System-size dependence of strangeness production in nucleus-nucleus collisions at 40A and 158A GeV measured at the CERN Super Proton Synchrotron

(The NA49 Collaboration)

1) NIKHEF, Amsterdam, Netherlands.
2) Department of Physics, University of Athens, Athens, Greece.
3) Comenius University, Bratislava, Slovakia.
4) KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
5) Institute of Physics, Cambridge, USA.
6) Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland.
7) Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany.
8) Joint Institute for Nuclear Research, Dubna, Russia.
9) Fachbereich Physik der Universität, Frankfurt, Germany.
10) CERN, Geneva, Switzerland.
11) Institute of Physics, Swierkoczyka Academy, Kiev, Poland.
12) Fachbereich Physik der Universität, Marburg, Germany.
13) Max Planck Institut für Physik, Munich, Germany.
14) Institute of Particle and Nuclear Physics, Prague, Czech Republic.
15) Department of Physics, Pusan National University, Pusan, Republic of Korea.
16) Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA.
17) Atron in Physics Department, So a University St. Kilmont, Sofia, Bulgaria.
18) Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria.
19) Department of Chemistry, Stony Brook Univ. (SUNY SB), Stony Brook, USA.
20) Institute for Nuclear Studies, Warszaw, Poland.
21) Institute for Experimental Physics, University of Warsaw, Warszaw, Poland.
22) Faculty of Physics, Warsaw University of Technology, Warszaw, Poland.
23) Rudjer Boskovic Institute, Zagreb, Croatia.

Results on and production in centrality selected Pb+Pb reactions at 40A and 158A GeV and in near-central C+C and Si+Si reactions at 158A GeV are presented. Transverse mass spectra, rapidity spectra, and multiplicities in dependence of the system size are discussed. Comparisons to transport models (UQM D2.3 and HSD) and to the core-corona approach are performed. While production can be described by transport models reasonably well, these models do not agree with the measurements. On the other hand, the core-corona picture is very well the system-size dependence of and , while it agrees less well with the data.

I. INTRODUCTION

The production of strange particles has always been a key observable in heavy-ion reactions and its enhancement was one of the first suggested signatures for quark-gluon plasma (QGP) formation [1]. The predicted enhancement of strangeness production in nucleus-nucleus collisions relative to proton-proton reactions was established experimentally some time ago [2,3]. It was also found that this enhancement is increasing with the strangeness content of the particle type [4,5]. However, there are several aspects that make a straightforward interpretation of the experimental results difficult. One of them is the fact, that the strangeness enhancement seems to increase towards lower energies [6,7,8]. Another open issue and the topic of this pub-
The parameter

\[\text{thestrangeness conservation, is usually xed to be } \]

which weakens the in uence of strangeness conservation on the production rate \[19\]. In \[13\] this has been modeled by the transition from a canonical ensemble to a grand-canonical one. For com parison of the corresponding statistical models results to experimental data, the relation between the size of the ensemble volume \(V \) and the experimental number of wounded nucleons \(N_{\text{w}} \) has been assumed to be \(V = (V_0=2) N_{\text{w}} \). The parameter \(V_0 \), which accounts for the locality of the strangeness conservation, is usually xed to \(7 \text{ fm}^3 \) \[11\]. However, this approach does not provide a satisfactory description of the data \[3\]. A better agreement with global strangeness production at the SPS can be achieved by describing the ensemble volume \(V \) from a percolation of elementary clusters \[12\]. A similar, although simpler, line of argument is put forward in the so-called core-corona picture \[13\]: Here a heavy-ion collision is considered a superposition of a hot and dense core and a low density peripheral corona region. While the core region corresponds to a large, which experiences collective expansion and for which particle production should be describable via a large volume canonical ensemble, or equivalently by a grand-canonical statistical ensemble, the corona is supposed to exhibit the features of simple nucleon-nucleon collisions. The contributions of the core and the corona depend on both the size of the colliding nuclei and the centrality of the collision and can be determined via Glauber model calculations \[14\]. This concept has recently been applied quite successfully to the system-size dependence of strangeness production at RHIC energies \[15\].

The comparison of measurements with hadron transport models, such as UrQMD or HSD, provides insight into the question whether nucleus-nucleus collisions can be described in a hadronic scenario or whether a contribution from an additional partonic phase is needed. Even though these models are not able to describe the enhancement of multi-strange particle yields in central nucleus-nucleus collisions \[3\], their predictions are generally close to the measured values for particles containing a single strange quark. Their comparison to the measured system-size dependence might therefore reveal effects that go beyond the dominating in uence of the reaction geometry, such as multi-pion fusion processes and, in the case of antibaryons, absorption in dense nuclear matter.

II. DATA ANALYSIS

A. Experimental setup and data sets

The data were taken with the NA49 large acceptance hadron spectrometer at the CERN SPS. A detailed description of the apparatus can be found in \[15\]. With this detector tracking is performed by four large-volume Time Projection Chambers (TPCs) in a wide range of phase space. Two of these are positioned inside two superconducting dipole magnets. In order to ensure a similar detector acceptance in the center-of-mass system for all datasets, the magnetic field was reduced for the 40A GeV Pb beam by a factor of 4. A measurement of the specific energy loss \(dE/dx \) in the TPC gas with a typical resolution of 4% provides particle identi cation at forward rapidities. Time-of-ight detectors in prove the particle identi cation at mid rapidity. The centrality of a given reaction is determined via the energy measured in the pro le fragment emission region by the Zero Degree Calorimeter (ZDC) positioned downstream of the TPCs. A collimator in front of the ZDC reduces the acceptance

The parameter

\[\text{thestrangeness conservation, is usually xed to be } \]

which weakens the in uence of strangeness conservation on the production rate \[19\]. In \[13\] this has been modeled by the transition from a canonical ensemble to a grand-canonical one. For com parison of the corresponding statistical models results to experimental data, the relation between the size of the ensemble volume \(V \) and the experimental number of wounded nucleons \(N_{\text{w}} \) has been assumed to be \(V = (V_0=2) N_{\text{w}} \). The parameter \(V_0 \), which accounts for the locality of the strangeness conservation, is usually xed to \(7 \text{ fm}^3 \) \[11\]. However, this approach does not provide a satisfactory description of the data \[3\]. A better agreement with global strangeness production at the SPS can be achieved by describing the ensemble volume \(V \) from a percolation of elementary clusters \[12\]. A similar, although simpler, line of argument is put forward in the so-called core-corona picture \[13\]: Here a heavy-ion collision is considered a superposition of a hot and dense core and a low density peripheral corona region. While the core region corresponds to a large, which experiences collective expansion and for which particle production should be describable via a large volume canonical ensemble, or equivalently by a grand-canonical statistical ensemble, the corona is supposed to exhibit the features of simple nucleon-nucleon collisions. The contributions of the core and the corona depend on both the size of the colliding nuclei and the centrality of the collision and can be determined via Glauber model calculations \[14\]. This concept has recently been applied quite successfully to the system-size dependence of strangeness production at RHIC energies \[15\].

The com parison of measurements with hadron transport models, such as UrQMD or HSD, provides insight into the question whether nucleus-nucleus collisions can be described in a hadronic scenario or whether a contribution from an additional partonic phase is needed. Even though these models are not able to describe the enhancement of multi-strange particle yields in central nucleus-nucleus collisions \[3\], their predictions are generally close to the measured values for particles containing a single strange quark. Their comparison to the measured system-size dependence might therefore reveal effects that go beyond the dominating in uence of the reaction geometry, such as multi-pion fusion processes and, in the case of antibaryons, absorption in dense nuclear matter.

II. DATA ANALYSIS

A. Experimental setup and data sets

The data were taken with the NA49 large acceptance hadron spectrometer at the CERN SPS. A detailed description of the apparatus can be found in \[15\]. With this detector tracking is performed by four large-volume Time Projection Chambers (TPCs) in a wide range of phase space. Two of these are positioned inside two superconducting dipole magnets. In order to ensure a similar detector acceptance in the center-of-mass system for all datasets, the magnetic field was reduced for the 40A GeV Pb beam by a factor of 4. A measurement of the specific energy loss \(dE/dx \) in the TPC gas with a typical resolution of 4% provides particle identification at forward rapidities. Time-of-ight detectors in prove the particle identification at mid rapidity. The centrality of a given reaction is determined via the energy measured in the projectile fragment emission region by the Zero Degree Calorimeter (ZDC) positioned downstream of the TPCs. A collimator in front of the ZDC reduces the acceptance

FIG. 1: (color online) The invariant mass distributions of all \(m \) mesons, \(\pi \), and \(\eta \) candidates in two centrality classes of Pb+Pb collisions at 158A GeV. The upper row (a c) shows the most peripheral centrality class; the lower row (d f) the most central one. The full curves represent a fit to signal and background as described in the text, while the dashed curves show the background only. The vertical lines denote the literature values of the \(m \) masses. The data were taken with the NA49 large acceptance hadron spectrometer at the CERN SPS. A detailed description of the apparatus can be found in \[15\]. With this detector tracking is performed by four large-volume Time Projection Chambers (TPCs) in a wide range of phase space. Two of these are positioned inside two superconducting dipole magnets. In order to ensure a similar detector acceptance in the center-of-mass system for all datasets, the magnetic field was reduced for the 40A GeV Pb beam by a factor of 4. A measurement of the specific energy loss \(dE/dx \) in the TPC gas with a typical resolution of 4% provides particle identification at forward rapidities. Time-of-flight detectors in prove the particle identification at mid rapidity. The centrality of a given reaction is determined via the energy measured in the projectile fragment emission region by the Zero Degree Calorimeter (ZDC) positioned downstream of the TPCs. A collimator in front of the ZDC reduces the acceptance
of the calorimeter to the phase space of the projectile fragment and spectator nucleons.

We present in this paper an analysis of centrality selected Pb+Pb events taken with a minimum bias trigger at beam energies of 40A and 158A GeV in the years 1999 and 2000, and of near-central C+C and Si+Si events measured at 158A GeV in the year 1998. The properties of the di event datasets are summarized in Tables 1 and 2. While for the Pb+Pb collisions the primary SPS beam was used, the C and Si beams were created by fragmenting the original Pb beam. By tuning the magnetic rigidity in the beam line (Z/A = 0.5) and analyzing the specific energy loss in scintillation detectors, the corresponding ion species could be selected. In the following, the carbon beam is denoted as Z = 6 ions and the silicon beam as a mixture of Z = 13 and 15. Two carbon targets with thicknesses of 3 m m and 10 m m (561 m g/cm² and 1840 m g/cm², respectively) and a silicon target with a thickness of 5 m m (1170 m g/cm²) were used. Further details on the analysis of the C+C and Si+Si datasets can be found in 5]. For the study of the minimum bias Pb+Pb interactions targets with a thickness of 200 m m (224 m g/cm²) were installed. The minimum bias trigger is defined by a gas Cherenkov counter that vetoes non-interacting projectile nuclei. Centrality classes C0 (C4 are defined by consecutive intervals of spectator energy as measured in the ZDC calorimeter. Simulated events from the VENUS 4.12 event generator [21] were used to relate this energy to the number of wounded nucleons Nw1 as given by the implemented Glauber model calculation [14]. The background from non-targeting interactions is substantially reduced by applying cuts on the reconstructed position of the primary vertex. After these cuts the centrality classes C0 (C2 are free of background events, while the more peripheral classes C3 and C4 have a contamination of less than 2% and 5%, respectively.

TABLE I: Summary of the analyzed Pb+Pb datasets. The centrality is quantified by the fraction of the total inelastic cross section. Nw1 is the average number of wounded nucleons per event and (Nw1) the width of the corresponding distributions. For the 158A GeV dataset also the fraction f(Nw1) of nucleons that scatter more than once is given [15]. NEvent is the number of accepted events.

<table>
<thead>
<tr>
<th>Ebeam (A GeV)</th>
<th>Reaction</th>
<th>Centrality</th>
<th>Nw1</th>
<th>(Nw1)</th>
<th>f(Nw1)</th>
<th>NEvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>C+C</td>
<td>0.0</td>
<td>5.0</td>
<td>351</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>5.0</td>
<td>12.5</td>
<td>290</td>
<td>41</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>12.5</td>
<td>23.5</td>
<td>210</td>
<td>62</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C3</td>
<td>23.5</td>
<td>33.5</td>
<td>142</td>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C4</td>
<td>33.5</td>
<td>43.5</td>
<td>93</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>158</td>
<td>C+C</td>
<td>0.0</td>
<td>5.0</td>
<td>352</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>5.0</td>
<td>12.5</td>
<td>281</td>
<td>41</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>12.5</td>
<td>23.5</td>
<td>196</td>
<td>6</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>C3</td>
<td>23.5</td>
<td>33.5</td>
<td>128</td>
<td>8</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>C4</td>
<td>33.5</td>
<td>43.5</td>
<td>85</td>
<td>7</td>
<td>18</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE II: Summary of the analyzed near-central C+C and Si+Si datasets. The centrality is quantified by the fraction of the total inelastic cross section. Nw1 is the average number of wounded nucleons per event and NEvent the number of accepted events.

<table>
<thead>
<tr>
<th>Ebeam (A GeV)</th>
<th>Reaction</th>
<th>Centrality</th>
<th>Nw1</th>
<th>NEvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
<td>C+C</td>
<td>0.0</td>
<td>15.3</td>
<td>14</td>
</tr>
<tr>
<td>Si+Si</td>
<td>0.0</td>
<td>12.2</td>
<td>37</td>
<td>3</td>
</tr>
</tbody>
</table>

B. , and reconstruction

The reconstruction of , and follows the same procedures as employed in a previous analysis [5]. A detailed description of the methods, together with a list of all applied cuts, can thus be found there. Here we just summarize the basic principles.

Hyperons and hyperons were reconstructed from their charged decays $\bar{\Lambda} + p$ and $\Lambda + p$ (branching ratio 63.9 % [20]). Candidate pairs were formed by combining all reconstructed tracks of positively with all tracks of negatively charged particles. Pairs with a distance of closest approach (DCA) of less than 0.5 cm anywhere between the position of the first measured points on the tracks and the target plane are treated as possible Y candidates. The (anti-)protons were identified via their specific energy loss (dE/dx) in the TPCs which removes the background resulting from a wrong mass assignment.

FIG. 2: (color online) The p_t-integrated reconstruction efficiency (a) and feed-down contribution (b) at mid-rapidity ($y < 0.5$) as a function of centrality characterized by the measured charged track multiplicity for a minimum bias Pb+Pb reactions at 40A and 158A GeV. Open symbols correspond to the values for central Pb+Pb collisions [5]. The dashed lines represent the efficiency or feed-down contribution respectively, at 158A GeV, resulting from a different analysis strategy (see text).
The combinatorial background is further reduced by applying additional cuts to \(V \) candidates. These include a minimum distance of the reconstructed decay vertex to the main interaction vertex and the requirement that the reconstructed momentum vectors of the candidates should point back to the interaction vertex. Due to the low multiplicity in C+C and Si+Si reactions, the combinatorial background for and is much smaller. Therefore, the cuts have been relaxed compared to the ones in the analysis of the Pb+Pb data. Candidates were identified via the decay channel \(V \) which has a branching ratio of 99.3% \(\frac{m_t}{m_A} \). To reconstruct the candidates were selected in an invariant mass window of \(1.101 \text{ GeV} - \frac{m_t}{m_A} \) and combined with all measured negatively charged particles in the event. The candidates were subject to the same selection criteria as used in the analysis, except for the momentum pointing cut. The reconstructed candidates were required to point back to the interaction vertex. In order to further reduce the number of fake \(V \) candidates, the trajectories of the negatively charged pions from and decays were intersected with the target plane and the distances of the resulting positions to the main interaction vertex were required to be larger than a minimum value.

The invariant mass spectra were measured in bins of \(p_r \), \(\frac{m_t}{m_A} \), \(y \), as well as centrality, and fitted to the sum of a polynomial and a signal distribution, the latter determined from simulation. The raw yields of \(V \), and were obtained by subtracting the combinatorial background and integrating the remaining signal distributions in a mass window of \(11 \text{ MeV} < m_A < 2 \text{ GeV} \). Typical mass resolutions for \(V \), as obtained from a test with a Gaussian, are \(2 \text{ M eV} < \frac{m_t}{m_A} < 4 \text{ M eV} \). Figure 3 shows examples of invariant mass distributions for two centrality classes of Pb+Pb collisions at 158A GeV together with the corresponding fitted curves.

C. Correction for acceptance, reconstruction efficiency and feed-down

Detailed simulations were made to correct the yields for geometrical acceptance and efficiencies of the reconstruction procedure. As input to these simulations samples of \(V \) and were generated with \(m_t \) distributions according to:

\[
\frac{1}{m_t} \frac{dN}{d\ln t} = \exp \left(\frac{m_t}{T} \right)
\]

Here \(p_r \) is the transverse momentum, \(m_t = p_r + m_A \), and \(T \) the inverse slope parameter. In case of the Pb+Pb collisions the \(T \) parameter was determined by fits to the spectra of central Pb+Pb reactions \(\frac{m_t}{m_A} \text{ GeV} \), while for the C+C and Si+Si collisions \(T \) was set to 200 M eV. The rapidity spectra of \(V \) and for Pb+Pb reactions were modeled by single Gaussian distributions. The latter rapidity spectra were instead approximated by the sum of two \((\text{Pb+Pb at 40 A GeV}) \) or three \((\text{Pb+Pb at 158 A GeV}) \) Gaussians, respectively. For the C+C and Si+Si collisions the distributions for \(V \) and were assumed to be constant as a function of rapidity. The Geant 3.21 package \cite {21} was used to track the generated particles and their decay products through the NA49 detector. The TPC response, which takes into account all known detector effects, was simulated by software developed for the NA49 experiment. The simulated signals were added to those of real events on the raw data level and subjected to the same reconstruction procedure as the experimental data. By detuning the parameters of the generator, and, which traverse the detector, survive the reconstruction, and pass all analysis cuts, the combinatorial acceptances and efficiencies were derived. The corresponding correction factors were calculated in bins of \(p_r \), \(\frac{m_t}{m_A} \), \(y \), as well as centrality in the case of Pb+Pb collisions.

Figure 4 summarizes the centrality dependence of the efficiency, including acceptance, while for and at 40A GeV only a 30% variation can be observed, the difference between very peripheral and very central bins is a factor of 3 at 158A GeV. For the also an alternative analysis strategy was employed: on top of the standard cuts, only those were accepted whose tracks lie entirely outside the high track density region (CUT-B in Fig.4). This reduces the overall efficiency, but allows that the track multiplicity effects are slightly reduced compared to the standard analysis (see dashed line in Fig.4). The response of the detector occupancy on the efficiency is much smaller for C+C and Si+Si reactions at 158A GeV. It was found that the reduction of the efficiency due to other tracks is 5% for Si+Si and negligible for C+C. Therefore, it was only corrected for...
in the case of Si+Si reactions. Due to the relaxed analysis cuts, the efficiencies are generally higher for the small system s than for medium bias Pb+Pb reactions (55%, 6%, both mid-rapidity) [23,24].

In addition to the directly produced particles, the measured yield of and contains also contributions from the decay of heavier hyperons. The () resulting from electromagnetic decays of 0 (0) cannot be separated from the directly produced ones via a secondary vertex measurement. Thus the presented yields always represent the sum + 0 (+ 0). The contribution to () from weak decays, however, depends on the chosen analysis cuts, because these decay products originate from decay vertices with a sizable distance from the main interaction point. Since the NA49 acceptance for () favors those that decay at larger distances, the contribution of feed-down () can be quite substantial. Therefore, we calculated a correction for the feed-down from + 0 (+ 0) decays to the measured () sample using the same simulation procedure as described above for the efficiency correction. In this case a sample of and 0 (+ 0) was generated as input. The feed-down correction was then calculated in bins of pT, (mτ, m0), y, as well as reaction centrality, as the fraction of reconstructed () which originate from + 0 (+ 0) decays and pass the same analysis cuts. The yields used as input to this procedure are based on the measurements presented in this publication, which were interpolated to all centrality bins. The extrapolation of the () yields to the different centrality bins was based on the yield measured in central Pb+Pb reactions [3]. It was assumed that the centrality dependence of the () yields is the same as measured for the (). In both cases the shapes of the input rapidity and pT distributions are a parametrization of the spectra measured for central collisions. For the 0 (0), which are not measured, the same shape of the phase space distributions as for the was assumed. Their yields are calculated by scaling those of () by the 0/0 () ratios taken from statistical model fits [25]. As an example, the pT-integrated feed-down contribution around mid-rapidity is shown in Fig.2b. Since the () yields have a stronger centrality dependence than the () yields, the feed-down contribution changes with centrality. In the case of C+C and Si+Si reactions, only yields entering the calculation of the feed-down are based on statistical model fits [25]. The parameters for their phase space distributions are adjusted such as to interpolate between p+p and Pb+Pb reactions. The corrections amount to 9% (10%) for and 15% (20%) for in C+C (Si+Si) [23].

D. Systematic errors

The contributions to the systematic error of the dN/dy values measured in centrality selected Pb+Pb reactions are listed in Table III. The first two, the uncertainty of the background subtraction and the efficiency correction, are identical to the ones determined for the analysis of the central Pb+Pb datasets [3]. However, there is a difference in the contribution from the feed-down correction to the systematic error in the central
FIG. 5: (color online) The transverse mass spectra of (a), (b), and (c) at mid-rapidity (/ : y< 0.4, : y< 0.5) for Pb+Pb reactions at 158 A GeV in different centrality bins, and in near-central C+C and Si+Si collisions at 158 A GeV. Some of the data points are scaled for clarity. Only statistical errors are shown. The solid/dashed lines represent fits with an exponential, where the solid parts denote the m_t ranges in which the fits were performed. The spectra for C+C and Si+Si are taken from [8].

TABLE III: Summary of the systematic errors on the dN/dy values for minimum bias Pb+Pb reactions.

<table>
<thead>
<tr>
<th>E_{beam} (A GeV)</th>
<th>Bgnd. E. (3%)</th>
<th>p_t Extrapol. (10%)</th>
<th>Feed. Quad. (3%)</th>
<th>sum (11%)</th>
<th>sum (11.5%)</th>
<th>sum (13%)</th>
<th>sum (13.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>3%</td>
<td>10%</td>
<td>3%</td>
<td>3%</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>3%</td>
<td>10%</td>
<td>3%</td>
<td>8%</td>
<td>13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40/158</td>
<td>3%</td>
<td>10%</td>
<td>3%</td>
<td>11%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pb+Pb analysis. The yields of

|, and particularly of |

, are less precisely measured for non-central Pb+Pb reactions than for central ones. While the feed-down contribution from and to can still be constrained reasonably well with the measurement presented here, the feed-down estimate from and to relies on an extrapolation of the measurement in central collisions assuming the same centrality dependence. By varying the input yields inside the errors obtained for the central data set and assuming different centrality dependences (e.g., scaling with N_{pT}), the contribution to the systematic error was evaluated. As a result a systematic error of 3% was assigned to the , while for the it is 8%. Since the minimum bias data at 158 A GeV, and also at 40 A GeV, do not allow to measure the p_t-range down to p_t = 0 GeV=c, an extrapolation has to be used. By comparing the result for the standard t (exponential, as shown in Figs. 4 and 5) to an extrapolation using a t with a hydrodynamically inspired blast-wave model [28], a systematic error of 3% was determined for these cases. Figure 6 demonstrates the consistency of the systematic error estimated for the yields with the spread of results obtained from the two analysis strategies discussed above.

The extrapolations in rapidity, which are needed to extract the total multiplicity, introduce additional systematic errors. The data allow to constrain the widths of the yields, as shown in Figs. 4 and 5, only to a certain extent which translates into an uncertainty of the extrapolation. In the case of at 158 A GeV, the shapes of the rapidity distributions are not measured. Therefore a set of assumptions based on other measurements as discussed in [8] was used. The shaded areas in Fig. 6 represent the uncertainty of the extrapolations that were included in the systematic error.

III. RESULTS

A. Transverse mass spectra

The transverse mass spectra of , and , measured around mid-rapidity (/ : y< 0.4, : y< 0.5), are shown for different centrality classes of minimum bias Pb+Pb collisions at 40 A GeV in Fig. 4 and at 158 A GeV in Fig. 5. Also included in Fig. 5 are the m_t spectra for near-central C+C and Si+Si reactions at 158 A GeV.
The m_i spectra were fitted by an exponential as described in Eq. 1 in the transverse mass range \(m_i < 0.2 \text{ GeV}/c^2 \) (Pb+Pb data) and \(m_i > 0.5 \text{ GeV}/c^2 \) (C+C and Si+Si data). The resulting inverse slope parameters \(T \) are listed in Tables IV, V, and VI. For a model independent study of the energy dependence of \(m_i \) spectra, the average transverse mass \(\langle m \rangle \) was calculated. To account for the unmeasured \(m_i \) range two different parametrizations were employed to extrapolate: an exponential function (shown in Figs. 4 and 5 and a blast-wave function [26] (not shown)). Both provide a description of the measured data. An estimate of the systematic error is derived from the differences between the two approaches. The resulting values for \(\langle m \rangle \) are listed in Tables IV, V, and VI.

Figure 6 shows the dependence of \(\langle m_i \rangle \) on \(N_{\gamma} \) for the hyperon data compared to previously published proton and antiproton results [27]. The mass di differences between the shown particle species are not very large and their \(\langle m_i \rangle \) values agree with errors for each particular collision system. However, there is a significant system-size dependence. A strong increase is observed for \(N_{\gamma} \) below 60, whereas above this region the values of \(\langle m_i \rangle \) rise slowly with centrality in Pb+Pb collisions.

B. Rapidity spectra

The rapidity spectra of and for Pb+Pb collisions at 40A and 158A GeV are summarized in Figs. 4 and 5. For the statistics of the m in um bias datasets was not sufficiently extracted rapidity spectra. While the distributions at 40A GeV and the distributions at 40A and 158A GeV have a Gaussian shape at all centralities, the distributions at 158A GeV are rather at the measured rapidity range, similar to what has been observed for central Pb+Pb reactions [8]. The spectra for the near-central C+C and Si+Si collisions are shown in Fig. 5. A common rapidity distributions for are relatively at with an indication for m in um at m id-rapidity, which appears to be even pronounced than in the case of the Pb+Pb data. The corresponding rapidity densities \(dN/dy \) around m id-rapidity for all data sets are listed in Tables IV, V, and VI.

The determination of total multiplicities requires an extrapolation into the unmeasured y regions. For this purpose the distributions at 40A GeV were fitted with the sum of two Gaussian functions of equal width which are displaced symmetrically by \(s \) with respect to m id-rapidity:

\[
\frac{dN}{dy} \propto \exp \left[\frac{(y - s)^2}{2 \sigma^2} \right] + \exp \left[\frac{(y + s)^2}{2 \sigma^2} \right]: \quad (2)
\]

At 158A GeV, the data do not allow to determine the shape of the rapidity spectra outside the plateau region around m id-rapidity. We therefore use the same assumptions on the spectral shape that have been applied to the central Pb+Pb data at 158A GeV [8] for all centrality bins in order to extract total multiplicities. This, of course, assumes that the widths of the rapidity distributions do not change substantially with centrality. For the spectra a single Gaussian provides a reasonable fit at both beam energies.

The fitted RM S_y values are tabulated in Tables IV, V, and VI. Figure 10 displays the system-size dependence of RM S_y. While for at 40A GeV an indication for a decrease of the widths with increasing centrality can be seen, no significant system-size dependence is observed for at both beam energies.
The rapidity spectra of dN/dy for Pb+Pb collisions at 40A GeV for the 5 different centrality bins C0 (C4). The open symbols show data points retracted around mid-rapidity. The systematic errors are represented by the gray boxes. Solid lines are fits to the data points used to extrapolate the measurements in order to extract total yields. Also included are calculations with the HSD model \cite{30,31,32} (dotted lines) and the UrQMD 2.3 model \cite{33,34,35} (dashed lines).

FIG. 7: (color online) The rapidity spectra of dN/dy for Pb+Pb collisions at 40A GeV for the 5 different centrality bins C0 (C4). The open symbols show data points retracted around mid-rapidity. The systematic errors are represented by the gray boxes. Solid lines are fits to the data points used to extrapolate the measurements in order to extract total yields. Also included are calculations with the HSD model \cite{30,31,32} (dotted lines) and the UrQMD 2.3 model \cite{33,34,35} (dashed lines).

IV. DISCUSSION

A. Comparison to transport models

Transport models allow to study several effects that may influence the system-size dependence of strange particle production, e.g. multimeon fusion processes, absorption of anti-baryons in the preball, and the evolution of the longitudinal distribution of baryonnumber.

Multimeon fusion processes are a possible mechanism to enhance the production of anti-baryons \cite{28} and may therefore be important for reaching statistical equilibrium yields of multi-strange anti-baryons \cite{29}. The HSD model \cite{30,31,32} offers the possibility to include these fusion processes. The Figures 11 and 12 show comparisons of HSD and UrQMD 2.3 \cite{33,34,35} to the measured yields at mid-rapidity and to the total yields. For the predictions of both models are close to the data. However, the system-size dependence, especially for the total yields, seems to be better described by HSD. The multimeon fusion processes are naturally most important for Pb+Pb, which does not feature these processes. HSD
Figure 8: (color online) The rapidity spectra of and for Pb+Pb collisions at 158A GeV in 5 different centrality bins C0 (C4). The open symbols show data points corrected around mid-rapidity. The systematic errors are represented by the gray boxes. Solid lines are fits to the data points, used to extrapolate the measured yields in order to extract total yields. The shaded areas in the spectra sketch the uncertainty due to the different extrapolations. Also included are calculations with the HSD model [30,31,32] (dotted lines) and the UrQMD 2.3 model [33,34,35] (dashed lines).

This gives thus a better description of the measured yields. The yield of is underestimated by UrQMD 2.3 by factors of 2 - 3 for all systems. No HSD calculations for the are available yet.

The system-size dependence of anti-baryon yields should also be acted by their possible absorption in the surrounding dense matter of the fireball. In this case one would expect the measured yield per wounded nucleon to go down when comparing the small C+C and Si+Si systems with central Pb+Pb collisions. In fact, the data on N/i/N w for at 158A GeV seem to exhibit the expected tendency to decrease from C+C towards Pb+Pb collisions (see Fig. 12), quite in contrast to the where N/i/N w i is rather increasing in the region N w i < 60 (see Fig. 12). A similar behavior is predicted by UrQMD 2.3, where it is, however, stronger at 40A GeV than at 158A GeV. But due to the size of the systematic error of the measured yields, no final conclusion can be made whether production is really a acted by absorption.

Figures 7, 8, and 9 include a comparison of the transport model predictions to the measured rapidity distributions of and . In the case of the predicted widths of the rapidity distributions from both models, UrQMD 2.3 and HSD, the data for all studied systems and energies reasonably well (see Fig. 10). Rapidity spectra, which are sensitive to the naldistribution of baryon number, exhibit a significant dependence of their shape on system size. A also here the agreement to the models is fairly good at both energies, even though UrQMD 2.3 predicts a Gaussian shaped distribution at 158A GeV, while the data would rather suggest a plateau inside the measured region. HSD, on the other hand, describes this at shape relatively well. Similar observations have been made in the case of proton rapidity distributions in minimum bias Pb+Pb reactions at 158A GeV, where HSD also gives a better agreement with the observed at proton spectra than UrQMD 2.3 [36]. The reason for this difference lies in a different assumption on when a nucleon is allowed to interact again after its first collision. On top of a formation time of = 0.8 fm/c, which is implemented in both models, HSD requires that the local energy density falls below 1 GeV/fm3, which is considered as the critical energy density for a phase transition to a QGP. Thus, the data would suggest that this additional criterion is needed to properly describe the redistribution of baryon number in longitudinal phase space due to stopping.

B. Core-Corona approach

In order to compare the core-corona approach with the data presented here, we generalize the prescription given in [33] and parameterize the system-size dependence of any observable X by:

$$X(N_w) = N_w [f(N_w)X_{\text{core}} + (1 - f(N_w))X_{\text{corona}}]$$ (3)
The quantity X can either be the average transverse mass m_{trans}, the rapidity density dN/dy, or the total multiplicity N_{part}. The function $f(N_{\text{part}})$ is here defined as the fraction of all participating nucleons, which interact more than once, and can therefore be attributed to the core region. Since the core should behave like independent nucleons (nucleon collisions), the quantity X_{corona} corresponds to results of isentropic events in $p+p$ collisions. Thus, the function $f(N_{\text{part}})$ provides a natural interpolation between $p+p$ and Pb+Pb reactions. We use values for $f(N_{\text{part}})$ (see Table 4), that have been calculated within a Glauber approach for Pb+Pb collisions at 158A GeV and have also been used in the toy model comparison discussed in [18]. Since the nucleon (nucleon cross section changes only slightly between 40 and 158 GeV beam energy, we use the same values of $f(N_{\text{part}})$ for the comparison to the 40A GeV data. It should be noted, though, that the direct comparison of the curves shown here to semicentral C+C and Si+Si collisions is not entirely correct, since their surface to volume ratio is different from that in Pb+Pb collisions. This, in principle, would require a calculation of $f(N_{\text{part}})$ specially for these reaction systems. More insight could also be gained by studying the smaller system in several centrality bins, similar to the study of Cu+Cu in [17]. However, our available statistics for C+C and Si+Si is unfortunately does not allow this.

Based on the above recipe, the system-size dependence of m_{trans} for $p+p$ was constructed (solid lines in Fig. 8b). The m_{trans} values for p+p collisions are based on an interpolation of p+p data measured at various beam energies [23]. The p+p value for was assumed to be the same as for $p+p$, since not enough data is available to do the extrapolation. The core contributions to m_{trans} were adjusted to the measured central Pb+Pb collisions. In fact, the model provides a reasonable description of the measured system-size dependence in all cases.

Similarly, the system-size dependence of dN/dy for $p+p$ and N_{part} for $p+p$ can be predicted using the core-corona approach as given by Eq. (4). The solid lines in Figs. 10 and 11 are based on the same function $f(N_{\text{part}})$ as has been used for m_{trans}. Here, X_{corona} is adjusted to the yields derived from an interpolation of and yields measured in p+p collisions at different beam energies [39]. For the at 158A GeV a preliminary p+p measurement by NA49 was used [40], while for 40A GeV no p+p input is available so that no comparison is possible at this energy. X_{corona} is defined in all cases by the measured dN/dy, resp. N_{part}, for central Pb+Pb collisions. The agreement is good for the yields of and
The rapidity densities dN/dy divided by the average number of wounded nucleons N_{w} of Λ, and at mid-rapidity ($/ : y_{j} < 0.4$, : $y_{j} = 0.5$) for Pb+Pb collisions at 40A and 158A GeV, as well as for near-central C+C and Si+Si reactions at 158A GeV, as a function of N_{w}. The systematics are represented by the gray boxes. Filled symbols correspond to the minimum bias trigger, while the open ones represent the on-line triggered (near-)central reaction system. A box shows are data of the NA57 collaboration [33, 34, 35] (open stars) and calculations with the HSD model [24, 31, 32] (dotted lines), the UrQMD 2.3 model [31, 32, 33] (dashed lines), and the core-corona approach (solid lines).

(see: Figs. 11 and 12). However, for at 158A GeV the yields measured in C+C and Si+Si collisions are at the same level as for Pb+Pb reactions. This behavior cannot be fitted by the core-corona approach and would therefore indicate that also other mechanisms, such as absorption, need to be taken into account to arrive at a proper description of the system-size dependence.

V. SUMMARY

A measurement of Λ, and production in centrality selected Pb+Pb collisions at 40A and 158A GeV and in near-central C+C and Si+Si collisions at 158A GeV is presented. The m's of the transverse mass spectra (m_{t}, m_{s}) exhibit only a weak system-size dependence for $N_{\text{w}} > 60$, while for the small system size a rapid rise of m_{t}, m_{s} with increasing system size is observed. The rapidity distributions of at 40A GeV and of at 40A and 158A GeV have a Gaussian shape. For at 158A GeV the rapidity spectra are rather at in the measured region $1 < y < 12$. Generally, no pronounced system-size dependence of the widths of the rapidity distributions is observed. Only the spectra at 40A GeV might show some indication for a slight narrowing with increasing centrality. The measured dN/dy at 158A GeV suggest a faster system-size dependence than expected in the core-corona picture. Generally, the results of the hadronic transport models UrQMD 2.3 and HSD for and are close to the data, with the exception of the underprediction of the absolute yields at both energies by UrQMD 2.3. But both models predict a system-size dependence of the total multiplicity similar to the measurement. This might indicate that absorption of in the dense hadronic matter, which is taken into account in the hadronic transport models, has a visible effect. However, these models are not able to describe the production of baryons with multiple strangeness. UrQMD 2.3, for example, underestimates the yields of to a large extent (factor 2 (3)). The HSD model seems to provide a better description of the rapidity spectra than UrQMD 2.3 due to an m-
proved in implementation of the stopping mechanism.

Acknowledgements

This work was supported by the USD epartment of Energy Grant DE-FG 03-97ER 41020/A 000, the Bundesministerium für Bildung und Forschung, Germany (06F 137), the Virtual Institute V I-146 of Helmholtz Gemeinschaft, Germany, the Hungarian Scientific Research Foundation (T 032648, T 032293, T 043514), the Hungarian National Science Foundation, OTKA, (F 034707), the Polish-German Foundation, the Polish Ministry of Science and Higher Education (1 P 03B 006 30, 1 P 03B 127 30, 0297/B/H 03/2007/33, N N 202 078735), the Korea Research Foundation (KRF-2007-313-C 00175) and the Bulgarian National Science Fund (Ph-09/05).

[22] Geant Detector Description and Simulation Tool, CERN Program Library Long W rit eup W 5013.
[36] C. Blume et al. (for the NA 49 Collaboration), PoS (Con f rence 08), 110 (2008), and NA 49 publication in preparation.

A P P E N D I X A : T A B L E S
TABLE IV: The rapidity densities at mid-rapidity ($|y|< 0.4$, $|y|< 0.5$), the total multiplicities N_{i}, the RMS widths of the rapidity distributions R_{S}, calculated from the t-s shown in Fig. 9, the average transverse masses $m_{i}m_{0}$, and the inverse slope parameters T for Pb+Pb collisions at 40A GeV. The \pm error is statistical, the second systematics.

<table>
<thead>
<tr>
<th>Centrality class</th>
<th>N_{i}</th>
<th>dN/dy</th>
<th>N_{i}</th>
<th>R_{S}</th>
<th>$m_{i}m_{0}$</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(MeV$^{-2}$)</td>
<td>(MeV)</td>
</tr>
<tr>
<td>0</td>
<td>351 3</td>
<td>14.9 0.3 1.6</td>
<td>41.1 0.8 5.3</td>
<td>0.96 0.06 0.11</td>
<td>324 10 33</td>
<td>268 7 16</td>
</tr>
<tr>
<td>1</td>
<td>290 4</td>
<td>12.6 0.2 1.4</td>
<td>34.1 0.6 4.4</td>
<td>0.98 0.07 0.11</td>
<td>310 8 31</td>
<td>256 4 15</td>
</tr>
<tr>
<td>2</td>
<td>210 6</td>
<td>8.4 0.1 0.9</td>
<td>23.6 0.3 3.1</td>
<td>0.89 0.05 0.11</td>
<td>295 6 30</td>
<td>247 3 15</td>
</tr>
<tr>
<td>3</td>
<td>142 8</td>
<td>5.3 0.1 0.6</td>
<td>16.4 0.2 2.1</td>
<td>1.14 0.13 0.13</td>
<td>277 6 28</td>
<td>230 4 14</td>
</tr>
<tr>
<td>4</td>
<td>93 7</td>
<td>3.2 0.05 0.4</td>
<td>9.9 0.1 1.3</td>
<td>1.12 0.08 0.12</td>
<td>261 6 26</td>
<td>220 5 13</td>
</tr>
<tr>
<td></td>
<td>351 3</td>
<td>0.29 0.04 0.04</td>
<td>0.59 0.08 0.12</td>
<td>0.79 0.16 0.10</td>
<td>405 72 53</td>
<td>325 81 32</td>
</tr>
<tr>
<td></td>
<td>290 4</td>
<td>0.23 0.03 0.03</td>
<td>0.43 0.05 0.09</td>
<td>0.71 0.12 0.09</td>
<td>366 56 48</td>
<td>299 40 30</td>
</tr>
<tr>
<td></td>
<td>210 6</td>
<td>0.18 0.02 0.02</td>
<td>0.35 0.03 0.07</td>
<td>0.69 0.09 0.09</td>
<td>321 42 42</td>
<td>276 38 28</td>
</tr>
<tr>
<td></td>
<td>142 8</td>
<td>0.14 0.01 0.02</td>
<td>0.27 0.02 0.05</td>
<td>0.73 0.08 0.10</td>
<td>392 36 51</td>
<td>346 69 35</td>
</tr>
<tr>
<td></td>
<td>93 7</td>
<td>0.09 0.01 0.01</td>
<td>0.17 0.01 0.03</td>
<td>0.77 0.10 0.10</td>
<td>261 6 26</td>
<td>220 5 13</td>
</tr>
</tbody>
</table>

TABLE V: The rapidity densities at mid-rapidity ($|y|< 0.4$, $|y|< 0.5$), the total multiplicities N_{i}, the RMS widths of the rapidity distributions R_{S}, calculated from the t-s shown in Fig. 9, the average transverse masses $m_{i}m_{0}$, and the inverse slope parameters T for Pb+Pb collisions at 158A GeV. The \pm error is statistical, the second systematics.

<table>
<thead>
<tr>
<th>Centrality class</th>
<th>N_{i}</th>
<th>dN/dy</th>
<th>N_{i}</th>
<th>R_{S}</th>
<th>$m_{i}m_{0}$</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(MeV$^{-2}$)</td>
<td>(MeV)</td>
</tr>
<tr>
<td>0</td>
<td>352 3</td>
<td>12.9 0.7 1.5</td>
<td>55.3 1.8 8.8</td>
<td>0.96 0.14 0.13</td>
<td>580 148 75</td>
<td>507 211 51</td>
</tr>
<tr>
<td>1</td>
<td>281 4</td>
<td>10.0 0.4 1.2</td>
<td>45.9 1.0 7.3</td>
<td>1.11 0.15 0.15</td>
<td>443 109 58</td>
<td>372 62 37</td>
</tr>
<tr>
<td>2</td>
<td>196 6</td>
<td>6.9 0.2 0.8</td>
<td>32.0 0.5 5.1</td>
<td>0.98 0.08 0.13</td>
<td>345 31 45</td>
<td>296 27 30</td>
</tr>
<tr>
<td>3</td>
<td>128 8</td>
<td>4.4 0.1 0.5</td>
<td>19.7 0.3 3.2</td>
<td>0.99 0.10 0.13</td>
<td>345 27 45</td>
<td>302 34 30</td>
</tr>
<tr>
<td>4</td>
<td>85 7</td>
<td>2.7 0.1 0.3</td>
<td>11.9 0.2 1.9</td>
<td>0.83 0.07 0.11</td>
<td>340 23 44</td>
<td>309 50 31</td>
</tr>
<tr>
<td></td>
<td>352 3</td>
<td>1.4 0.3 0.2</td>
<td>3.6 0.4 0.6</td>
<td>0.96 0.14 0.13</td>
<td>580 148 75</td>
<td>507 211 51</td>
</tr>
<tr>
<td></td>
<td>281 4</td>
<td>0.92 0.14 0.12</td>
<td>3.0 0.3 0.5</td>
<td>1.11 0.15 0.15</td>
<td>443 109 58</td>
<td>372 62 37</td>
</tr>
<tr>
<td></td>
<td>196 6</td>
<td>0.78 0.07 0.11</td>
<td>2.2 0.1 0.4</td>
<td>0.98 0.08 0.13</td>
<td>345 31 45</td>
<td>296 27 30</td>
</tr>
<tr>
<td></td>
<td>128 8</td>
<td>0.54 0.04 0.07</td>
<td>1.4 0.1 0.2</td>
<td>0.99 0.10 0.13</td>
<td>345 27 45</td>
<td>302 34 30</td>
</tr>
<tr>
<td></td>
<td>85 7</td>
<td>0.36 0.03 0.05</td>
<td>0.8 0.05 0.14</td>
<td>0.83 0.07 0.11</td>
<td>340 23 44</td>
<td>309 50 31</td>
</tr>
</tbody>
</table>

TABLE VI: The rapidity densities at mid-rapidity ($|y|< 0.4$, $|y|< 0.5$), the total multiplicities N_{i}, the RMS widths of the rapidity distributions R_{S}, calculated from the t-s shown in Fig. 9, the average transverse masses $m_{i}m_{0}$, and the inverse slope parameters T for near-central C+C and Si+Si collisions at 158A GeV. The \pm error is statistical, the second systematics.

<table>
<thead>
<tr>
<th>Reaction system</th>
<th>N_{i}</th>
<th>dN/dy</th>
<th>N_{i}</th>
<th>R_{S}</th>
<th>$m_{i}m_{0}$</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(MeV$^{-2}$)</td>
<td>(MeV)</td>
</tr>
<tr>
<td>C+C</td>
<td>14 2</td>
<td>0.24 0.01 0.04</td>
<td>1.32 0.05 0.32</td>
<td>224 6 27</td>
<td>199 8 15</td>
<td></td>
</tr>
<tr>
<td>Si+Si</td>
<td>37 3</td>
<td>0.88 0.04 0.13</td>
<td>3.88 0.16 0.56</td>
<td>267 16 32</td>
<td>235 9 16</td>
<td></td>
</tr>
<tr>
<td>C+C</td>
<td>14 2</td>
<td>0.064 0.003 0.010</td>
<td>0.18 0.02 0.03</td>
<td>0.92 0.04 0.16</td>
<td>204 9 27</td>
<td>184 11 17</td>
</tr>
<tr>
<td>Si+Si</td>
<td>37 3</td>
<td>0.16 0.007 0.038</td>
<td>0.49 0.05 0.11</td>
<td>0.96 0.13 0.21</td>
<td>230 10 30</td>
<td>205 9 17</td>
</tr>
<tr>
<td>Si+Si</td>
<td>37 3</td>
<td>0.07 0.01 0.01</td>
<td>0.18 0.02 0.03</td>
<td>0.92 0.04 0.16</td>
<td>204 9 27</td>
<td>184 11 17</td>
</tr>
</tbody>
</table>