionless constants describing the spontaneous breakdown of the parity and SU\(_R\) (2) symmetry.

The abelian dilaton super field \(W (V^{++}) \) plays the role of a dynamical coupling constant in the superconformal al version of the nonabelian gauge theory

\[S_W (w; V^{++}) = \int d^1zdud_1 \cdots \sum_{n=2}^\infty \left(\frac{1}{4W} \prod_{n=2} \frac{\text{Tr} V^{++} (z;u_1) \cdots V^{++} (z;u_n)}{(u_1^* u_2^* \cdots (u_n^* u_1^*)} \right) ; \]

The SC invariance of this action can be checked by the method of [11] using the active superconformal transformation actions

\[\text{sc} V^{++} (z;u) = (M \theta_M + D^{++}) V^{++} (z;u); \]

\[\text{sc} (W^{-1}) = (M \theta_M + D^{++}) W^{-1}; \]

The super field constraint \(W = \mathbf{P} \mathbf{W} \) in (3.18) breaks down the conformal symmetry, in this case we obtain the super field action of the \(N = 4 \) Yang-Mills theory \(S^W_0 (g^2 (V^{++}) \) constructed by analogy with the four-dimensional \(N = 2 \) gauge action [12].

The right gauge multiplets can be considered as the mirror constructions in the right hamonic superspace (A.15). The abelian right analytic prepotential \(V_{R0}^{(++)} (R ; \nu) \)

\[A_{R0}^{(++)} (R ; \nu); \quad D^{(++)} A_{R0}^{(++)} = 0; \]

In the \(W \) \(Z \)-gauge, this prepotential contains the component fields of the right vector multiplet

\[A_{WZ}^{(++)} = \sum_{k=1} B_m \left(\text{Tr} B_M \right) + \sum_{k=1} \left(\text{Tr} B_M \right) V_\nu \]

\[+ 3 \left(N^{(++)} \right) V_\nu Y^{ab}; \]

Below we use the pseudoscalar right prepotential \(A_{R0}^{(++)} \), then \(B_m \) is the pseudovector field, \(k_i \) is the scalar field and \(Y^{ab} \) is the pseudoscalar auxiliary field.
We can construct the super field strength of the right abelian prepotential
\[L^{kl} = \frac{1}{4} \int dz d\bar{z} A_0^{(++)}(z) ; \quad (3.22) \]
satisfying the constraints of the left tensor multiplet (3.2). It is scalar for the P-odd prepotential \(A_0^{(++)} \). The superconformal transformation of the super field \(L^{kl} \) can be obtained by the mirror map from (3.14)
\[scL^{kl} = j(z)L^{kl} + \frac{k(z)}{j(z)}L^{jl} + \frac{1}{j(z)}L^{kj} ; \quad (3.23) \]
The improved left super field is defined by the formula
\[L^{kl} = (c_1 + j^2) ; \quad c_2 = c_1^2 = 2 \quad (3.24) \]
where \(c \) is some constant of dimension 1 and \(q_1 \) are dimensionless constants of the spontaneous breakdown of \(SU_L(2) \). The mirror dilaton super field is
\[L = \frac{P}{L^{kl} L_{k1}} = \frac{P}{2 + 2c_1 L^{kl} + L_{k1} L_{1k}} ; \quad scL = jL ; \quad (3.25) \]
The mirror superconformal abelian interaction contains this super field \(L \)
\[S^L_0 = \frac{1}{4} \int dz d\bar{z} \frac{1}{L} A_0^{(++)} A_0^{(++)} ; \quad D^{(++)} A_0^{(++)} = D^{(++)} A_0^{(++)} ; \quad (3.26) \]
In Sec. 4 we analyze the equivalent left analytic action of the improved tensor multiplet which is dual to the free hypermultiplet action.

We use the spinor derivative of the super field \(L \) in the superconformal spinor connection
\[k_a = L^{kl} D_k L^{l_1} ; \quad sc k_a = D_a j + \frac{1}{2} j k a + k a + \frac{k_a}{l} + \frac{a}{c} k c \quad (3.27) \]
which helps to construct the SC covariant derivatives of super fields, for instance,
\[D^{k_1 k_2} W^{ab} = D^{k_1 k_2} W^{ab} - 2 k_1 k_2 W^{ab} + k_a W^{bd} + k_b W^{ad} \quad (3.28) \]
or its mirror image \(D^{k_1 k_2} L^{ij} \). The super field \(W = L \) is the superconformal invariant.

4 \(N = 4 \) tensor multiplets and hypermultiplets

The three-dimensional left analytic hypermultiplet \(q^a \) has the free action
\[S^0_q = \frac{1}{2} \int d^4 u q^a D^{(++)} q^a ; \quad D^a q^a = q^a ; \quad (4.1) \]
The natural dimension of \(q^a \) is equal \(\frac{1}{2} \), and the corresponding superconformal transformation contains the analytic parameter (2.9)
\[scq^a = q^a ; \quad scS^0_q = 0 ; \quad (4.2) \]
This hyper multiplet interacts with the left \(U_L (1) \) gauge prepotential

\[
S(q^+; V_0^{++}) = \frac{1}{2} \int d_L q^+_a [D^{++} q^+_a + \frac{1}{2} \epsilon_{ab} V_0^{++} q^+_b] \quad (4.3)
\]

where \(\epsilon \) is the Pauli matrix. The mirror map \(M S(q^+; V_0^{++}) = S(Q^+; A_0^{++}) \) yields the interaction of the right hyper multiplet \(Q_k^+ \) with the right abelian prepotential \(A_0^{++} \).

The dual free ! hyper multiplet can be described analogously

\[
S_!^0 = \frac{1}{2} \int d_L D^{++}! D^{++}!; \quad \text{sc}! = !: \quad (4.4)
\]

In the gauge group \(SU(N) \), we can use the adjoint representation for the ! super eld, then the hyper multiplet-gauge interaction reads

\[
S(!; V) = \frac{1}{2} \int d_L \text{Tr}(D^{++}! + [V^{++}!])^2; \quad (4.5)
\]

The sum of this action and the \(N = 4 \) Yang-Mills action \(S_N (g_0^2; V^{++}) \) is invariant under the \(N = 8 \) supersymmetry transformations constructed by the analogy with the \(D = 4; N = 4 \) case [11]

\[
V^{++} = g_3^a u^+_a \quad !; \quad ! = \frac{1}{2g_3^a} (D^+)^4 (\epsilon_{\alpha}^a u^+_a V) ; \quad (4.6)
\]

where \(\epsilon_{\alpha}^a \) are spinor parameters.

The left tensor multiplet is described by the left analytic super eld \(L^+ = u^+_1 u^+_L L^{kl}(z) \)

\[
L^{++} = \frac{1}{4} u^+_1 u^+_L \int d^4 v_a (D^+)^a v^a D^{++}! A_0^{++}!(z; V); \quad \text{sc}L^{++} = 0; \quad (4.7)
\]

\[
D^{++}L^{++} = 0; \quad (4.8)
\]

The component representation of this super eld is

\[
L^{++} = u^+_1 u^+_L k^l \quad i^{++m} u^+_1 u^+_1 g^{l}_{mn} k^l \quad i^{++a} u^+_1 k^a + i^{++b} Y^{ab} + i^{++b} m n p \epsilon^b_{mnp} \text{Tr}B^+ + \frac{1}{2} u^+_a \epsilon^a_{ka} + (\epsilon^a_{ka} u^+_a \epsilon_{ka} \epsilon^a_{ka}) u^+_1 u^+_1 k^l; \quad (4.9)
\]

The free action of the left tensor multiplet is equivalent to the free action of the right gauge multiplet.

Now we consider the improved form of the left analytic tensor super eld

\[
L^{++} = (c^+ + 1^+); \quad c = c^k u^+_k u^+_1; \quad c^+ c = (c^0)^2 = 1; \quad \text{sc}L^{++} = 2 (1^+ + c^+); \quad (4.10)
\]

The three-dimensional superconformal interaction of \(1^+ \) is similar to the analogous four-dimensional action [11]

\[
S_0^L = \frac{1}{2} \int d^4 u (g^{++})^2; \quad g^{++} (1) = \frac{1^+}{1 + 1^+} : \quad (4.11)
\]
We note that this action is a dual form of the action (3.26). The scalar part of the component action of the improved tensor multiplet has the form

\[K_l^\ell = \frac{Z}{d^3x} \frac{P}{2} \frac{1}{4} \theta_m \theta_n \, k^l_m \, k^l_n \, \frac{1}{6} \, rs \, k^l_m \, k^l_n \, rs + \frac{1}{4} Y^\alpha \gamma^\alpha \gamma \, (4.12) \]

\[= \frac{P}{k^l_m \, k^l_n} = \frac{P}{2} \frac{q}{1 + c^l_k \, k^l_k + \frac{1}{2} k^l_k} \, k^l = (c^l_k + k^l) \]

The similar component \(D = 4 \); \(N = 2 \) action was dened in [19].

As it was shown in [11], the action of the improved tensor multiplet is dual to the action of the free hypermultiplet. The alternative form of the action (4.11) contains unconstrained super \(\epsilon \delta \, l + \) (or \(g^{++} \)) and the analytic Lagrange multiplier!

\[S_0^L = - \frac{1}{2} d_U \, [g^{++} (1)]^2 \, D_+ \]

\[L \, (k_1) = \frac{1}{2} (1 + c^k_1, k_1 + \frac{1}{2} k^l_1, k_1) \, 1 = 2 = \frac{1}{2} \, Z \, \text{du}[1 + Z (l; u)]^{3 \times 2} ; \]

\[Z (1; u) = l^{++} c = l^k_1 (z) c^j u^k u^l u^j u^k \] (4.14)

We note that both parts of this relation describe the same \(SU_1 (2) \)-invariant solution of the Laplace equation in variables \(k_1 \): \(L \, (k_1) = 0 \). This integral representation is based on the formula

\[Z \, \text{du} (l^{++} c)^n = \frac{1}{2n + 1} l^{(\ell \, k_1 \, k_2)} \, l^{q \, k_1 \, k_2} \, l^{q \, k_1 \, k_2} \, l^{q \, k_1 \, k_2} \] (4.15)

where brackets mean the total symmetrization of the \(k_1 \)-polynomials in \(2n \) indices.

The superconformal interaction \(S_0^W \) (3.16) is equivalent to the action of the improved right tensor multiplet \(W^{(++)} \)

\[W^{(++)} = v_a^{(+)} v_b^{(+)} W^{ab} = \, (C^{(++)} + W^{(++)}) \]

which is mirror to the left action (4.11). The corresponding scalar terms are

\[K_R = \frac{Z}{d^3x} \frac{P}{2} \frac{1}{4} \theta_m \theta_n \, a^b_m \, a^b_n \, \frac{1}{6} \, cd \, a^b_m \, a^b_n \, cd + \frac{1}{4} X^k l^k x \, k^l \] (4.17)

\[= \frac{P}{a^b_m \, a^b_n} = \frac{P}{2} + 2C a^b_m \, a^b_n + a^b_m \, a^b_n \]

The action of the improved right tensor multiplet \(W^{(++)} \) is also dual to some free action.
5 Nonlinear N = 4 gauge interactions

Now we discuss the possible N = 4 superfield gauge interactions which correspond to the higher degrees of the derivative term s \(F_{mn} = \partial_m A_n - \partial_n A_m ; F_{mn}^B = \partial_m B_n - \partial_n B_m ; \partial_m \psi \)
and \(\Theta_m \xi \) in the component actions. The nonlinear supersymmetric D = 4 abelian gauge terms were analyzed in [20],[21],[22].

We choose the nonlinear self-interaction terms of the analytic multiplet \(L^{++} \) in the following form:

\[
S(L^{++}) = \frac{1}{g^2} \int Z \ d^{4}d \alpha(L^{++})^2 \left[1 + 12c^2 (D^{+})^4 (L^{++})^2 \right] \\
24c^2 L^{++} (D^{+})^4 (L^{++})^2 L^{++} + O(L^6); \\
L^{++} = u_1^+ u_1^+ L^{++}(A_0^{++}), \quad L^+ = \frac{1}{2} D \ L^{++}; \quad L = \frac{1}{2} (D) ^2 L^{++}
\]

where c is some constant of the dimension -2. In components, these terms describe the second and fourth degrees of \(F_{mn}^B \) and \(\Theta_m \xi \).

By the analogy with the nonlinear realizations of the 4-dimensional supersymmetry [20] we can nd the nonlinear f-transformation of the superfield \(L^{+} \):

\[
f^{++} = f^{++} [1 + c^2 (D^{+})^4 (L^{++})^2] + 2c^2 L^{++} (D^{+})^4 (f^{++} L^{++}) + 4c^2 (D^{+})^4 (f^{++} L^{++} L^{++}) + O(L^4); \\
f^{++} = a_k^l u_k^+ u_l^+ + c \left[\frac{1}{2} + a_k^l \right] u_k^+ \xi a^k; \quad f^{++} = \frac{1}{2} D \ f^{++}; \quad f = \frac{1}{2} (D) ^2 f^{++}
\]

where \(a_k^l \) and \(\xi a^k \) are parameters of the bosonic and fermionic translations. This transformation satisfies the condition \(f^{++} \ f^{++} = 0 \).

The nonlinear action (5.1) is invariant under the f-transformation up to the third order in superfields. To prove this invariance we take into account only these independent structures in the variation of \(f S(L^{++}) \):

\[
f^{++} [L^{++}] (D^{+})^4 (L^{++})^2; \quad (L^{++})^2 (D^{+})^4 (f^{++} L^{++} L^{++});
\]

The transformation (5.2) describes the spontaneous breakdown of the D = 3;N = 8 supersymmetry. The similar nonlinear action can be found for the superfield \(W^{++} \) in the right analytic superspace.

The fourth order nonlinear superfield terms can also be studied in the full D = 3;N = 4 superspace

\[
S_4 = \int Z [A_1 W^{++} + A_2 L^{++} + A_3 W^{++} L^{++}]; \\
W^{++} = \frac{}{(2 + 2C_{ab} w_{ab} + w_{ab} w_{ab})}; \quad L^{++} = \frac{}{(2 + 2C_{kl}^{++} + C_{kl}^{++})}
\]

where \(A_1 ; A_2 \) and \(A_3 \) are some constants.

Higher degrees of the gauge superfield strength arise from the superfield terms with the spinor derivatives of \(W^{++} \), for instance,

\[
S_6 = \int Z W^{++} A A ; \\
A = \frac{}{(\frac{1}{2} D_{(a} \xi a^b)} W_{ab} + O(\xi) + O(\xi)
\]

\[
(5.5)
\]
All these nonlinear gauge interactions break down the superconformal symmetry.

The superconformal $N = 2; D = 4$ nonlinear gauge interactions were considered in [22] where the chiral dilaton superfield was used. We have two $N = 4$ abelian dilaton-type superfields W and L so it is not difficult to construct the non-polynomial superconformal generalization of the nonlinear term S_4

$$Z = S_{NL} = d^{11} z W^4 L^5 + L^4 W^5 : \quad (5.6)$$

We note that additional superconformal terms with the SC-invariant combination $W = L$ could be added to this interaction. Using the connection (3.27) we can construct the superconformal generalizations of the derivative terms (5.5).

We can also study the nonlinear superconformal interactions of the nonabelian superfield strength (3.8) with the abelian dilaton superfields, for instance,

$$Z = d^{11} z L^5 (\text{Tr} W ab W ab)^2 : \quad (5.7)$$

6. $N = 4$ BF interaction of the left and right gauge multiplets

We see that the left and right $N = 4$ supermultiplets live in different analytic superspaces, so it is extremely difficult to construct interactions of these supermultiplets. Nevertheless, there is the simple left-right gauge BF interaction which was considered in the component fields [16, 17] and also in the biharmonic $N = 4$ superspace [18].

The LAB form of this BF interaction reads

$$S_{BF}^0 = \frac{1}{2} Z d_L^4 dV_{0^+} L_{0^+}^+ \quad (6.1)$$

where λ is the coupling constant, V_{0^+} is the left abelian prepotential, and $L_{0^+}^+$ is the scalar analytic superfield strength of the right abelian pseudoscalar prepotential $A_{0^+}^{++}$ (4.7). This interaction is manifestly superconformal and preserves the F-parity and the M symmetry $V_{0^+}^{++} \cdot A_{0^+}^{++}$.

The equations of motion for the abelian BF model

$$W^{ab} (V) = 0; \quad L_{0^+}^+ (B) = 0 \quad (6.2)$$

have the pure gauge solutions only.

Using the superfield decompositions (3.6) and (4.9) we obtain the component form of the abelian $N = 4$ BF action [16, 17]

$$Z = S_{BF}^0 = d^2 x (2^{mn} n^p A_m \theta_n B_p \frac{1}{2} \delta_i Y_{ab} \frac{1}{2} \delta_i X_{ik} + 2 k_a^k a_k) : \quad (6.3)$$

The mirror symmetry $S_{BF}^0 = M S_{BF}^0$ is evident in this representation.

If we identify $SU_L (2)$ and $SU_R (2)$ indices of these fields, this action can be treated as the difference of two abelian Chern-Simons actions for two $N = 3$ vector multiplets connected by the parity transformation and the transform ation of the fourth supersymmetry.
The gauge $N = 3$ prepotentials and super eld strengths live in the same analytic superspace, and the fourth supersymmetry transformation connect different gauge supermultiplets. We note that the $N = 4$ super eld generalization of the Chern-Simons action does not exist for the group $U(1)$, because the corresponding gauge prepotentials and super eld strengths are defined in different superspaces.

One can add the minimal interactions of the left hypermultiplets q^+_i (4.3) and the right hypermultiplets $Q^{(+)}_k = M q^+_i$ to the $U_L(1) \ U_R(1)$ BF action

$$S(q;Q;V_0;A_0) = S^0_B + S(q^+;V_0^{++}) + S(Q^{(+)};A_0^{(+)}); \quad (6.4)$$

We note that this model has the manifest $N = 4$ symmetry even if it be reformulated in the $N = 3$ superspace. In this formalism, generators of the linear transformations of the fourth supersymmetry have the opposite sign on the left and right $N = 3$ analytic super elds: $Q^3 = D^0$. More complex non-linear transformations of the higher supersymmetries are defined in [9] for the nonabelian $N = 3$ super elds, the algebra of these transformations closes only on the equations of motion.

The abelian BF term can be treated as the nontrivial interaction in the following superconformal composite action:

$$S(V_0^{++};A_0^{(+)}) = S^W + S^L + S^0_B$$

where the first two terms describe the left and right gauge super elds. It is evident that this interaction possesses the discrete M symmetry.

The scalar part of this action contains the kinetic term for the $\text{eld} \ k^{l}$ (4.12), the analogous kinetic term for the $\text{eld} \ a^{b}$ (4.17) and the mixed potential term

$$P = \frac{P}{4} \int \frac{d^3x}{a^{b} k^{l} k^{l} +} \frac{p}{a^{b} a^{b}}$$

which arises from terms with the auxiliary $\text{elds} X^{k l}$ and $Y^{a b}$. Thus, the superconformal action $S(V_0^{++};A_0^{(+)})$ describes the nontrivial interaction of the abelian left and right $N = 4$ gauge multiplets.

Using the transformation of the vector and pseudovector gauge elds in (6.5)

$$A_m = \frac{1}{2}(A^+_m + A^-_m); \quad B_m = \frac{1}{2}(A^+_m - A^-_m)$$

we obtain the sum of two quadratic gauge actions

$$S(A^+_m;A^-_m) = \frac{1}{2} \int \frac{d^3x}{a^{m n} a^{n p}} [A^+_m K^{m n} A^+_n + A^{m n} A^{n p}]$$

where P is the parameter of the gauge-invariant mass terms.

It is easy to build the non-abelian version of the BF theory in the full $N = 4$ superspace using the super $\text{eld} \ W^{a b}$ (3.8) and the Lagrange multiplier $B_{a b}$, however, we do not know the interactions of this additional super $\text{eld} \ B_{a b}$. We also cannot construct interactions of the left $N = 4$ non-abelian gauge super eld with the right non-abelian gauge super eld.
7 Conclusions

We analyzed the superconformal interactions of $D = 3; N = 4$ super fields in different representations. The left and right $N = 4$ harmonic superspace are treated as two mirror analogs of the $D = 4; N = 2$ harmonic superspace. The interaction of the left gauge and left hypermultiplet super fields are natural, and the mirror picture connects right $N = 4$ superfields, while it is difficult to construct interactions of the left and right supermultiplets. We consider the dilaton super field W using the abelian gauge super field strength W^{ab} and the mirror dilaton super field L constructed from the right abelian gauge superfield W. W and/or L play the role of the dynamic coupling constants in the superconformal gauge theory. These dilatons allow us to construct the improved superconformal versions of the abelian and nonabelian $N = 4$ gauge theories. The left $N = 4$ superconformal abelian gauge model S_W^0 is dual to the free hyper multiplet theory; this property is preserved in the mirror model S_L^0.

The BF interaction in the $N = 4$ superspace is considered as the analog of the Chern-Simons action for the group $U_L(1) \times U_R(1)$. The left and right hypermultiplets interact with the corresponding $N = 4$ gauge super fields in this theory. We propose the combining superconformal interaction of the abelian left and right gauge super fields including the improved left and right gauge actions $S_W^0 + S_L^0$ and the mixing BF term. This term yields the nontrivial interaction of the scalar and vector fields from two mirror super multiplets.

On the non-superconformal level, we find the nonlinear realization of the $N = 8$ supersymmetry connecting different nonlinear gauge terms in the effective action. Using the superconformal covariant derivatives of the super field strengths we obtain the higher nonlinear superconformal interactions of the left and right gauge super fields.

The author is grateful to E.A. Ivanov for interesting discussions. This work was partially supported by the grants RFBR N 09-02-01209, 09-01-93107-CNRS and 08-02-90490-Ukr, DFG 436 RUS 113/669/0-4R, INTAS 05-10000008-7928 and by the Heisenberg-Landau programme.

Appendix

1. Central basis of $D = 3; N = 4$ superspace

We consider the coordinates of the $D = 3; N = 4$ superspace in the central basis (CB) and the corresponding integral measure $[8,13]$:

$$z = (x^m; k_a); \quad d^{11}z = d^3x d^3$$ \hspace{1cm} (A.1)

where i and a are the two-component indices of the automorphism groups $SU_L(2)$ and $SU_R(2)$, respectively, is the two-component index of the $SL(2;R)$ group and $m = 0;1;2$ is the 3D vector index. The three-dimensional matrices satisfy the relations

$$\begin{bmatrix} m \\ n \end{bmatrix} \begin{bmatrix} m \\ n \end{bmatrix} = m_n + "m_{np}(p)"; \hspace{1cm} (A.2)$$

where $m_n = \text{diag}(1; 1; 1)$ and $"m_{np}"$ is the antisymmetric symbol.

We use the P-parity transformation

$$P x^0 = x^0; \hspace{1cm} P x^1 = x^3; \hspace{1cm} P k_a = (1) k_a; \hspace{1cm} (A.3)$$

14
The mirror map \(M \) interchanges values of the isospinor indices of the groups \(SU_L(2) \) and \(SU_R(2) \), for instance, \(M_{12} = 2_{1} \), and connects the representations \((1; r)\) and \((r; 1)\).

The \(N = 4 \) spinor derivatives have the form

\[
D^{ka} = \varepsilon^{ka} + i \varepsilon^{ka} @ \quad @ = (m) @_m^n : \tag{A.4}
\]

2. \(Left D = 3; N = 4 \) harmonic superspace

The \(D = 3; N = 4 \) harmonic superspace was considered in \([8,13]\). It uses the left \(SU(2)_L = U(1) \) harmonic \(u_k \) and the corresponding left analytic basis (LAB)

\[
l_L = (x_L^m ; a) ; \quad a ; \quad x_L^m = x^m + i(\varepsilon^m)^a a ; \quad a = u_k^k_a : \tag{A.5}
\]

We define the special conjugation in this basis

\[
\tilde{f}_k = u^k ; \quad \tilde{x}_L^m = x_L^m ; \quad \tilde{g}_a = a : \tag{A.6}
\]

The LAB spinor and harmonic derivatives are

\[
D^{+a} = \varepsilon^{+a} ; \quad D^{\underline{a}} = \varepsilon^{a} + 2i \varepsilon^{a} @^L ; \quad (A.7)
\]

\[
D^{aa} = \varepsilon^{+a} i a^m + a@_m^a + a^{+a} ; \quad (A.8)
\]

The simple combinations of the spinor derivatives are

\[
(D^a)^4 = \frac{1}{48} D^{ab} D_{ab} = \frac{1}{16} (D^a)^2 (D^{a})^2 ; \tag{A.9}
\]

They satisfy the relations

\[
(D^{aa})^4 (D^{ab})^4 = 2 \varepsilon^{ab} @_{ab} ; \quad (D^{aa})^4 = 2 \varepsilon^{a} @^L ; \tag{A.10}
\]

\[
(D^4)^2 (D^4)^2 = \frac{1}{2} D^{ab} D_{ab} @ + 6 \varepsilon^{a} @^L + 6 \varepsilon^{a} @^L + \varepsilon^{a} @^L ; \tag{A.11}
\]

The analytic integral measure in LAB is

\[
d_L 4^4 du = d^4 x_L^m d(D^a)^4 \tag{A.12}
\]

where \(du \) describes the integration on \(SU_L(2) = U(1) \).

We use the basic combinations of the left analytic spinor coordinates

\[
(ab = a b ; \quad \varepsilon^m = (\varepsilon^m)^a_a ; \quad a^3 = 3^a b_{ab} ; \quad (\varepsilon)^4 = (1)^2 (2)^2 ; \tag{A.13}
\]
The y satisfy the simple identities of the Grassmann algebra

\[
\begin{align*}
ab cd &= \frac{1}{2} ("ac" bd + "ad" bc)(^d;^d; \\
&= \frac{1}{2} (" b" + " a") (^d; \\
c a b &= \frac{1}{2} ca b ^3 + \frac{1}{2} db a ^3 ;
\end{align*}
\]

(A.14)

3. Right \(N = 4 \) harmonic superspace

We denote the mirror \(SU_2 (2) = U(1) \) harmonic as \(v_a^r = M \ u_k \) and the coordinates of the right analytic basis (RAB) as

\[
R = M_{\mathcal{L}} = \{ x_i^R ; \ \ \ {^+\} ; \ \ \ {^+\} \} ;
\]

\[
x_i^R = x^m + i (m) {^+\} _k ^{^+\} ; \ \ \ {^+\} _k ^{^+\} } = v_a ^r {^+\} _k ^{^+\} ;
\]

(A.15)

The special conjugation in RAB is analogous to the corresponding conjugation in LAB (A.5).

The spinor and harmonic derivatives in the RA basis can be obtained by the mirror map from (A.8), for instance,

\[
\begin{align*}
D^{(+)k} &= @^{(+)k} ;
D^{(+)k} &= @^{(+)k} + 2i (^+) ^{^+\} @^R ;
D^{(++)} &= @^{(++)} + i (^{^+\} _m ^{^+\} ^{^+\} _k ^{^+\} } ^{^+\} @^m ^{^+\} ^{^+\} _k ^{^+\} ^{^+\} ;
\end{align*}
\]

(A.16)

where the partial derivatives act on the corresponding right coordinates. The right analytic super fields \((r; v) \) describe right \(N = 4 \) supermultiplets.

References

B. M. Zupnik, Chern-Simons theory in the SO(5)/U(2) harmonic superspace, Teor.

