Limitations of modeling methods for lensing shear estimation

L.M. Voigt1,2 and S.L. Bridle2
1Department of Physics and Astronomy, University College London, UK

\begin{abstract}
Gravitational lensing shear has the potential to be the most powerful tool for constraining the nature of dark energy. However, accurate measurement of galaxy shear is crucial and has been shown to be non-trivial by the Shear Testing Programme. Here we demonstrate that finding it to the accuracy achievable by model-ting techniques, if over simplistic models are used. We show that even if galaxies have elliptical isophotes, model-ting methods which assume elliptical isophotes can have significant biases if they use the wrong profile. We use simulations to show that on allowing sufficient flexibility in the profile the biases can be made negligible. This is no longer the case if elliptical isophote models are used to and the most significant biases for simulations of galaxies made up of a bulge plus a disk, if these two components have different ellipticities. The limiting accuracy is dependent on the galaxy shape but we nd the most significant biases for simulations of galaxies made up of a bulge plus a disk, if these two components have different ellipticities. The implications for a given cosmology survey will depend on the actual distribution of galaxy morphologies in the universe, taking into account the survey selection function and the point spread function. However our results suggest that the impact on cosmology shear results from current and near future surveys may be negligible. Meanwhile, these results should encourage the development of existing approaches which are less sensitive to morphology, as well as methods which use priors on galaxy shapes learnt from deep surveys.

Key words: galaxy shapes
\end{abstract}

1 INTRODUCTION

Dark energy dominates the mass-energy of the universe and the goal to discover the nature of dark energy, or even whether it truly exists, is of paramount importance in cosmology. Gravitational lensing shear provides one of the most promising methods for constraining the nature of dark energy \cite{Albrecht1+06,Peacock06}. Gravitational lensing shear is the mild distortion of distant galaxy images due to the bending of light by intervening matter. Typically galaxy images are strongly distorted by a few percent, for example an intrinsic circular galaxy image would become an ellipse with a major to minor axis ratio of about 1.06. The clumpier the intervening matter, the greater the distortions. Dark energy acts as the rate of gravitational collapse, therefore it can be investigated by measuring gravitational shear at different times in the history of the universe.

A number of observational surveys are planned to capitalize on this, including ground-based projects KIdS, Pan-StARRS, the Dark Energy Survey (DES)4 and the Large Synoptic Survey Telescope (LSST)5, and space missions the International Dark Energy Cosmology Survey (IDCS) or Euclid and/or the Joint Dark Energy Mission (JDEM). If we are to fully utilize the potential of these future cosmology surveys then the potential systematic aspects associated with measuring cosmological shear must be understood and controlled. The main areas for work are (i) measurement and calibration of redshifts, (ii) measurement and subtraction of galaxy intrinsic alignments and (iii) accurate shear measurement from images. In this paper we focus on the last of these.

Shear measurement is difficult because (i) redshifts are convolved with a kernel due to the atmosphere, telescope optics and measurement devices, (ii) they are then pixelized and (iii) they are noisy mainly due to the finite number of photons collected. The convolution kernel (usually referred to as the point spread function, or hereafter PSF) is typically a small size compared to the unconvolved galaxy in image and is generally

1 E-mail: lvoigt@star.ucl.ac.uk (LMV); sarah.bridle@ucl.ac.uk (SLB)

4 http://pan-starrs1.hawaii.edu

5 http://www.darkenergysurvey.org

5 http://www.lsst.org
not circular. It must be accurately measured either from a detailed model of the telescope or, more usually, from stars in the image, which can be treated as point objects before the convolution. M any works, including this paper, focus on the case where the PSF is perfectly known. However the shear measurement problem is still very difficult due to the high noise levels in the images and the very small signal that need to be measured. The signal-to-noise ratio on shear measurement from any single galaxy in age is typically about 0.1, and the signal from any m billions of galaxies must be combined to make useful measurements of cosmicology.

The Shear TEsting Programme (Heymans et al. 2002; Massey et al. 2003) is a collaborative effort to quantify the biases associated with current shear measurement methods. Crucially, the programme has validated the implementation of the Kaiser et al. (1995) (KSB) method by several groups to obtain shear from real data. In brief, the method measures the quadrupole on ements of the image which are combined to estimate the ellipticity of the galaxy. The presence of noise in the images requires the addition of a weighting factor. It is now widely believed, however, that KSB methods will not be sufficiently accurate to obtain shear from future surveys observing billions of galaxies.

Several groups are working on model-fitting methods to obtain shear, using either Gaussian weighted Hermite polynomials ("shapelets") to model the galaxy (Bernstein & Jarvis 2002; Nakajima & Bernstein 2003) or elliptical profiles (Kuijken 1999; Bridle et al. 2002; Irwin et al. 2002; Kitching et al. 2008). Alternatively, statistics from shapelets can also be considered as shear estimators that generalize and inprove on weighted quadrupole moments (Refregier 2002; Refregier & Bacon 2003; Massey & Refregier 2005). The Gravitational Lensing Accuracy Testing 2008 (GREAT08) Challenge (Bridle et al. 2003) has recently been run to draw expertise from researchers in statistical inference, inverse problems and computational learning.

There is a large variety of galaxy morphologies, whereas the amount of information in any single typical galaxy image is extremely small. Most model-fitting methods must therefore make some assumption. Lewis (2003) has shown that both the PSF and the galaxy shapes must be accurately modeled to remove bias; in particular the paper proves that this is a direct result of the symmetries broken by the PSF. This paper we concentrate solely on the galaxy model, quantifying the bias on the shear from model using elliptical profiles, and assume the PSF is known precisely. In addition we assume no signal-to-noise. We first consider the case where the unweighted galaxy also has elliptical isophotes, adopting the widely-used de Vaucouleurs and exponential profiles. We also consider models realistic unweighted galaxies with non-elliptical isophotes, in particular two-component systems representing early (elliptical) and late-type (spiral or disk-dominated) galaxies in which each component has a different projected shape and ellipticity.

The paper is organized as follows. In Section 2 we summarize the equations governing gravitational shear and describe the method used to quantify the accuracy of the shear measurement method. In addition we discuss the requirements on the accuracy for future dark energy surveys. In Section 3 we describe the simulations used to test the method and in Section 4 we describe the shape measurement method. We then present results for different galaxy shapes in Sections 5 and 6. Finally we discuss the implications of these results on the development of future methods in Section 7.
2.2 Quantifying the bias on the shear estimator

Shape noise is the statistical noise arising from the random distribution of galaxy shapes. We quantify the bias on the shear measured for different galaxy shapes in the absence of shape noise (i.e. in the limit of an infinite number of galaxy orientations). To achieve this we follow Nakajima & Bernstein (2007) by performing a ‘ring-test’, whereby the same galaxy is rotated around a ring prior to shearing. The mean ellipticity over the ring provides a shear estimate which, as explained below, is free from shape noise to first order. Our shear estimator, ϵ, is then measured galaxy ellipticity, ϵ_0. For a perfect shear measurement method, the measured ellipticity is equal to the true observed ellipticity, given in Eq. 11. Even in this case, averaging over galaxy orientations gives the following expression for the mean true observed ellipticity

$$\bar{\epsilon}_0 = \bar{\epsilon}_i = \epsilon_i + \bar{h}_i + \bar{h}_e + \epsilon_i$$

where ϵ_i is the true input shear. The term \bar{h}_i is zero for a pair of identical galaxies rotated by 90 degrees from each other. Measuring biases for galaxy pairs was suggested by Nakajima & Bernstein (2003) and adopted in the STEP2 simulations (7) as a useful method for reducing the intrinsic shape noise. We find that using three linearly spaced pairs of galaxies in the ring-test is enough to reduce the total contribution to the shape noise (i.e. including higher order terms) in the sum $\sum \bar{h}_i$ to a negligible level. To test the effects of PSF convolution and pixelisation on the accuracy of our (non-perfect) shear measurement method (i.e. in which $\epsilon_0 \neq \epsilon^*$), we use 18 linearly spaced angles between 0 and 170 degrees. We find that the biases on the shear measured do not change if we double the number of angles used.

We quantify the bias on the shear estimator in terms of multiplicative and additive errors, m_1 and c_1, respectively, following Hennig & Bernstein (2006), such that

$$\epsilon = (1 + m_1) \epsilon_0 + c_1$$

where we assume there is no cross contamination of e.g. ϵ depending on the value of ϵ or vice versa. We measure m_1 (m_2) by shearing along (at 45 to) the x-axis with a magnitude of 0.03, i.e. we measure m_1 by shearing using $\epsilon = 0.03$, $\epsilon = 0$ and $\epsilon = 0$, $\epsilon = 0$.3.

2.3 Bias requirements for future surveys

Amara & Refregier (2008) derived requirements on m_1 and c_1 for general current and future surveys covering Δ^2 deg2 of sky, with n_{gal} galaxies per arcmin2 and with a median redshift z_m (their Eqs. 21 and 22). They consider general functional forms for the redshift evolution of these parameters and require the systematics biases from shear calibration to be less than the random uncertainties, for a two-pixel dark energy equation of state.

We consider 3 sets of survey parameters (A, n_{gal}, z_m): $(170, 12, 0.8), (5000, 12, 0.8)$ and $(2 \times 10^5, 35, 0.8)$. These parametric sets are chosen to represent the Canada-France-Hawai‘i Telescope Legacy Survey (CFHTLS), the Dark Energy Survey (DES) and Euclid. We assume the limit on the additive error c_1 is equal to the limit on ϵ_0 in their Eq. 21, therefore this gives the limit given in Table 1 for each of the three surveys.

The Gravitational Lensing Accuracy Testing 2008 (GREAT08) Challenge (Bartlett et al. 2008) has set a target accuracy level, described by the quality factor, Q. The quality factor can be related to the m and c values via the equation

$$Q = \frac{10^4 \epsilon_{03}}{3 \bar{m}_1 + 3 \bar{c}_1}$$

where ϵ_{03} refers to the two shear components and we have written as the m_1 shear used in the simulation (technically this is the reduced shear rather than the shear) and we have assumed that m_1 and c_1 are the same for all data. We further assume that the mean true shear in the simulation is zero. Typically, $Q = 0.03$ for cosmic shear. The GREAT08 Challenge has set a target accuracy level of $Q = 1000$. Therefore, if $m_1 = 0$ then this corresponds to the Euclid requirement on c_1.

3 Simulations

Next, we describe the simulations we have used to investigate biases in shear measurements. In Section B, we investigate shear measurements from simulated de Vaucouleurs and exponential profiles, and in Section C, two-component galaxies in which each component has a different Sérsic index and ellipticity. Therefore, here we discuss the two different galaxy profile considered, the method used for convolution and convolution of the two-component models.

3.1 Galaxy profiles

Galaxies are broadly classified in the literature as ellipticals, pure spheroids or spheroid (bulge) plus disk systems. The de Vaucouleurs profile has long been used to model the light of elliptical galaxies (de Vaucouleurs 1948) and the exponential profile provides a good description of disk galaxies both in the local Universe (Freeman 1970; Komatsu 1971; de Jong 1996; MackArthur et al. 2003) and at high redshifts.
redshift (Emerick et al. 2005). Historically, pure spheroids and bulge components have also been modelled using a de Vaucouleurs profile, though recent studies have revealed a range of profile shapes (Graham & Worley 2008).

Both the de Vaucouleurs and exponential profiles belong to a family of functions known as the Sersic profiles (Sersic 1968). The Sersic intensity at position x is given by

$$I(x) = A e^{-(x/a)^k} C(x/a)^n$$

where x is the centre, A is the peak intensity, n is the Sersic index and C (proportional to the inverse covariance matrix if $n = 0.5$) has elements

$$C_{11} = \cos^2 \frac{\alpha}{a^2} + \sin^2 \frac{\beta}{b^2}$$

$$C_{22} = \frac{1}{\sin^2 (2\theta)}$$

$$C_{12} = \frac{1}{2} \frac{1}{a^2} \frac{1}{b^2} \sin^2 (2\theta)$$

where θ is the angle (measured anti-clockwise) between the x-axis and the major axis of the ellipse and the minor to major axis ratio is b/a. The Sersic index de nes the profile type, with $n = 0.5$ for Gaussian, exponential and de Vaucouleurs profiles respectively. If k is de ned as $k = 1.9992 n - 0.271$, then for a circular profile $r_e = a = b$, referred to as the 'effective radius' or half-light radius, is the radius enclosing half the total flux. (Note that for a Gaussian profile a^2 and b^2 are the 2D variances if $k = 0.5$; for the exponential profile $a^2 + b^2$ is known as the 'scale length' when $k = 1$.) The full width at half maximum intensity (FWHM) is related to the effective radius (for a circular profile) via

$$\text{FWHM} = 2r_e \frac{\ln 2}{k}$$

Thus for similar effective radii the FWHM of galaxies modelled by Sersic indices ranging between 0.5 and 4 vary by nearly 4 orders of magnitude. The total flux (integrated to infinity) emitted by a galaxy described by a Sersic profile with index n is given by

$$F = 2\pi r_e^2 I_0 (2\pi r_e)^n$$

where I_0 is the peak intensity.

3.2 Shear and Convolution

We model the PSF as a single Gaussian aligned along the x-axis with ellipticity $e = 0.05$ and FWHM of 2.85 pixels. We denote the FWHM of an elliptical object such that the area of the ellipse is equal to the area of a circle with the same FWHM. The default value used for the galaxy ellipticity is $e = 0.2$. The galaxy size is chosen such that the FWHM of the PSF-convolved in age is 1.5 times that of the PSF.

4 Specically, we first compute the FWHM of the galaxy for the case where both the PSF and the galaxy are circular and the FWHM of the PSF-convolved in age is 1.5 times that of the PSF. We then adjust the FWHM of the galaxy to keep the area of the ellipse constant as the ellipticity is increased.

Galaxies smaller than this are generally cut from catalogues used in weak lensing analyses.

We use Eqn. (10) to calculate the ellipticity and orientation of the sheared galaxy at each point in the ring. The major axis of the ellipse is held constant at the pre-lensing value and the minor axis adjusted to obtain the correct, post-shear ellipticity. For bulge plus disk galaxies we shear each component separately.

![Figure 1. Relationship between the FWHM of the PSF-convolved image and the effective radius of the galaxy. Curves are shown for Gaussian (blue dashed), exponential (red solid) and de Vaucouleurs (green dash-dot) profiles. The horizontal curve (black dashed) shows the FWHM of the PSF-convolved galaxy image used in this paper.](image)

Galaxies smaller than this are generally cut from catalogues used in weak lensing analyses.

We use Eqn. (10) to calculate the ellipticity and orientation of the sheared galaxy at each point in the ring. The major axis of the ellipse is held constant at the pre-lensing value and the minor axis adjusted to obtain the correct, post-shear ellipticity. For bulge plus disk galaxies we shear each component separately.

Figure 1 shows the relationship between the galaxy effective radius and the FWHM of the PSF-convolved image for Gaussian, de Vaucouleurs and exponential profiles. The horizontal dashed line shows the value used in this study. Figure 4 shows cross-sections through the galaxy and PSF-convolved galaxy profiles for the chosen galaxy parameters, compared with a Gaussian galaxy image. We see that the de Vaucouleurs has an extremely sharp galaxy profile before the PSF convolution, and larger wings after convolution.

By default the galaxy is convolved numerically with the PSF on a large, non-grid (25 × 45) pixels in size. The PSF FWHM is sampled by (25 × 45) pixels. Following the convolution the grid is binined up by a factor of 45 to obtain a square in age 25 pixels across in which the PSF FWHM is 2.85 pixels. Finally, we cut the grid down to obtain a postage stamp 15 pixels across. We try increasing the resolution used for the convolution such that the PSF FWHM is sam pled by (25 × 55) pixels. This is (25 × 55) pixels in size and, following the convolution, is binined up by a factor of 55. We also try increasing the size of the grid used for the convolution to (31 × 45) pixels, keeping the PSF FWHM at the default value and binning up by a factor of 45. In both cases it is the central 15 pixels which are analysed. We end that the results do not change when we increase either the resolution or the grid size used for the convolution.

The true galaxy centroid is at the centre of the postage stamp. We end that the results are largely insensitive to changes in the centroid position within the central pixel.
3.3 Two-component models

As discussed above, the de Vaucouleurs and exponential profiles are widely used to describe the light distribution in elliptical and disk galaxies. However, real galaxies do not have constant ellipticity isophotes. Therefore, in this paper we also explore galaxies with both a bulge and a disk component and, crucially, with non-constant ellipticity isophotes, since we allow the bulge and disk to have different ellipticities.

We consider two different two-component systems: one which closely models realistic spiral (disk-dominated) galaxies, and one which represents ellipticals with a small disk (exponential) component. For the spiral galaxies the bulge is modelled as a Sersic profile with index 1.5. While for many years it was believed that bulges were universally described by the de Vaucouleurs profile, it is now generally accepted that most bulges have Sersic indices $n < 4$ (Graham 2001; Graham et al. 2003; Balcells et al. 2003; Laurikainen et al. 2004; Graham & Worne 2008) and typically between 1 and 2 for a range of Hubble types (Graham & Worne 2008, see their figure 3). Studies also suggest that the bulge-to-disc size ratio is reasonably independent of Hubble type, with B/T increasing with $n < 4$ (Graham & Worne 2008) and $B/T = 1$ for a range of Hubble types (Graham & Worne 2008, see their figure 3). Studies also suggest that the bulge-to-disc size ratio is reasonably independent of Hubble type, with B/T increasing with $n < 4$ (Graham & Worne 2008).

We adopt a linear relation between r_e and n, equal to 7.5, where r_e and n are the disk and bulge effective radii, respectively. Our second model is chosen to represent ellipticals, which are well-described by de Vaucouleurs profiles. We add a small exponential component such that $r_e = 0.5$. For both models the bulge and disk ellipticities are set equal to $e_1 = 0.05$ and $e_2 = 0.02$ respectively. The bias on the shear is measured for a range of bulge-to-total (B/T) ratios between 0 and 1. At each B/T value the ratio r_e/n_e is held constant, and the bulge and disk effective radii are adjusted to keep the area of each component constant as the ellipticity is increased from zero.

4 MODEL FITTING USING SUMS OF GAUSSIANS

In this paper we model galaxies as a sum of co-elliptical (from co-exact) Gaussians of varying size and amplitude. This model was first suggested by Kuijken (1998), and developed by Birkin et al. (2003) into a publicly available code [in 2shape]) which has been used to measure cluster masses (e.g. Eyeria et al. 2004) and tested in the STEP1 simulations [by C. Eyeria et al. 2004]. We stress that the results presented in this paper are general for all models adopting elliptical isophotes since any such model can be completely described in terms of a sum of Gaussians. Adopting a sum of Gaussians to model the galaxy has the particular advantage that the convolution with the PSF can be carried out analytically (assuming the PSF is also modelled as a sum of Gaussians).

If the PSF and galaxy intensity profiles are of the form

$$I_p(x) = \frac{k}{\sigma_p} \int e^{-k(x \cdot x)/2} C_p(x \cdot x)$$

and

$$I_g(x) = A g e^{k(x \cdot x)/2} C_g(x \cdot x)$$

respectively, then the PSF-convolved intensity for a sum of n_g Gaussians is given by

$$I_{gp}(x) = \sum_{i=1}^{n_g} I_{gp,i} = \frac{\chi^{n_g}}{\sigma_p + C_{g,0}} \sum_{i=1}^{n_g} \int e^{-k(x \cdot x)/2} C_{g,i}(x \cdot x)$$

where

$$C_{g,0} = \frac{1}{\int C_{g,0} + \int C_{g,i} + \int C_{gp,0} + \int C_{gp,i}}$$

The centre, ellipticity and orientation of each Gaussian used to model the galaxy are tied. Thus the number of free parameters in the t-th galaxy is $4(n_g - 1) + 2n_g (n_g R_1 + n_g a_1)$. The best-fit parameters are found using the MCMC method. We speed up the calculation by computing the norm of the Gaussians analytically. This is possible because the model is linear in these parameters.

5 http://www.sarahbriddle.net/2shape/
In ages are generated on a grid 15^2 pixels in size. The intensity in each pixel is the sum of the intensity computed at the centres of n_p^2 sub-pixels, where we refer to n_p as the pixel integration level. The default pixel integration level used in the simulated galaxies is $n_p = 45$ (see Section 3.2).

5 RESULTS FOR GALAXIES WITH ELLIPTICAL ISOPHOTES

In this section we simulate galaxies with elliptical isophotes and then with different elliptical isophote models. First we try using a single Gaussian when fitting an exponential or de Vaucouleurs pro le. We explain our results qualitatively on a grid (25 pixels) and then binning the pixel size with decreasing resolution. The default model for the PSF is a single Gaussian aligned along the x-axis with perfectly known ellipticity and size. We test investigate how shear measurements vary with the size of the pixels used for the observation when the wrong elliptical isophote model is used. We calculate the biases both with the default PSF model and with the PSF set to a delta function. The default value used in this paper for the PSF FWHM is 2.85 pixels, but in Fig. 3 we vary the resolution from 1 to 15 pixels per PSF FWHM, while keeping the relative size of the galaxy and PSF the same. For the case where the PSF is a delta function the galaxy size is set equal to that computed for the default PSF model (thus the galaxy size is the same at each point on the x-axis in Fig. 3).

We ensure that the resolution is the only quantity which changes as the PSF FWHM is increased. This is achieved by convolving the galaxy with the PSF on a large, new grid and then binning the pixels to obtain images with decreasing resolution. The convolution is carried out as described in Section 3.2 on a grid (25 x 25) pixels in size, except here the PSF FWHM is sam plex by 45 pixels instead of (2.85 x 25) pixels. The grid is then binned by a factor of 3 (5, 15, 45) to obtain an image in which the PSF FWHM is 15 (9.5, 2.1) pixels. The pixel integration level used in each pixel in the galaxy and PSF in ages prior to the convolution is 1, thus each binned PSF-convolved image has a pixel integration level equal to the binning factor. At each PSF resolution level we use the same pixel integration level in the galaxy model as used in the simulated galaxy image.

The dashed lines in Fig. 3 show the results for a delta function PSF. The shaded regions show the error bars on m_1 and m_2, given in Table 1. The upper edge of each shaded region (from bottom to top) shows the upper limit on the bias allowed for far-future, multi-tem and upcoming surveys respectively. The additive shear calibration biases m_1 and m_2 are always zero when no PSF is used. This is not surprising since there is no preferred direction in which the shear could be biased, since the galaxy direction has been averaged out in the ring-test. The pixels do im pose a preferred orientation to the image, but any biases would be the same along the x and y axes and thus positive and negative biases to m_1 and c_2 are expected to cancel. We see m_1 and m_2 decrease as the resolution increases, falling well below foreseeable observational requirements (upper edge of grey band). We discuss the purpose of the low resolution in ages below. These results indicate that in the limit of ininitely small pixels, nodel-ting using a single Gaussian provides an unbiased estimate of the shear of any two-dim ensional profile with constant ellipticity isophotes. This agrees with the more general result found by [2003] that, for the case where there is no PSF, any (wrong) galaxy model will provide unbiased results.

The solid lines in Fig. 3 show the results when the PSF is included. The biases are now significant, independent of the pixel size. In particular, c_2 is significant, even though the PSF model is known precisely. This is because in general the angle between the PSF and the galaxy is di erent for each galaxy in a pair in which the e_i com ponents cancel. The ring-test may be constructed so that c_2 is close to zero. This provides a useful check on our method. This is simply achieved by aligning the PSF along the x-axis and including the m mirror image of each galaxy pair in the y-axis. This ensures that the e_i com ponents cancel for image pairs in which the angle between the PSF and the galaxy is the same (except for the galaxy pair at 0 and 90 degrees).

The biases for the de Vaucouleurs profile (right hand panel) are larger than for the exponential profile, which is not surprising considering that it is even further from the single Gaussian used in the t. Inserting the bias values into Eq. 13 for the exponential galaxy simulation (left-hand panel).
A one-dimensional exponential galaxy was simulated, convolved with a known Gaussian PSF, and then with a one-dimensional Sersic profile. The y-axis shows the FWHM of the galaxy size in the absence of a PSF (PSF FWHM = 0).

The convolution of a galaxy with a Gaussian PSF causes the fitted galaxy size to increase relative to the true galaxy size. Fitting a Gaussian galaxy with an Sersic index = 0.5 causes the fitted galaxy radius to be an underestimate of the true galaxy size.

Consider now a two-dimensional image of a galaxy with elliptical isophotes aligned along the x-axis. Very roughly we can consider biases in the measured ellipticity by considering a one-dimensional-like along the x-axis, where the galaxy radius is at its largest relative to the PSF, and then a one-dimensional-like along the y-axis where the galaxy radius is at its smallest. For an elliptical galaxy, therefore, we expect that if we use a Gaussian to model the galaxy, the size of the major axis will be overestimated, and the minor axis underestimated.

This conclusion can also be seen qualitatively by considering the two-dimensional image of an elliptical galaxy with equal weight in the x, but when the PSF is added, different parts of the galaxy profile are weighted differently.

In summary, the presence of a convolution causes a bias in the measured shear of an elliptical object, if the wrong profile is assumed.

5.3 A lowing the right elliptical isophote model

We have found that to obtain an unbiased estimate of the galaxy ellipticity, even when the PSF is known and the pixels are small, the galaxy must be modeled well. Next we imitate our model by increasing the number of Gaussians used in the sum. An in a low number of homocentric Gaussians would allow perfect reconstruction of any elliptical isophote. In Figure 6 we show the biases as a function of the number of Gaussians used. We see that the biases reduce to below far-future requirements for both galaxy profiles when 4 Gausians are used. For galaxies with an exponential profile only 3 Gaussians are required in the sum. Note that we do not tune computational parameters (especially number of sub-pixels used for pixel integration) for points which already lie well below the requirements for future surveys (darkest shaded area).

In Figure 6 we plot the biases as a function of the number of sub-pixels used for pixel integration. The x-axis shows the number of sub-pixels per direction, so the pixel integration sum is over values in n^2 sub-pixels. Recall that the default value used e.g. in Figure 5 was n_p = 13. Specifically, the biases atten when limited by the number of Gaussians, and decrease when limited by the pixel integration level. If a small number of sub-pixels are used in the t then the galaxy is more elliptical than in the unpixelated case. This results in an estimated ellipticity which is moun than the true ellipticity. This effect however cancels out in the ring-test and the decrease in bias with increasing pixel integration is entirely a result of the in proven in the pixel model.

Figure 4. Fitted galaxy size as a function of PSF size for a range of tted profiles (Sersic index = [0.5 1 2 3 4] from top to bottom). A one-dimensional exponential galaxy was simulated, convolved with a known Gaussian PSF, and tted with a one-dimensional Sersic pro le. The y-axis shows the tted galaxy size divided by the tted galaxy size in the absence of a PSF (PSF FWHM = 0).

Figure 5. Multiplicative (top) and additive (bottom) biases for exponential (left) and de Vaucouleurs (right) profiles as a function of the number of Gaussians used in the t. The PSF is included. The pixel integration level n_p is 13. Open squares (crosses) show m ± c. The c values are smaller than the minimum on the y-axis. Shaded regions as in Figure 6.
8 L.M. Voigt and S.L. Bridle

Figure 6. Multiplicative (top) and additive (bottom) biases for exponential (left) and de Vaucouleurs (right) profiles as a function of the pixel integration level, \(n_p \). Blue dot-dash, green dashed and red solid curves show the biases when 2, 3 and 4 Gaussians are included in the model respectively. Results for 1 Gaussian are larger than the maximum value on the y-axis. The PSF is included. Squares (crosses) show \(m_1 \rho_2 \) (\(m_2 \rho_2 \)). Shaded regions as in Figure 5.

We see that \(n_p = 10 \) is more than sufficient for foreseeable future surveys, and \(n_p = 5 \) is sufficient for mid-term surveys. However \(n_p = 1 \) is insufficient even for current surveys.

6 RESULTS FOR BULGE PLUS DISK GALAXIES

So far all our simulated galaxies have had elliptical isophotes. However this is not the case in the universe, and the simple deviation we consider in this paper is a two-component bulge plus disk model. In Section 3.2 we described a dualistic two-component model, one to model a spiral galaxy with a bulge, and one to model an elliptical galaxy with a small disk. We repeat the previous shear measurement analysis, always using an elliptical isophote model in the r, despite the non-elliptical isophotes of the simulated images. The purpose is to see whether elliptical isophote models can be used for shear measurement even from non-elliptical isophotes.

In Fig. 7 we plot the biases for both two-component models as a function of the number of (co-)elliptical Gaussians used in the r. For reference, we also show the results when the bulge ellipticity is equal to the disk ellipticity (\(e_r = e_0 = 0.2 \)), i.e. the simulated galaxy has elliptical isophotes. When the bulge and disk ellipticity are the same, the biases decrease as the number of Gaussians used in the t increases. This type of behaviour was already seen in Fig. 5, and the results are slightly different now due to the different galaxy prole arising from the sum of exponential and de Vaucouleurs components.

When the bulge and disk have different ellipticities, however, the bias is not reduced by increasing the number of Gaussians beyond \(n_g = 3 \). We have checked that this bias is not due to the noise resolution used for the pixel integration. We conclude that it is the failure of the model to take account of galaxies with varying ellipticity isophotes.

We next investigate how the size of the bias depends on the amount of u in each component. In Fig 8 we plot the biases as a function of the bulge-to-total u ratio for the spiral and elliptical galaxy models for \(n_g = 4 \). Again, we include a reference curve for the case where the bulge and disk ellipticity are equal. As expected, the biases fall to the residual level as \(B/T \) approaches zero or unity. The biases differ from the reference curve for \(B/T = 1 \) because the bulge ellipticity is 0.05 for the solid curve but 0.2 for the dashed (reference) curve. The elliptical-like galaxy (left panel) has negligible additive biases, and has multiplicative biases below the requirements of upcoming mid-term surveys at all bulge-to-total ratios. The behaviour at \(B/T = 0.07 \) is due to a change in sign of \(m_1 \) from negative to positive at higher \(B/T \) values.

For the spiral galaxy model both additive and multiplicative biases peak at \(B/T = 0.2 \). The multiplicative bias at this \(B/T \) is worse than the requirements for upcoming surveys. The additive bias is slightly above the requirements for far-future surveys. Most disk galaxies have \(B/T < 1-3 \) [Kormendy 2003] with a median value of 0.24 for early-type spiral galaxies (Sa-Sb) and 0.04 for late-type spiral galaxies (Scd-Sm) [Graham & Worley 2008]. It is likely that on averaging over all galaxy types the biases are lower than the requirements for upcoming surveys. However, the exact bias for any particular survey will need to be calculated incorporating the galaxy selection criteria and point spread function.

7 DISCUSSION

To fully capitalise on the potential of gravitational lensing as a cosmological probe biases on galaxy shear estimates must be reduced to the sub-percent level. In this paper we have shown that the effects of convolution with the PSF makes this a non-trivial problem. In particular, the undersampled galaxy must be very accurately modelled even if the PSF is known precisely and the pixels are small. We have isolated this effect by restricting our investigation to noise-free images.

We have illustrated tilling a single elliptical Gaussian to an elliptical exponential or de Vaucouleurs profile causes no bias on the measured shear, in the unrealistic case where the pixels are in tiny square and there is no PSF. For the dualistic galaxy size we chose, application of a realistic PSF causes a significant shear measurement bias, too large even to use single-Gaussian tilling for current cosmic shear data. This illustrates the general point that even if galaxies have elliptical isophotes, a single Gaussian method must use a realistic galaxy profile. We explained this qualitatively by considering a one-dimensional toy model.

Lyu [2005] proved that the presence of a PSF will result in biased shear estimates when the wrong galaxy model is used. In this paper we have quantified the level of the bias when the wrong model was used, a sum of co-elliptical Gaussians, but stress that our results are general for any model-tiling method using elliptical profiles. We note that if galaxies have elliptical isophotes then a sum of 3 Gaussians is sufficient for future surveys. For bulge plus disk galaxies...
Figure 7. Multiplicative (top) and additive (bottom) biases for two-component galaxies with $r_{g1}=r_{g2}$ equal to 0.5 (left) and 7.5 (right) as a function of the number of Gaussians used in the t. The Sersic index of the bulge is 4 (left) and 1.5 (right) and in both cases the disk is an exponential. Blue dashed and black solid lines show results for the case where the bulge and the disk have the same ellipticity ($e_b = e_d = 0.2$) and different ellipticities ($e_b = 0.95$, $e_d = 0.2$) respectively. The bulge to total ux ratio is 0.8 (left) and 0.3 (right). Shaded regions as in Figure 3.

Increasing the number of Gaussians in the model beyond 3 does not significantly reduce the biases.

Earlier versions of LensFIT (Billere et al. 2003; Kitcing et al. 2008) used de Vaucouleurs pro le to t galaxies of all types, including exponentials. Thus this is expected to lead to a small residual bias. We found that using an overly pro le (Gaussian) the shears were biased low relative to the truth. Our toy model predicts that tting an overly peaky pro le (e.g., de Vaucouleurs to an exponential) will overestimate the shears.

In 2shape (Billere et al. 2002) to a sum of co-elliptical Gaussians, however there is usually no strong prior on the relative sizes and amplitudes of the components. Therefore when applied to noisy data it is possible that they might not sum to make a particularly peaky pro le, and may produce results closer to those expected from tting a single Gaussian. This could be recti ed by applying priors to the relative sizes and amplitudes of the Gaussians, however for best results these priors should be tuned to the expected pro les in the data.

This result may also be relevant for shapelets meth- ods, which are based on a Gaussian. If only a low order sheaper expansion is used then the pro le will be less centrally peaked, and have smaller wings, than an exponential or de Vaucouleurs. A similar expansion based on the sheaper function has been proposed to address these problems (van Uitert & Kuijken in prep).

Model-ting techniques adopting co-elliptical pro les (Billere et al. 2002; Kuijken 2002; M Ilker et al. 2003; Kitcing et al. 2008) cannot, by de nition, provide an ex-}

Figure 8. Multiplicative (top) and additive (bottom) biases for elliptical (left) and spiral (right) two-component galaxies as a function of the bulge-to-total ux ratio. Black solid and blue dashed curves as in figure 7. Shaded regions as in Figure 3.

6 The latest LensFIT version is a co-elliptical bulge plus disk model. See http://www.physics.ox.ac.uk/lensfit
ACKNOWLEDGMENTS

We thank Antony Lewis, John Bridle, Tom Kitching, Jean-Paul Kneib, A. Alexandre Refregier, Adam Amara, Stéphane Illiasson, Phil Marshall, Konrad Kuijken, Gary Bernstein, Eduardo Cyprino, Ben jam in in Joachim land Steve Gull for useful discussions. SLB thanks the Royal Society for support in the form of a University Research Fellowship. LMV acknowledges support from the STFC.

This paper has been typeset from a TeX/\LaTeX file prepared by the author.

REFERENCES

devaucouleurs G., 1948, Anales de Astra phy sique, 11, 247

Kuijken K., 1999, A stronomy and A strrophysics, 352, 355

Kuijken K., 2006, A stronomy and A strrophysics, 456, 827

Peacock J., Schneider P., 2006, The Messenger, 125, 48

Seitz C., Schneider P., 1997, A stronomy and A strrophysics, 318, 687

Sersic J. L., 1968, Atlas de galaxias australes