Fractal Dimension in 3d Spin-Foams

Francesco Caravelli & Leonardo Modesto

1*Perimeter Institute for Theoretical Physics, 31 Caroline St., Waterloo, ON N2L 2Y5, Canada
2Universita di Pisa, Italy

(Dated: July 14, 2013)

In this paper we perform the calculation of the spectral dimension of the space-time in 3d quantum gravity using the dynamics of the Ponzano-Regge vertex (PR) and its quantum group generalization (Turaev-Viro model (TV)). We realize this considering a very simple decompact position of the 3d space-time and introducing a boundary state which selects a classical geometry on the boundary. We obtain that the spectral dimension of the space-time runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decreases from high E to low energy. For the TV model the spectral dimension at high energy increases with the value of the cosmological constant. At low energy the presence of does not change the spectral dimension.

Introduction. In past years many approaches to quantum gravity studied the fractal properties of the quantum space-time. In particular in causal dynamical triangulation (CDT) [1] and asymptotically safe quantum gravity (ASQG) [2], a fractal analysis of the space-time gives a two dimensional effective manifold at high energy. In both approaches the spectral dimension is $D_s = 2$ at small scales and $D_s = 4$ at large scales. The previous ideas have been applied in the context of noncommutativity to a quantum sphere and in Loop Quantum Gravity [4]. The spectral dimension has been studied also in the cosmology of a Lifshitz universe [5] and in Causal Sets [6]. Spectral analysis is a useful tool to understand the effective form of the space at small and large scales. We believe that the fractal analysis could be also a useful tool to predict the behavior of the 2-point and n-point functions at small scales [5] and to attack the singularity problem of general relativity in a full theory of quantum gravity [8].

In this paper we apply to the Ponzano-Regge (PR) model [3] and to the Turaev-Viro model (TV) [10, 11, 12] the analysis introduced in [4]. We consider the appropriate spin foam model and we use the very simple decompact position of the 3d space-time introduced by Speziale in [13]. The other ingredient is the general boundary from which we define the boundary geometry in [14]. All the space-time is approximated by a single tetrahedron and the boundary state is peaked on the boundary geometry of it.

The paper is organized as follows. In the rst section we define the framework and we recall the definition of spectral dimension in quantum gravity. The analysis in this section is general and not strongly related to the PR or TV models. The analysis is correct for any spin foam model. In the second section we calculate explicitly the spectral dimension for the PR and the TV theories using the general boundary form of the boundary 3d quantum gravity path integral.

The Spectral Dimension. The following definition of a fractal dimension is borrowed from the theory of diffusion processes on fractals [15] and is easily adapted to the quantum gravity context. Let us study the diffusion of a scalar test (probe) particle on a d-dimensional classical Euclidean manifold with a xed smooth metric $g(x)$. The corresponding heat-kernel $K_g(x;x';T)$ giving the probability for the particle to di use from x' to x during the diffusion time T is just a continuous time and the scalar field is just a tool to understand the fractal properties of the space-time. This is the heat equation

$$\partial_t K_g(x;x';T) = -\Delta K_g(x;x';T)$$

where Δ denotes the scalar Laplacian, $g^{(1)}$ is the heat kernel of the operator $\exp(-Tg^{(1)})$.

In the random walk picture its trace passes from unit volume $\exp(Tg^{(1)})$.

$$P_g(T) = \frac{1}{V} \int d^d x \, g(x) K_g(x;x;T)$$

has the interpretation of an average return probability. (Here V denotes the total volume \mathcal{V}.) It is well known that P_g possesses an asymptotic expansion (for $T > 0$) of the form $P_g(T) = (4T)^{-d/2} \sum_{n=0}^\infty A_n T^n$. For an intrinsically curved space, for instance, it reads $P_g(T) = (4T)^{-d/2}$ for all T. Thus from the knowledge of the function P_g one can recover the dimension of the target manifold as the T-independent logarithmic derivative

$$d = \left(\frac{d \ln P_g(T)}{d \ln T} \right)$$

This formula can also be used for curved spacetimes and spacetime with non-vanishing \mathcal{V} provided that T is not taken too large.

In quantum gravity it is natural to replace $P_g(T)$ by its expectation value on a state $|\psi\rangle$. Symbolically,

$$P(T) = \mathcal{N}_g(T)|\psi\rangle \langle \psi| D g(T) e^{i\mathcal{S}(g)}.$$
We can formally also to replace the equation with the correspondent expectation value
\[\Theta \sim \mathcal{H}_g (x; x^2; T) \lambda = h \mathcal{H}_g (x; x^0; T) \lambda \quad (7) \]

The spectral form en in quantum gravity. In quantum gravity we denote \(\mathcal{S} \) the spectral form en in the general boundary formalism. We introduce a gaussian state \(q \) peaked on the boundary geometry \(q = (q; p) \) defined by the metric and the conjugate momentum. We can think of the boundary geometry to be the boundary of a d-dimensional ball. The state is symbolically given by:
\[q(s) = e^{(s - a)^2 + ips} \quad (8) \]
The amplitude \(\mathcal{S} \) can be defined for a general spin-foam model
\[\mathcal{W} f_0 (T) q_i = \mathcal{W} P_{s_i} F_0 (s_0) P_{j}, \quad \mathcal{W} f_0 (s) q(s) \quad (9) \]

Where \(\mathcal{W} (s) \) codes the spin-foam dynamics \(\mathcal{S} \). For the purpose of the paper we will consider the PR model \((T \text{V mod}) \); the vertex amplitude is encoded in the \(f_0 j_{-} \)-symmetry. \(\mathcal{W} (s) / f_0 j_{-} \) for \(T \text{V} \) and \(q \), the quantum deformation of the SU (2) group \(q \), is related to the cosmological constant by \(q = \exp(2i - l_p) \). Since we are interested in the scaling of the Laplacian to analyze the fractal properties of the space-time \(e \), we can approximate the metric in the Laplacian with the inverse of the SU (2) Casimir operator. We recall that in 3d quantum gravity the Casimir operator is related to the length spectrum of a link \(e \) in the simplicial decomposition by the relation
\[L^2 = \frac{c}{2} C^2 (e) = \frac{c}{2} (j_e (j_e + 1) + c) \quad (10) \]

Where the constant is chosen to be \(c = 1 = 4 \) in line with \(\mathcal{S} \). In 3d gravity we approximate the 3-ball with a single tetrahedron and the boundary \(S^2 \) sphere by the surface of the tetrahedron given by the six triangles. We consider one of the four representations \((j) \) and we call the other two free representations by \(j_e \) \((e = 1/2) \). Following the ideas and notation above we denote the operator \(f_0 (T) \) in the following way,
\[f_0 (T) = V^1 \text{Tr} e^{\frac{j_{-} j_{-}}{2}} = V^1 \text{Tr} \mathcal{O}_e \quad (11) \]

Where \(\mathcal{O}_e \) is the Laplacian at a lower infrared scale, \(s_0 \) is fixed (for example) to \(s_0 = j_e \) and
\[\mathcal{O}_e = e^{\frac{j_{-} j_{-}}{2}} \quad (12) \]

The boundary state in the notation above is
\[j (j_e) = N e^{N \frac{1}{2} \sum (j_e) (j_e) + \frac{1}{2} \sum (j_e + 1 = 2)} \quad (13) \]

Where \(N \) is a normalization factor. The dihedral angles = \(\arccos(1 = 3) \) define the boundary extrinsic geometry for an equilateral tetrahedron. Now we have all the ingredients to calculate the expectation value \(\mathcal{S} \) using \(\mathcal{S} \) and \(\mathcal{S} \). In particular, since the geometry appears only in the operator \(\mathcal{O}_e \), we can calculate the expectation value of this operator,
\[\mathcal{W} \mathcal{O}_e = \mathcal{W} (j_e j_e) \mathcal{O}_e j (j_e j_e) \quad (14) \]

Where we introduced the following notation for the normalization, \(\mathcal{W} = \mathcal{W} (j_e j_e) \). We also replaced the Laplacian with \(j_e \) before to calculate the amplitude \(\mathcal{S} \). We replace \(\mathcal{O}_e \) with \(j_e \). Before to calculate the amplitude \(\mathcal{S} \) we replace \(j_e \) with \(j_e j_e \). The result of the calculation \(\mathcal{S} \) is given in Fig. 1 and compared with the exponential \(\exp \left(T \mathcal{C} j_0 (j_0 j_0 + 1) \right) \) in the case \(c = 1 = 4, \mathcal{C} = 1 \) and \(j_0 / 1 = j_e \). The plots in Fig. 1 for \(T = 1 \) and \(T = 10 \). We can observe a perfect agreement for \(j_e = 4 \). This agreement is supported by the plots in Fig. 2 and Fig. 3, where the amplitude \(\mathcal{S} \) on the left and the function \(\exp \left(j_0 j_0 (j_0 j_0 + 1) = 4 \right) \) \((X = \mathcal{C}) \) on the right coincide for \(j_e = 4 \). In Fig. 4 we plotted a section of \(\mathcal{S} \) for \(j_e = 6 \) and \(X = 2 \). This section coincides with the function \(\exp \left(j_0 j_0 (j_0 j_0 + 1) = 4 \right) \) evaluated on \(j_e = 6 \).

In the range \(1 \leq j_0 \leq 12 \) we have interpolated the exact result \(\mathcal{S} \) numerically and obtained a dihedral exponential form of the amplitude. The points data and
the terms are given in Fig. 3. The points are set by the function \(\exp(b=j) \), where \(a \equiv 0.00, b \equiv 0.55 \) and \(3 \Omega 3 \) for \(T = 1 \). Recalling that \(1 = \frac{1}{j^2} \), we conclude that at the Planck scale, \(W \equiv \hat{\phi}_j j^1 \exp(\Omega 9 5 3 \Omega 6) \). (15)

We will use this result to calculate the spectral density at the Planck scale then for \(T = 1 \) in Planck units, this is the reason why we used \(T = 1 \) in the expectation value. We can reproduce the behavior of \(\Omega 4 \) for \(j & 4 \) (in Fig. 5) the function \(\exp(T \Omega 9 0^2 \Omega 0^2 = \Omega j(j + 1) + c) \) coincides perfectly with the exact expectation value \(\Omega 4 \) from \(j & 4 \) also analytically using the asymptotic large \(j \) limit of the \(f 6 j g \) symbol. For large \(j \) we have: \(f 6 j g / \exp(is \Omega j(j + 1) = c) \). Using this property of the symbol and replacing the sum in \(\Omega 4 \) with an integral \(0 \equiv j \), \(j = j + 1 \) we obtain \(\exp(T \Omega 9 0^2 \Omega 0^2 = \Omega j(j + 1) + c) \).

What we learnt from the explicit calculation of \(\Omega 9 \) can be summarized as follows,

\[
\hat{\phi}_j^0 < e^{-\frac{c^2}{\Omega 9 0^2 \Omega 0^2}} \text{ for } j \equiv 1 \text{ (j & 4));}
\]

\[
: e^{-\frac{b c^2}{\Omega 9 0^2 \Omega 0^2}} \text{ for } j \equiv 1 \text{ (l. j. 4));}
\]

where \(\Omega 9 03 \). We introduce a Dirichlet invariant scale defined by \(\hat{\phi}_j \). The result of the \(\Omega 9 \) can be summarized in the scaling property of the Laplacian operator with the scale \(\) (or with the energy scale \(\frac{k}{\Omega 9 0^2 \Omega 0^2} \)),

\[
\hat{\phi}_j j^1 \exp(\Omega 9 5 3 \Omega 6) \text{ for } j \equiv 1 \text{ (j & 4));}
\]

\[
\hat{\phi}_j j^1 \exp(\Omega 9 5 3 \Omega 6) \text{ for } j \equiv 1 \text{ (l. j. 4));}
\]

where \(\Omega 9 \) is the infrared scale \(\Omega 0 \). The red points refer to the function \(\exp(T \Omega 9 0^2 \Omega 0^2 = \Omega j(j + 1) + c) \) for \(j^2 = 1 \) (it is an irrelevant constant) and \(T = 1 \); it is evident that for small values of the representation \(j \) the two functions are different. The plot on the right represents an interpolation of the black points in the picture on the left for \(j \equiv 12 \).
We obtain a fortuitous result for the Laplacian, we have the following eigenvalue equation for the Laplacian:

\[\nabla^2 \psi_n(x) = E_n \psi_n(x) \]

Using (20) and the definition (2), we can calculate explicitly the heat kernel \(K(x, x'; t) = e^{-t \Delta} \delta_0(x) \). By using (18), (17), (18) and (20) we have

\[K(x, x'; t) = h^0 \delta(x - x') e^{-t \Delta} \]

From the knowledge of the propagation kernel (21), we can time-evolve any initial probability distribution \(p(x; 0) \) according to the equation:

\[p(x; t) = \int e^{-i \int_0^t \nabla^2 \psi_n(x)} e^{i \int_0^t \nabla^2 \psi_n(x)} \]

where we used the wave function normalization (20). If the \(\psi_n \)'s are significantly different from zero only for a single eigenvalue \(E_n \), we are dealing with a single-scale problem and then we can identify \(k^2 = E_n \). However, in general the \(\psi_n \)'s are different from zero over a wide range of eigenvalues. In this case we face a multiscalar problem where different modes probe the spacetime on different length scales.

If \((\psi_0) \) is the wave function of the ground state, the eigenfunctions \(\psi_n \) are plane waves with momenta \(p_n \), and they resolve structures on a length scale \(L \) of order \(1/p_n \). Hence, in terms of the eigenvalue \(E_n \), the wave function \(\psi_n(x; p_n) = e^{i p_n x} \) as \(\psi_0 \) is probed by a mode with eigenvalue \(E_n \). It is important to note that the metric \(g_{\mu\nu} \) is constant also for a curved spacetime because the parameter \(k \) just identifies the scale we are probing. Therefore we can conclude that under the scaling of (22), we must use the scale \(k^2 = E_n \) which depends explicitly on the resolving power of the corresponding mode. In eq. (22), \(S_n(k; k_0) \) can be interpreted as \(S(E_n) \). Thus we obtain the trace propagation kernel.

\[P(T) = \frac{e^{T S(E_n) k_0}}{V_{\log k_0}} = V \frac{e^{T S(E_n) k_0}}{e^{T S(E_n) k_0}} \]

It is convenient to choose \(k_0 \) as a macroscopic scale in a regime where there are not strong quantum gravity effects.

We assume for the moment that \(g_{\mu\nu} \) is an approximately flat metric. In this case the trace in eq. (23) is easily evaluated in a plane wave basis:

\[P(T) = \frac{e^{T S(E_n) k_0}}{e^{T S(E_n) k_0}} \]

where we used the metric by \(k_0 = E_n \).

The dependence from \(T \) in (24) determines the fractal dimension of spacetime via \(E_n \). In the limit \(T \to 1 \) and \(T \to 0 \) where we are probing very large and small distances, respectively, we obtain the fractal dimension corresponding to the largest and smallest length scales possible. The limit \(T \to 1 \) and \(T \to 0 \) of \(P(T) \) are determined by the behaviour of \(S(p) \) for \(p \to 0 \) and \(p \to 1 \), respectively.

The above assumption that \(g_{\mu\nu} \) is at was not necessary to obtain the fractal dimension at any given scale. This follows from the fact that even for a curved metric the spectral sum (23) can be represented by an Euler-Maclaurin series which implies (20) as the leading term for \(T \to 0 \).

Now we have all the ingredients to calculate the spectral dimension using (24) inside the definition (19). For the PR model the scaling function \(S(p) \) is obtained from (19) replacing \(k \) with \(p \).

The spectral dimension for \(j = 4 \) or \(k = 4 \) increases from \(D_s = 15 \) to \(D_s = 15 \) at low energy as it is evident from the plot in Fig. 6. For \(j = 4 \) or \(k = 4 \) using the proper scaling we find \(D_s = 198 \). We conclude that the fractal dimension increase decreases for the Planck energy to an intermediate scale where the value of \(15 \) for \(k = 4 \) and increase again to \(15 \) at low energy (Fig. 6).

For the TV model we have dimensions only for \(j = 4 \) and the result is plotted in Fig. 5 on the right. That plot gives the spectral dimension as a function of the cosmological constant. The spectral dimension is in the range \(20 \). \(D_s = 25 \) for 0.001 \(\mu \) and 0.009 in Planck units. In other words the spectral dimension increases with the increase of the cosmological constant at the Planck scale.

Conclusions and Discussion. In this paper we calculated explicitly the spectral dimension \(D_s \) for the 3d quantum spacetime using the Ponzano Regge spin foam model. We considered the simplest decom positions of the spacetime and we used the general boundary formalism to characterize the scaling properties of the expectation value for the trace propagation kernel. Using the technical simplifications repeatedly used in the graviton propagator calculations we have evaluated the nonperturbative expectation value of the heat kernel.

In the PR model and for \(k = 4 \), we have plotted \(D_s \) as a function of a continuous division time \(T \) or equivalently as a function of the length scale. We obtained three phases: a short scale phase \(1 \). \(4 \) of spectral dimension \(D_s = 2 \), an intermediate scale phase \(1 \) of spectral dimension \(D_s = 15 \) and a large scale phase with \(D_s = 3 \).
The plot on the left represents the spectral dimension for $j = 4$ or k. $E_p = 4$ as function of the continuous time T. The dimension at high energy is 1. We have plotted $T = 2 (0.05, 10^4)$ and used $E_p = 1000, k_0 = 0.01$. The plot on the right represents the spectral dimension as function of the cosmological constant in the Turchan-Viro model at the Planck scale (1. j. 9).

For the TV model the results are equal for k. $E_p = 4$ and to feel the effect of the cosmological constant we must go beyond that energy. The spectral dimension depends on k as it evident from the plot in Fig 10.

We interpret the results in the following way. At high energy the spectral dimension is $D_s < 3$ because there is an infold present typical of an atom in structure. The cosmological constant basically decreases the number of holes increasing the spectral dimension.

Acknowledgments. We are extremely grateful to the fantastic environment of Perimeter Institute, F. C. is in particular indebted with Potgieter for inviting him to the Perimeter Institute. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation.

[8] A. Ashkar, M. Bojowald, Quantum geometry and Schwarzschild singularity Class. Quant. Grav. 23 (2006) 5587-5602, gr-qc/0604044