ALIEN MAPS OF AN OCEAN-BEARING WORLD

Nicolas B. Cowan1, Eric Agol, Victoria S. Meadows2, Tyler Robinson2,
Astronomy Department and Astrobiology Program,
University of Washington, Box 351580, Seattle, WA 98195

Timothy A. Livengood3, Drake Deming3,
NASA Goddard Space Flight Center, Greenbelt, MD 20771

Carey M. Lisse,
Johns Hopkins University Applied Physics Laboratory, SD/SRE, M P 3-E 167,
11100 Johns Hopkins Road, Laurel, MD 20723

Michael F. A'Hearn, Dennis D. Wellnitz,
Department of Astronomy, University of Maryland, College Park MD 20742

Sara Seager,
Department of Earth, Atmospheric, and Planetary Sciences, Dept of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave. 54-1626, MA 02139

David Charbonneau,
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138

and the EPOXI Team

Accepted for publication in ApJ

ABSTRACT

When Earth-mass extrasolar planets first become detectable, one challenge will be to determine which of these worlds harbor liquid water, a widely used criterion for habitability. Some of the first observations of these planets will consist of disc-averaged, time-resolved broadband photometry. To simulate such data, the Deep Impact spacecraft obtained light curves of Earth at seven wavebands spanning 300\textendash}1000 nm as part of the EPOXI mission of opportunity. In this paper we analyze disc-integrated light curves, treating Earth as if it were an exoplanet, to determine if we can detect the presence of oceans and continents. We present two observations each spanning one day, taken at gibbous phases of 57\textdegree and 77\textdegree, respectively. As expected, the time-averaged spectrum of Earth is blue at short wavelengths due to Rayleigh scattering, and gray redward of 600 nm due to reflective clouds. The rotation of the planet leads to diurnal albedo variations of 15\textendash}30\%, with the largest relative changes occurring at the reddest wavelengths. To characterize these variations in an unbiased manner we carry out a principal component analysis of the multi-band light curves; this analysis reveals that 98\% of the diurnal color changes of Earth are due to only 2 dominant eigencolors. We use the time-variations of these two eigencolors to construct longitude maps of the Earth, treating it as a non-uniform Lambert sphere. We find that the spectral and spatial distributions of the eigencolors correspond to cloud-free continents and oceans; this despite the fact that our observations were taken on days with typical cloud cover. We also find that the near-infrared wavebands are particularly useful in distinguishing between land and water. Based on this experiment we conclude that it should be possible to infer the existence of water oceans on exoplanets with time-resolved broadband observations taken by a large space-based coronagraphic telescope.

Subject headings: methods: data analysis | (stars:) planetary systems |}

1. INTRODUCTION

The rate of discovery of extrasolar planets is increasing and every year it is possible to detect smaller plan-ets. It is only a matter of time before we detect Earth-analogs, but even then our ability to study them will remain limited. Due to exoplanets' great distance from us and their relative faintness, spatially resolving them from their host stars is only currently possible for hot, young Jovian planets in long-period orbits [Kalas et al. 2008; Marois et al. 2008; Lagrange et al. 2008]. For
other planets | including Solar System analogs| spatially separating the image of the planet from that of the host star will have to wait for space-based telescopes like TPF/Darwin in (Traub et al 2006; Beekhman et al 2008; Eriksen et al 2012). But even these telescopes will not have sufficient angular resolution to spatially resolve the disc of an exoplanet.

As noted over a century ago by (Russell 1906), variations in the reflected light of an unresolved rotating object can be used to learn about albedo markings on the body. Such light curve inversions have proved valuable to interpret the photometry of objects viewed near full phase and by, for example, to the right albedo map of Pluto (Lisse & Feld 1972). More recently, thermal light curves have made it possible to measure the day/night temperature contrast of short-period exoplanets (Harrington et al 2003; Cowan et al 2007; Snellen et al 2009). Light curve inversion (Cowan & Agol 2008) has even been used to construct coarse longitudinal hemis maps of hot Jupiters (Knutson et al 2007, 2009).

The optical and near-IR light curves of Earth, on the other hand, have not been thoroughly studied to date. Earthshine, the faint illumination of the dark side of the Moon due to the reflected light from Earth, has been used to study the exo-ecosphere, cloud cover variability, vegetation signatures and the effects of specular reflection for limited regions of our planet (Goode et al 2001; Wood et al 2004; Qiu et al 2004; Pallé et al 2004; Montanes-Rodríguez et al 2005; Seager et al 2005; Hamdan et al 2005; Montanes-Rodriguez et al 2006, 2007; Langford et al 2009). Brief snapshots of Earth obtained with the Galileo spacecraft have been used to study our planet (Sagan et al 1993; Geissler et al 1995) and numerical models have been developed to predict how diurnal variations in disk-integrated light could be used to characterize Earth (Ford et al 2001; Tinetti et al 2006a,b; Pallè et al 2009; Wilmans & Gardner 2008).

This paper is the first in a series analyzing the photometry and spectroscopy of Earth obtained as part of the EPOXI mission and is written in a different spirit than most studies of Earthshine. Rather than attempting to produce a detailed model which exactly reproduces the observations (a.k.a. "forward modeling"), we make a few reasonable simplifying assumptions which allow us to extract information directly from the data ("backward modeling"). This approach is common to detailed modeling and will be especially appropriate when studying an alien world with limited data. This paper is organized as follows: in §2 we describe the time-resolved observations of the entire disc of Earth obtained in this study; in §3 we use principal component analysis to determine the dim inant spectral components of the planet in a model-independent way; we use light curve inversion in §4 to convert the diurnal albedo variations into a longitudinal map of Earth; we discuss our results in §5; our conclusions are in §6.

The EPOXI mission reuses the still-functioning Deep Imp act spacecraft that successfully observed comet 9P/Turner 1. EPOXI science targets include several transiting exoplanets and Earth en route to a flyby of comet 103P/Hartley 2. The EPOXI Earth observations are valuable for exoplanet studies because they are the first time-resolved, multi-wavelength observations of the full disc of Earth. These data reveal Earth as it would appear to observers on an extrasolar planet, and can only be obtained from a relatively distant vantage point, not from low-Earth orbit. The data consist of an equinox observation on March 18, and near solstices on June 6. An observation taken on May 28 included a partial linear transit, but we save the analysis of those data for a future paper. The observations, summarized in Table 1, were taken when Earth was in a partially illuminated

| 2 O B S E R V AT I O N S |

Deep Impact's 30 cm diameter telescope coupled with the High Resolution Imager (HR I, Hampton et al 2005) recorded images of Earth in seven 100 nm wide optical wavebands spanning 300-1000 nm. Hourly observations were taken with the observing system centered on 350, 750 and 950 nm, whereas the 450, 550, 650 and 850 nm data were taken every 15 minutes; each set of observations lasted 24 hours. The exposure times for the different wavebands are: 73.4 s at 350 nm; 13.3 s at 450 nm; 8.5 s at 550 nm; 9.5 s at 650 nm; 13.5 s at 750 nm; 26.5 s at 850 nm; 61.5 s at 950 nm. Although the EPOXI images of Earth were spatial resolution better than 100 km, we must use the data that will eventually be available for exoplanets by integrating the data over the entire disc of Earth and using only the hourly EPOXI observations from each of the wavebands, producing seven light curves for each of the two observing campaigns, shown in Figure 1. Our results are the same when we use the 450, 550, 650 and 850 nm data from 00, 15, 30 or 45. The photometric uncertainty in these data is exceedingly small: on the order of 0.1% relative errors.

Since we are interested in the properties of the planet rather than its host star, we normalize the light curves by the average solar ux in each bandpass using the solar spectrum 5 to obtain the reactivity in each waveband. We express the brightness of the planet as an apparent albedo, the average albedo of regions on the planet that are both visible and illuminated during each observation 6 . The spacecraft was above the middle of the Pacific Ocean at the start of both observing campaigns, so the shapes of the light curves are similar for both epochs. The June light curves vary more rapidly because a smaller fraction of the illuminated hemisphere of Earth was visible (62% rather than 77%) and thus less of the planet was averaged together in any given frame.

4 The University of Maryland leads the overall EPOXI mission, including the flyby of comet Hartley 2. NASA Goddard leads the exoplanet and Earth observations.

6 The ratio of the observed ux to the expected ux for a planet of the same size and phase exhibiting diurnally resolved and with an albedo of unity everywhere on its surface. Mathematicians details of this de nition are in (11).

http://www.astm.org/Standards/E490.htm
TABLE 1
EPOXI Earth observing campaigns

<table>
<thead>
<tr>
<th>Date</th>
<th>Starting CML</th>
<th>Phase</th>
<th>Illuminated Fraction of Earth’s Disc</th>
<th>Spacecraft Angular Diameter</th>
<th>Pixels Spanned by Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/18/2008</td>
<td>150 W</td>
<td>57</td>
<td>77%</td>
<td>0.18 AU</td>
<td>1.53</td>
</tr>
<tr>
<td>5/28/2008</td>
<td>195 W</td>
<td>75</td>
<td>63%</td>
<td>0.33 AU</td>
<td>0.89</td>
</tr>
<tr>
<td>6/4/2008</td>
<td>150 W</td>
<td>77</td>
<td>62%</td>
<td>0.34 AU</td>
<td>0.87</td>
</tr>
</tbody>
</table>

The CML is the Central Meridian Longitude, the longitude of the sub-observer point. The planetary phase, , is the star (planet) observer angle and is related to the illuminated fraction by \[f = \frac{1}{2} (1 + \cos \phi). \] The 5/28/2008 observation is not used in this paper due to a planned lunar transit.

2.1. Cloud Variability

Clouds cover roughly half of Earth at any point in time (Palle et al. 2003) and they dominate the disc-integrated albedo of the planet (e.g., Tinetti et al. 2006). Mapping surface features could be problematic if large-scale cloud formations move or disperse on timescales shorter than a planetary rotation.

The necessary condition for variable cloud patterns (surface pressure and temperature near the condensation point of water) is a likely precondition for habitability, and hence may pose a problem for the planets that interest us the most. Changeable cloud cover may indicate the presence of water vapor in a planet’s atmosphere, but here we are concerned with the presence of liquid water on the planet’s surface.

After 24 hours of rotation the same hemisphere of Earth should be facing the Deep Impact Spacecraft so the integrated brightness of the planet’s surface should be identical, provided one has accounted for the difference between the sidereal and solar day, as well as slight changes in the geocentric distance of the spacecraft and in the phase of the planet as seen from the spacecraft. Note that our observations are not taken near full phase so we may safely ignore the opposition effect (Hankey et al. 1993). Even after correcting for all known geometric effects, the observed

\[j \] values at the start and end of a given observing campaign differ by 22% and 34% for the March and June observing campaigns, respectively, as shown in Figure 6. We attribute this discrepancy to diurnal changes in cloud cover. Therefore, even though the EPOXI photometry is excellent, for the purposes of our model, we use effective uncertainties equal to \(f_{start} f_{end} j \) for each waveband.

Fig. 1. Seven light curves obtained by the EPOXI spacecraft on March 18 (solid lines) and on June 4, 2008 (dashed lines). The bottom-right panel shows changes in the bolometric albedo of Earth.

Fig. 2. The discrepancy in apparent albedo between the start and end of each observing campaign. Note that during the March observations the \(j \) values decreased at all seven wavebands, while in June the \(j \) values increased. We attribute these changes in albedo to changes in cloud cover.

Our 24-hour cloud variability, or a few percent is somewhat smaller than estimates from Earthshine observations (e.g., Goode et al. 2001; Palle et al. 2004, found day-to-day cloud variations of roughly 5% and 10%, respectively), and is a smaller effect compared to the rotational modulation of Earth’s albedo or the 10–20% differences between the light curves from the two EPOXI observing campaigns. The 10–30% variations in apparent albedo we observe due to the Earth’s rotation (with the largest variations occurring at near infrared wavebands) agree with previous optical studies (Ford et al. 2001; Goode et al. 2001) and diurnal variations of 15–20%.

The differences between the March and June observations could be due to some combination of stochastic changes in cloud cover, coherent seasonal changes in cloud cover, or simply a change in viewing geometry (which we discount in 4.3). Although daily changes in cloud cover are modest, the cloud cover will be entirely different for observations taken months apart (see, for example, Figure 6 of Palle et al. 2008).

3. Determining Principal Colors

In this study we assume no prior knowledge of the different surface types of the unresolved planet. Our data consist of 50 broadband spectra of Earth (25 hourly observations for each of two epochs). The time-averaged spectrum of Earth is blue at short wavelengths due to
Importance as a function of time (from Equation 1) is shown in Figure 4 and the relative combinations of filters which are most sensitive to the different surface types. Rather, they are particular combinations of filters which are most sensitive to the different surface types, as shown in Figure 4. The changes in color of Earth during our observations can be thought of as occupying a 7-dimensional parameter space (one for each waveband). Principal component analysis (PCA, e.g. Connolly et al., 1995) allows us to reduce the dimensionality of these data by defining orthogonal eigenvectors in the parameter space (eigencolors). Qualitatively, the observed spectrum of Earth at some time can be recovered using the equation:

\[A(t) = \sum_{i=1}^{X} C_i(t)A_i; \]

where \(A_i \) is the time-averaged spectrum of Earth, \(A_i \) are the seven orthogonal eigencolors, and \(C_i \) are the instantaneous projections of Earth’s colors on the eigencolors. The terms in the sum are ranked by the time-variability. The steep ramp at short wavelengths is due to Rayleigh scattering. The near-IR wavebands exhibit the largest relative time-variability.

Rayleigh scattering and grayward longward of 550 nm because of clouds, as shown in Figure 3. The changes in color of Earth during our observations can be thought of as occupying a 7-dimensional parameter space (one for each waveband). Principal component analysis (PCA, e.g. Connolly et al., 1995) allows us to reduce the dimensionality of these data by defining orthogonal eigenvectors in the parameter space (eigencolors). Qualitatively, the observed spectrum of Earth at some time can be recovered using the equation:

\[A(t) = \sum_{i=1}^{X} C_i(t)A_i; \]

where \(A_i \) is the time-averaged spectrum of Earth, \(A_i \) are the seven orthogonal eigencolors, and \(C_i \) are the instantaneous projections of Earth’s colors on the eigencolors. The terms in the sum are ranked by the time-variability. The steep ramp at short wavelengths is due to Rayleigh scattering. The near-IR wavebands exhibit the largest relative time-variability.

We find that 98% of the changes in color do not occupy the whole parameter space but instead lie on a two-dimensional plane defined by the two principal eigencolors. That is to say, truncating the sum in Equation 1 at \(i = 2 \) only leads to errors of a couple percent. In detail, the plane has some thickness to it: two additional components only present at the \(i = 2 \) level that we neglect in the remainder of this study. We estimate the uncertainty in the PCA by creating 10,000 versions of the light curves with added Gaussian noise. The standard deviation in the resulting PCA parameters gives an estimate of their uncertainty. The primary eigencolors (\(A_1 \) and \(A_2 \) from Equation 1) are shown in Figure 4 and their relative importance as a function of time (\(C_1(t) \) and \(C_2(t) \) from Equation 1) is shown in Figure 4. The uncertainties on the PCA are correlated but we represent them as error bars in the figures.

The eigencolors should not be thought of as spectra of different surface types. Rather, they are particular combinations of filters which are most sensitive to the different surface types. As such, the eigencolors are a relative color from the Earth mean. The first eigencolor is most sensitive to variations in the red wavebands (since the albedo of Earth varies the most at near-IR wavelengths) and the second eigencolor is most sensitive to the blue wavebands. Since the mean Earth spectrum is | to 1st order | a cloud spectrum seen through a scattering atmosphere, the principal colors of Earth are related to the main surface types on Earth: cloud-free continents are most reflective at longer wavelengths (Tinetti et al., 2006a) constructed from the ASTER Spectral Library found at http://spec.lib.jpl.nasa.gov, while cloud-free oceans are most reflective in the blue (McLinden et al., 1997). For example, the presence (or lack) of continents shows up as positive (or negative) excursions of the red eigencolor. The relative contributions of the colors are the projection of the Earth’s instantaneous color onto an eigencolor. They are not identical in the March and June observations due to diurnal cloud cover: when both the red and blue eigencolors are positive, there was more than aver-
age cloud cover, while regions with uniformly low eigencolors correspond to relatively cloud-free regions. Nevertheless, the similar shapes of the two sets of curves would indicate to extraterrestrial observers that the principal colors are most sensitive to xed surface features that were visible from one season to the next (We run the PCA on both the March and June observations simultaneously). The implicit "third surface" in this analysis is the time-averaged spectrum of the Earth, which includes clouds and Rayleigh scattering.

To test how sensitively the results of the PCA depend on photonetic uncertainty, we repeat the analysis with additional noise. Our principal result (the significant detection of red and blue eigencolors and their ten postal variations) are essentially unchanged for photonetic uncertainties small enough than 2(3%). Observations of exoplanets of this quality are not around the corner, but may be obtained in the foreseeable future: a 16 m space telescope (e.g., Postman & ATLAST Concept Study Team 2003) equipped with a coronagraph could obtain 2% photonetics with 1 hour exposures of an Earth-analog at 10 pc. We have assumed a planet with the same radius and mean albedo as Earth, orbiting at 1 AU from a Sun-like star and observed near quadrature. We compute signal-to-noise as in Alcubierre (2003) including photon counting noise from the planet and PSF noise from the host star, but neglecting zodiacal and exozodiacal noise.

4. Mapping Surface Types

The time-variation in the eigencolors, Figure 3, tells us about the spatial variations of the colors around the planet. A region on the planet contributes one or less to the disc-integrated light depending on the amount of sunlight the region is receiving, its projected area as seen by the observer, and its albedo. A star passes, different regions of the planet rotate through the set of egress where the combination of illumination and visibility is optimal. The zeroth order approach to mapping the planet would be to assume that all of the light from the planet originates from this region, as would be the case for purely specular reflection. The observed light curve could then be directly converted into a longitudinal albedo map of the planet at the appropriate latitude. We explore this limiting case in Appendix III.

More exactly, determining the spatial distribution of a color based on the planet's multi-band light curves is a deconvolution problem equivalent to mapping the albedo markings on a body based on its disc-integrated reflected light curve. This problem was solved by Russet (1998) for outer Solar System objects, which are always observed near full phase, as seen from Earth. Exoplanets, however, appear at a variety of phases (e.g., crescent, gibbous) and therefore require a more complex solution. We keep the problem tractable by considering the diffrusely reflecting (Lambertian) regime, in which surfaces reflect light equally in all directions.

Most materials are not perfectly Lambertian, instead scattering light preferentially backwards, forwards, or specularly. Coherent back-scattering is only significant near full phase (the opposition pole, e.g., Hapke et al. 1993). In fact, observations of Earthshine (Qiu et al. 2003; Falle et al. 2003) and simulations (Ford et al. 2001; Williams & Carlos 2008), indicate that the disc-integrated light of a cloudy planet like Earth is well-described by diffuse reflection, provided the star(planet) observer angle is close to 90°. Future missions that interferometers, coronographs, or occulters will be able to observe planets at phase angles slightly smaller than 90° (a.k.a. "quadrature"), since that is when the S/N ratio is greatest (e.g., Alcubierre 2007).

4.1. Reflected Light From A Non-Uniform Lambert Sphere

The ux from a diffuse reflecting non-uniform sphere can be parametrized in terms of its albedo map, A(\theta, \phi), where \theta and \phi are latitude and longitude on the planet, respectively. The visibility and illumination of a region on the planet at time t are denoted by V(\theta, \phi; t) and I(\theta, \phi; t), respectively. V is unity at the sub-observer point, drops as the cosine of the angle from the observer and is null on the far side of the planet from the observer; I is unity at the sub-stellar point, drops as the cosine of the angle from the star and is null on the near-side of the planet. The mathematical details of V and I can be found in Appendix I. The planet/star u(x ratio, , is obtained by integrating the product of visibility, illumination and albedo over the planet's surface:

\[R = \frac{1}{\pi} \int V(\theta, \phi; t) I(\theta, \phi; t) A(\theta, \phi) d\theta d\phi \]

where \(R \) is the planet's radius and \(a \) is its mean orbital radius. The integral is over the entire surface of the planet, but the integrand is only non-zero for the regions of the planet that are both visible and illuminated (e.g., for \(1/2 \) of a planet viewed at quadrature).

The u(x ratio primarily depends on the planet's orbital phase, the observer (planet/star angle), and the ratio \(R_p/a \). We define the apparent albedo, \(A \), as the ratio of the ux from the planet divided by the \(u(x \) we would expect at the same phase for a perfectly reflecting (A = 1) Lambert sphere (see also Alcubierre et al. 2003):

\[A(\tau) = \frac{V \int A \, d\omega}{V \int d\omega} \]

A uniform planet would have an apparent albedo that is constant over a planetary rotation; a true Lambertian planet would further have a constant apparent albedo during the entire orbit. For non-transiting exoplanets, the planetary radius is unknown, so \(A \) can only be determined to within a factor of \(R_p^2 \).

4.2. Sinusoidal and N-S-Like Maps

The map A(\theta, \phi) can take any form but diurnal brightness variations are due entirely to the longitude-dependence of albedo, provided that the planet's rotational period is much shorter than its orbital period. In the opposite extreme of tidally-locked planet, seasonal variations in reflected light will be due to both albedo markings on the planet and changes in phase, which will complicate the mapping process. Note, furthermore, that only the planet's permanent day-side could be mapped using reflected light, in such a case. To constrain the latitude-dependence of albedo, one would need a high-obliquity planet and observations spanning many different phases. For our analysis we use two classes...
of a model map: one constructed from sinusoidal variations in albedo as a function of longitude, and the other with uniform longitudinal slices of constant albedo (Cowan & Agol 2008). In both cases the albedo is constant with latitude. We compare these two models explicitly in Appendix II.

The transformation from A(1) to A(t) is essentially a low-pass filter which preferentially preserves information about large-scale color variations on the planet. The smoothing kernel (the product of V and I) has a FWHM of 76° for the March observation and 67° for the June observation. Furthermore, the transformation can be particularly insensitive to certain modes and these cannot be recovered from the light curve inversion (for example, a planet observed at full phase has invisible odd sinusoidal modes. Russell 1908; Cowan & Agol 2008). Even in the idealized toy example discussed in Appendix II, therefore, the deconvolution can only recover the broadest trends.

These best-fit parameters and their uncertainties are determined using a Markov Chain Monte Carlo (MCMC), and we have adopted a uniform distribution for the harmonic index n because high-frequency modes have a relatively small impact on the observed light curves. We truncate the series when we have sufficiently many terms to get a reduced chi-squared of order unity. In this study, we took that including modes up to n = 3 or 4 is sufficient, depending on the phase angle and the color being used. By the same token, 7- and 9-terms models are used in our tests since they have the same number of free parameters. The sinusoidal and N-slice longitudinal maps of the red and blue eigen-colors (roughly, land coverage and ocean coverage) we construct using PCA and light curve inversion are shown in Figures 6, 7, 8, and 9. The March and June maps differ due to different cloud cover on the two days. Nevertheless, the broad peaks and troughs occur at the same longitudes at both epochs, indicating that the eigen-colors are sensitive to permanent surface features, not merely clouds. The red eigen-color is more sensitive than the blue eigen-color to the positions of continents and oceans on Earth, despite the fact that both eigen-colors can be foiled by clouds. This is because the red eigen-color is most sensitive to the near-infrared light that arid regions of Earth reflect, and these regions are generally cloud-free.

For our baseline model we assume that the planet’s rotation axis is perpendicular to its orbital plane (zero obliquity) and determine the best-fit longitudinal map in each of the two principal colors, assuming the same underlying map for the March and June observations. The March map of the red eigen-color, the most important of the principal components, is shown in Figure 10 compared to a cloud-free MODIS map of land coverage. Cloud cover, shown in Figure 11, keeps the match from being perfect, but our blind analysis of the light curves clearly picks out the Atlantic and Pacific Oceans, as well as the major landform s: the Americas, Africa, and Asia.

4.3. Obliquity

7 http://modis.gsfc.nasa.gov/
observed light curves, however. We see this effect in our models: the longitudinal maps for the 23.5° obliquity have slightly greater amplitudes variations than those for the zero obliquity case, while in the case of 90° obliquity the subtle changes in apparent albedo in Figure 1 can only be explained by enormous (100%) changes in albedo from one region of the planet to another.

Obliquity also determines which regions of the planet can be mapped. As long as the planet's rotation axis nestles in the sky plane, the reflected light we observe is preferentially coming from near the equator. If instead the planet's rotational axis is not in the sky plane, we preferentially see some non-zero latitude. A longitudinal map can only be a good representation of the latitudes that are both visible and illuminated, and the latter will change depending on the phase of the planet.

During the March EPOXI observations, the sub-solar and sub-observer points were both close to the equator; for the June observations the sub-observer was again nearly equatorial, but the sub-solar point was at 22° N of the equator (it being northern summer). The minus-cule effect of this change in viewing geometry can be seen in Figure 12. The differences between the March and June observations must therefore be due to different cloud cover.

5. DISCUSSION

Spectra of habitable terrestrial exoplanets will tell us the structure and composition of their atmosphere, but may require integration times of weeks to months. Since this is longer than the rotation period of most planets, spectroscopy can only tell us about the spatially-averaged planet. Photometric light curves, with integration times of hours to days, have the potential to reveal spatial variations in the planet's properties. Simulations by Ford et al. (2001) indicated that diurnal variability in the albedo of an unresolved, cloudless exoplanet could be...
used to determine its ocean versus land fraction. But in
their models it was the specular nature of oceans, rather
than their blue color, that distinguished them from con-
tinents. The more detailed work of"Iliamis & Gaidos
(2005) indicates that on a cloudy world like Earth, the
contribution of specular reflection from oceans will be
tiny compared to the diurnal signal from clouds. The
models of(Palle et al. 2006) showed that despite changes
in cloud cover, the diurnal albedo variations of an Earth-
like planet could be used to determine its rotation rate.
Ours study shows that with observations qualitatively
similar to those considered by(Palle et al. 2006), but
with greater signal-to-noise and better spectral resolu-
tion, it is possible to actually map the longitudinal distri-
bution of colors and by extension the dominant surface
types of Earth.

Earth clouds have higher albedo at all seven wavebands
than ocean or continents (see Fig. 3), and most regions of the planet have variable
cloud cover (Palle et al. 2003). Observations of mul-
tiple consecutive planetary rotations would yield mul-
tiple similar longitudinal maps. If differences between these
maps were attributed to changes in cloud cover it would
be possible to create maps of average cloud cover at each
longitude, as well as maps of cloud variability. It may
evén be possible to partially "re-see" clouds since the
lowest albedo at each longitude would correspond to the
observation with the least cloud cover. It would be im-
possible, however, to strip the clouds from regions that
are permanently shrouded (e.g.: tropical rain forests).
Inssofar as such clouds are permanent features, they can
be mapped as terrain features, like oceans and contin-
ts.

Clouds are doubly important because they change over
time and dominate the total albedo of Earth. However,
inssofar as roughly half of Earth is cloud-covered at any
point in time, the bolometric albedo of the planet does
not change much over 24 hrs (as shown in bottom right
panel of Figure 1). What can change is the signant color of the planet, which is what we have
studied in this paper. Since clouds are roughly gray,
any color (apart from blue Rayleigh scattering) is com-

Fig. 12. The effect of a change in viewing geometry: the equator-weighted longitudinal water distribution on Earth based
on the MODIS map is shown in the solid line. The dotted line
shows the same but weighted in favor of 11 N, appropriate for
a viewer above the equator near summer solstice. The e is
effectively negligible, justifying our assumption of zero obliquity.

Note that a blue broadband spectrum does not imply liquid water on the surface of a
planet (e.g., Neptune). The spectral variability in the blue
color is significant, however. An alternative explanation for spatially inhomogeneous blue colors could be partial
cloud coverage: the increased path length in regions with fewer clouds could increase the portalance of Rayleigh scattering. But the spotty cloud cover on such planet might, like tim-e variable cloud cover, give away the presence
of water near its condensation point. Furthermore, the
blue patches on such a planet might reveal them selves by their very steep blue spectrum. In conjunction with
tim-e averaged spectra, broadband light curves provide a powerful test for the presence of liquid water on a
terrestrial planet, and hence habitability.

6. Conclusions

In this paper we have shown that despite sim-
plifying assumptions (edge-on geometry, zero-obliquity, dif-
suse reflection) and the presence of obscuring clouds, one
can use tim-e resolved photometry to detect and map vast
blue surfaces, separated by large red regions. If we see such features on an extrasolar terrestrial planet it would
strongly suggest the presence of continents and oceans,
and indicate that the planet was a high priority for spec-
troscopic follow-up.

Although Earth is most reflective at short wavelengths
int the blue due to Rayleigh scattering, the wavelengths longward of 700 nm provide the most spatial information because the
relative diurnal variability at those wavelengths is greatest
(25% - 30%, in qualitative agreement with the simula-
tions of Ford et al. 2003), as shown by the error bars in
Figure 3. The relative variability is greater for smaller illuminates fractions, in accordance with geometric consid-
erations. The logical conclusion is that observations of
exoplanets at crescent phase or at times of partial eclipses
would provide the greatest spatial resolving power, but this is not in practice due to poorer signal-to-noise ratio: the
ux from a crescent planet is smaller than at quadrature and at small separation the planet is lost in the glare of its host star. Note that interesting measurements can be
made if the planet passes directly in front of (transition)
ol (secondary eclipse) its host star, but for habitable
terrestrial planets the odds of this are not very good
(e.g., an Earth-analogs have a 0.5% probability of transmit-
ing a Sun-like host star).

The unknown obliquity of exoplanets does not repre-
sent a serious obstacle to mapping their longitudinal
color variations, although it will a ect which parts of
the planet are being mapped. There are pathological or-
bital con gurations that would prohibit mapping (e.g., pole-on rotation axis observed at full phase) but planets in such con gurations will be in possible to observe in any case. Planets will typically be observed near quadrature, so longitudinal maps will not depend sensitively on obliquity.

N B C . is supported by the Natural Sciences and Engineering Research Council of Canada. E A . is supported by the National Science Foundation CAREER Grant No. 0645416. This work was supported by the NASA Discovery Program. N B C . acknowledges useful discussions of PCA with A J. Connolly and J. VanderPlas, discussions of rotation matrices with H. Haggard, help from D. Fabrycky in pointing out an old reference and from P. K. undurchy in estimating coronagraph S/N.

REFERENCES

A gol, E. 2007, M N R A S, 374, 1271
Fridlund, C. 2002, in COSPAR, F r macy M eeting, Vol. 34, 1344, COSPAR S cien ti ac Sem inar by

APPENDIX I: VISIBLE & ILLUMINATION

One can define a right-handed orthonormal coordinate system, r, y, z, in the observer's inertial reference frame with the origin at the center of the planet, the x-axis extending towards the observer, and the y- and z-axes in the sky plane. The orbital and rotational angular velocity vectors of the planet in this frame are r orb and r rot, respectively. If the planet is in an eccentric orbit, the amplitude of r orb will be a function of the e, but in any case the direction of the vector is constant. In the interest of simplicity we consider a circular orbit. Neglecting precession, r rot will be a constant vector (note that this is the rotation of the planet in an inertial frame e, not the rotation with respect to the host star). We define the position of the sub-stellar point at t = 0 as x star and the intersection of the prime meridian and the equator on the planet as x equ. Note that x star is always perpendicular to r orb, and x equ is always perpendicular to r rot.

At t= 0 we define the orthonormal coordinate system xed with respect to the planet surface u0 = x equ, 0 = r rot, and 0 = 0. Likewise, we define at t= 0 the orthonormal vectors defining the star reference frame: d0 = x star, f0 = r orb, and 0 = 0. The position of a region on the planet can be described by its colatitude, 6, measured from the planet's north pole, and its east longitude, 0, measured along the equator from the prime meridian. This patch has a position in the observer frame of x = sin(6 + sin (t + sin (v + cos v)). The visibility of this region from the perspective of the
observer is \(V (\phi; t) = \max [\mathbf{r} \cdot \mathbf{x}; 0] \). The inner product can be expanded as:

\[
\mathbf{r} \cdot \mathbf{x} = \sin \cos (\phi - \phi_{\text{rot}}) \mathbf{d}_0 \cdot \mathbf{x} + \sin \sin (\phi - \phi_{\text{rot}}) \mathbf{d}_0 \cdot \mathbf{x} + \cos \phi_0 \cdot \mathbf{x}.
\]

The illumination of this patch is \(I(\phi; t) = \max [r \cdot \mathbf{d}; 0] \). The inner product can be expanded as:

\[
\mathbf{r} \cdot \mathbf{d} = \sin \cos (\phi_{\text{rot}}) \cos (\phi - \phi_{\text{rot}}) \mathbf{d}_0 \cdot \mathbf{d} + \sin \cos (\phi_{\text{rot}}) \sin (\phi - \phi_{\text{rot}}) \mathbf{d}_0 \cdot \mathbf{d} + \sin \sin (\phi_{\text{rot}}) \cos (\phi - \phi_{\text{rot}}) \mathbf{d}_0 \cdot \mathbf{x} + \cos \cos (\phi_{\text{rot}}) \mathbf{d}_0 \cdot \mathbf{x} + \cos \sin (\phi_{\text{rot}}) \mathbf{d}_0 \cdot \mathbf{x}.
\]

The visibility and illumination can be expressed compactly in terms of the sub-observer longitude, \(\phi_{\text{obs}}(t) = \phi_{\text{obs}}(0) \), \(\phi_{\text{rot}} \), and the constant sub-observer latitude, \(\phi_{\text{obs}} \), as well as the sub-stellar longitude, \(\phi_{\text{star}} \), and latitude, \(\phi_{\text{star}} \):

\[
V = \max [\sin \sin \phi_{\text{obs}} \cos (\phi_{\text{obs}} + \phi_{\text{rot}}) \phi_{\text{obs}} + \cos \cos \phi_{\text{obs}}(0)\]
\]

\[
I = \max [\sin \sin \phi_{\text{star}} \cos (\phi_{\text{star}} + \phi_{\text{rot}}) \phi_{\text{star}} + \cos \cos \phi_{\text{star}}(0)];
\]

where the sub-stellar longitude is related to the orbital phase measured from the solstice, \((t) = 0 + \phi_{\text{rot}} \), and the constant planetary obliquity, \(\phi_{\text{rot}} \), by \(\cos \phi_{\text{star}} = \cos \phi_{\text{obs}} \).

APPENDIX II: COMPARING N-SLICE AND SINUSODIAL MAPS

The N-Slice and sinusoidal maps are compared in Figure 13, with the resulting light curves shown in Figure 14 (see also Cowan & Agol 2008). A MODIS map of liquid water content (s.f. top panel of Figure 13) was integrated to a one-dimensional, equator-weighted map of water content, the black line in Figure 13. A model light curve, shown in black on Figure 14, was generated assuming photometric uncertainties of 1%. This light curve became the input for light curve inversions using sinusoidal (red) and N-Slice (blue) maps, shown here with 1 intervals.

APPENDIX III: PLANET MAPPING IN THE SPECULAR REGIME

An interesting limiting case arises when the entirety of the light from the planet originates from the glint spot where the product \(V I \) is maximized, as would be the case for purely specular reflection. The latitude of the specular point is given by

\[
\cos \phi_{\text{spec}} = \frac{\cos \phi_{\text{star}} \cos \phi_{\text{obs}}}{2[1 + \sin \phi_{\text{obs}} \cos (\phi_{\text{obs}} + \cos \phi_{\text{obs}}) + \cos \phi_{\text{star}} \cos \phi_{\text{obs}}]}.
\]

and its longitude is given by

\[
\tan \phi_{\text{spec}} = \frac{\sin \phi_{\text{star}} \sin \phi_{\text{obs}} + \cos \phi_{\text{obs}}}{\cos \phi_{\text{star}} \sin \phi_{\text{obs}} + \cos \phi_{\text{obs}} \sin \phi_{\text{obs}}};
\]

In Figure 15, we show the results of specular inversion on the light curves shown in Figure 8. We have assumed edge-on, zero-obliquity geometry. The map of the red eigencolor shows three distinct peaks, corresponding to (from left...
Fig. 14: Comparison of the light curves produced by the three maps of Figure 13 to right: North America, Africa and Asia. The map of the blue eigencolor is characterized by a high plateau between 90° E to 90° W, which corresponds to the Pacific Ocean. The diffuse and specularly reflecting cases bracket more realistic scattering phase functions, with Solar System planets and moons being closer to the former. The detectability of the major continents and oceans on Earth using either assumption indicates the robustness of the result.

Fig. 15: Longitudinal maps of land (red eigencolor) and water (blue eigencolor) on Earth, based on a principal component analysis of disc-integrated light curves and the assumption of specular reflection.