Renormalization group and instantons in stochastic nonlinear dynamics

2009
142 pages
Published in:
  • Eur.Phys.J.ST 170 (2009) 1-142

Citations per year

20222023202401
Abstract: (Springer)
Stochastic counterparts of nonlinear dynamics are studied by means of nonperturbative functional methods developed in the framework of quantum field theory (QFT). In particular, we discuss fully developed turbulence, including leading corrections o n possible compressibility of fluids, transport through porous media, theory of waterspouts and tsunami waves, stochastic magneto-hydrodynamics, turbulent transport in crossed fields, self-organized criticality, and dynamics of accelerated wrinkled flame fronts advancing in a wide canal. This report would be of interest to the broad auditorium of physicists and applied mathematicians, with a background in nonperturbative QFT methods or nonlinear dynamical systems, having an interest in both methodological developments and interdisciplinary applications.
  • review
  • renormalization group
  • field theory: nonperturbative
  • stochastic
  • turbulence
  • dynamical system
  • instanton
  • fluid
  • Higgs model: abelian
  • fixed point
  • P. Sagaut, C. Cambon, Homogeneous Turbulence Dynamics (Cambridge University Press, Cambridge, 2009)
    • L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasiliev, Phys. Usp. 39, 1193 (1996) (in Russian)
      • A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2 (MIT Press, Cambridge, MA, 1971, 1975)
        • R.H. Kraichnan, J. Fluid Mech. 5, 407 (1959)
          • H.W. Wyld, Ann. Phys. 14, 143 (1961)
            • L.Ts. Adzhemyan, N.V. Antonov, P.B. Gol’din, T.L. Kim, M.V. Kompaniets, J. Phys. A 41, 495002 (2008)
              • A.N. Kolmogorov, Dokladi Akad. Nauk USSR 30, 299 (1941)
                • A.M. Obukhov, Dokladi Akad. Nauk USSR 32, 22 (1941)
                  • A.N. Vasil’ev, Functional Methods in Quantum Field theory and Statistics (Gordom and Breach, NY, 1998)
                    • R.H. Kraichnan, J. Fluid Mech. 7, 1723 (1965)
                      • R.H. Kraichnan, J. Fluid Mech. 8, 575 (1966)
                        • R.H. Kraichnan, J. Fluid Mech. 9, 1728, 1884 (1968)
                          • H.K. Janssen, Z. Phys. B 23, 377 (1976)
                            • C. de Dominicis, J. Phys. (France) 37, 247 (1976)
                              • C. de Dominicis, L. Peliti, Phys. Rev. B 18, 353 (1978)
                                • R. Phythian, J. Phys. A 10, 777 (1977)
                                  • J. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator - Product Expansion (Cambridge University Press, Cambridge, 1992)
                                    • J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1990)
                                      • N.N. Bogolubov, D.V. Shirkov, Introduction to the Theory of Quantum Fields, 3rd edn. (Wiley, New York, 1980)
                                        • C. De Dominicis, P.C. Martin, Phys. Rev. A 19, 419 (1979)
                                          • E. Jurcisinova, M. Jurcisin, R. Remecky, M. Scholtz, The Seventh Small Triangle Meeting, Herlany, September 17–20 (2006)
                                            • N.V. Antonov, A.A. Ignatieva, J. Phys. A 39, 13593 (2006)
                                              • L.Ts. Adzhemyan, A.N. Vasil’ev, Yu.M. Pis’mak, Theor. Math. Phys. 57, 1131 (1983)
                                                • L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasiliev, Sov. Phys. JETP 68, 733 (1989)
                                                  • L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasiliev, Field Theoretic Renormalization Group in Fully Developed Turbulence (Gordon and Breach, New York, 1998)