Stochastic Quantization of the Horava Gravity

Fu-Wen Shu1 and Yong-Shi Wu2

1College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
2Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
(Dated: July 27, 2013)

The stochastic quantization method is applied to the recent proposal by Horava for gravity. We show that in contrast to General Relativity, the Horava’s action, satisfying the detailed balance condition, has a stable, non-perturbative quantum vacuum when the DeWitt parameter is not greater than 1-3, providing a possible candidate for consistent quantum gravity.

PACS numbers: 04.60.Nc

Introduction. The goal of formulating a consistent and renormalizable quantum theory of gravity has been pursued for more than half century. Attempts of quantizing General Relativity (Einstein’s theory of gravitation) have met tremendous difficulties. On one hand, the canonical quantization is shown to be perturbatively non-renormalizable in four dimensions and, therefore, loses predictability, because the Einstein-Hilbert action is non-polynomial. On the other hand, the Euclidean path integral approach suffers the indecision problem. Namely the Einstein-Hilbert action is not positive-de finite, because conformal transformations can make the action arbitrarily negative.

A recent attempt to overcome these difficulties is the proposal made by Horava (4). (For the ideas that led to this proposal, see also refs. (5,6).) This proposal is a non-Lorentz invariant theory of gravity in 3+1 dimensions, inspired by the Lifshitz model studied in condensed matter physics. At the microscopic (ultraviolet) level this model exhibits anisotropic scaling between space and time, with the dynamical critical exponent z set equal to 3. (Namely, the action is invariant under the scaling \(x^i \rightarrow x^i/(1+z^i); t \rightarrow t \), where \(z^i = 3 \) violates the Lorentz symmetry.) The action is assumed to satisfy the so-called detailed balance condition, and is renormalizable by power counting. It is argued that the renormalization group in the model approaches an infrared (IR) fixed point theory with \(z = 1 \), thus Einstein’s General Relativity (with local Lorentz symmetry) is naturally emergent or recovered at the macroscopic level. It is this perspective that has enabled the proposal to attract a lot of interests in recent literature. Many papers have appeared to study the classical solutions or consequences of the Horava’s proposal (e.g. see refs. (7,8,9,10)). A number of fundamental questions remain unanswered. In this letter we report a study of the most fundamental questions on Horava gravity: whether the action can really be quantized in a consistent and non-perturbative manner? If yes, whether this will put any constraint(s) on the parameters appearing in the action or not? (A recent paper (11) on the renormalizability of the model did not address these issues, assuming no problem with quantization.)

Among the three existing (canonical, path integral and stochastic) quantization approaches, only the last (stochastic quantization) is constructive through stochastic differential equation, so that the question of whether a stable vacuum (ground state) really exists or not can be easily investigated and answered. Also it has the great advantages of no need for gauge- fixing when applied to theories with gauge symmetries. In this letter we apply stochastic quantization to the Horava gravity, where the gauge symmetry is spatial diffeomorphism. We will show that the quantized theory with a stable vacuum indeed exists only when the parameter in the DeWitt metric in the space of three-metrics is not greater than a critical value \(1/3 \); (i.e. \(c = 1/3 \)). This is the range of the values for which Horava’s action may make sense for a consistent quantum theory of gravity. (In contrast, stochastic quantization of General Relativity does not lead to a stable vacuum (ground) state. See below.)

Principle inearies. Assume the spacetime allows a (3+1)-decomposition:

\[
\mathrm{d}s^2 = N \, \mathrm{d}t^2 + g_{ij}(\mathrm{d}x^i, \mathrm{d}N^j) (\mathrm{d}x^j, \mathrm{d}N^j) \mathrm{d}t; \tag{1}
\]

where \(g_{ij}(i,j=1,2,3) \) is the 3-metric, \(N \) and \(N_i \) are the lapse function and shift vector, respectively. The Horava action with \(z = 3 \) is given by [4]

\[
S = \int \mathrm{d}^4x \sqrt{g} \frac{Z}{3N} 2 \sum_{i,j,k} K_{ij} G^{ij} K_{k,i} + \sum_{i,j} \frac{c}{8} \left(E^{i,j} G_{i,j} E^{k,1} \right) ; \tag{2}
\]

where \(g \) denotes the determinant of the 3-metric \(g_{ij} \) and \(c \) is the coupling constant, to be identified with \(32 \, G \, c \) in the IR regime with \(z = 1 \) (\(G \) and \(c \) the Newton’s gravitational constant and the speed of light, respectively).
extrinsic curvature K_{ij} and the D-Whitten metric g^{ijkl} in (2) are defined by

$$K_{ij} = \frac{1}{2N} (g_{ij} r_i N_j + r_j N_i);$$ \hspace{1cm} (3)

$$g^{ijkl} = \frac{1}{2} g^{ik} g^{jl} + g^{il} g^{jk} - g^{ij} g^{kl}$$ \hspace{1cm} (4)

with γ a free parameter. The potential term in (2), when E^a_i is given by $D \bar{\Phi} E^a_i = \frac{\delta V}{\delta E^a_i}$, is said to satisfy the so-called detailed balance condition. Horava took W to be

$$W = \frac{1}{\alpha^2} \sum_i (\int Z^i + d\int^1 \bar{\Psi} (2 \alpha \Psi)^i);$$ \hspace{1cm} (5)

Here α^2 and α are coupling constants, and α^3 is the gravitational Chern-Simons term:

$$\alpha^3 \bar{\Psi}^a \Psi^a + \frac{2}{3} \gamma \bar{\Psi}^a \Psi^a \alpha^3;$$ \hspace{1cm} (6)

with the Christoffel symbols. Simple dimensional analysis for the coupling constants shows that the theory is ultraviolet (α^1) renormalizable. The renormalizability beyond the power counting of this theory has recently been confirmed in α^3, assuming no problem with quantization. Here we will examine the more fundamental question of the non-perturbative existence of quantum vacuum.

Stochastic Quantization. Stochastic quantization [12] has been proved to be an effective tool for quantizing a field theory, in particular a gauge theory [13, 14]. Stochastic quantization is based on the principle that quantum dynamics of a d-dimensional system is equivalent to classical equilibrium statistical mechanics of a $(d+1)$-dimensional system. The essence of stochastic quantization is to use a stochastic evolution of the Langevin equation in (citrus time), driven by white noises, to construct the equilibrium state corresponding to the quantum ground state. The existence of an equilibrium state can be proved or disproved by studying the corresponding Fokker-Planck equation associated with the Langevin equation. In this spirit, we start with the Langevin equation of the Horava gravity:

$$g^a_i \phi_j = G^a \theta_i S_E + \frac{1}{2} S_E g_i^a;$$

where the dot represents derivative with respect to the citrus time and following notations have been introduced:

$$g^{ij}, g^{ij}; G^{ij}, G^{ij}_{ijkl}; \theta_i S_E, \frac{1}{2} \bar{S}_E g_i^a;$$

In eq. (7), θ, τ, and γ are noises, and S_E is the Euclidean version of the action [2].

Note that the indices $i, j = 1, 2, \ldots, 6$ are raised and lowered by G^{ij} and its inverse G_{ij}. The stochastic correlation of a gauge invariant functional $F(N; N_I g_{ij})$ is defined as the expectation value of the functional with respect to the noises

$$< F(N; N_I g_{ij}) > D \bar{\Phi} D \Phi F(N; N_I g_{ij}) \exp \frac{1}{2} \int dr \cdot r \bar{\Phi} (2 + g^{ij} \gamma + G^{ij}_{ijkl}) \Phi);$$ \hspace{1cm} (8)

where g^{ij} and G^{ij} are solutions of the Langevin equation [7] and hence are functions of γ and γ, respectively. The Wick rotation to imaginary time has been applied and is the citrus time. Eq. (8) indicates that the noises γ and γ are not Gaussian. As suggested in [11], one can overcome this difficulty by introducing a set of new noises via vielbeins. That is $\gamma e^a_{ij} \gamma e^{a}_{ij} \gamma e^{a}_{ij}$; and its inverse $\gamma = e^a \gamma e^{a}_{ij} \gamma e^{a}_{ij}$; where e^a_{ij} and E^a_{ij} are the vielbeins. The following relations hold:

$$e^a_{ik} e^b_{kj} g_{ij} = \alpha \beta; \hspace{1cm} E^a_{ik} E^b_{kj} g_{ij} = \alpha \beta;$$

$$e^a_{ik} e^b_{kj} g_{ij} = \gamma; \hspace{1cm} E^a_{ik} E^b_{kj} \gamma = \gamma. \hspace{1cm} (9)

The new noises turn out to be Gaussian and we have

$$\langle \gamma (x; \gamma) \rangle = 0; \hspace{1cm} \langle \gamma (x; \gamma) \rangle = 0; \hspace{1cm} \langle \gamma (x; \gamma) \rangle = 0; \hspace{1cm} (11)

\langle \gamma (x; \gamma) \rangle \langle \gamma (y; \gamma) \rangle = 2 \gamma (x; \gamma) \langle \gamma (y; \gamma) \rangle; \hspace{1cm} (12)

\langle \gamma (x; \gamma) \rangle \langle \gamma (y; \gamma) \rangle = 2 \gamma (x; \gamma) \langle \gamma (y; \gamma) \rangle; \hspace{1cm} (13)

\langle \gamma (x; \gamma) \rangle \langle \gamma (y; \gamma) \rangle = 2 \gamma (x; \gamma) \langle \gamma (y; \gamma) \rangle; \hspace{1cm} (14)
In this case: If follows from Eq. (22) that

\[\lim_{t \to \infty} P(N; N; 1; t; \rho) = a_0 e^{S_{\rho} \tau} ; \]

where \(a_0 \) is determined by the normalization condition. Note that this result is independent of the initial conditions. Any equal-time correlation function, if invariant under spatial diffeomorphism, tends to its equilibrium value when

\[\sum_{\rho} F \]
for large time. Therefore, though the solution given by (23) is always a stationary state for the Fokker-Planck equation, it represents an equilibrium state (or a stable ground state) reached at large time only when \(z = 1 \). In contrast, a similar result would not be obtained with stochastic quantization of Einstein’s gravity, which corresponds to \(z = 1 = 3 \), since the associated Fokker-Planck Hamiltonian is not positive definite and hence does not lead to an equilibrium state at large cosmic times.

In the above derivation, the detailed balance condition is crucial for the Horava gravity to have a stable vacuum when \(z < 1 = 3 \). In fact, with the detailed balance condition satisfied at short distances, \(S_E \) is of the form

\[
S_E = G^{IJ}(K_I K_J + E_I E_J);
\]

where \(\theta > 0 \) and \(E_I = \theta \omega^I \) with \(\omega^I \) given by (5). \(S_E \) has a similar structure to eq. (20), so it is positive definite for \(z < 1 = 3 \) and indefinite for \(z > 1 = 3 \). As a consequence, the state (23) is a physical ground state for \(z < 1 = 3 \) and is unstable for \(\theta > 1 = 3 \).

We have seen that \(z = 1 = 3 \) is a critical value for the theory: Above it, the quantized theory does not make sense, while the opposite is true below it. Exactly at \(z = 1 = 3 \), extra zero modes develop for the D-Witten metric \(G^{IJ} \) and, hence, for eq. (19) as well. This implies that the gauge symmetry of the theory is enhanced, which now includes local Weyl transformations as already observed in ref. [4]. It would be extremely interesting to understand the fate of the enhanced gauge symmetry in the quantized theory. Anyway, in principle stochastic quantization method should be applicable at \(z = 1 = 3 \), and the appearance of extra zero modes does not destroy the stability of the vacuum, though there are subtle issues to be resolved.

Conclusions and discussions. In summary, we have applied stochastic quantization to the Horava gravity. By analyzing the associated Fokker-Planck equation, we have found that with \(z < 1 = 3 \) the system will approach to equilibrium as the cosmic time goes to infinity, giving rise to a stable vacuum state for the quantized theory. The key to this property is the detailed balance condition obeyed by the Horava action. When \(z > 1 = 3 \), stochastic quantization does not make sense because of development of a negative mode. The \(z = 1 = 3 \) case would be probably alright, but requires more careful examination.

In ref. [2], to make sense of the speed of light in the IR regime with \(z = 1 \), one needs \(\omega = (1 - 3) \) to be positive. Our constraint \(z < 1 = 3 \) for the stability of gravity vacuum further constrains the cosmological constant to be positive: \(\omega > 0 \). This agrees with cosmological observations [14].

Our suggestion opens the door for using stochastic quantization to numerically study the quantized Horava gravity, in particular to check whether the renormalization group would indeed change the value of \(z \) from \(z = 3 \) in the UV regime to \(z = 1 \) in the IR regime.

Finally, it should be noted that the stochastic quantization applied in this letter is the standard one that introduces a cotic time. This is different from the one used in ref. [11], where the time for stochastic evolution is identiﬁed with the real time. In this reference, for the purpose of studying the renormalizability of Horava gravity, they have explored the fact that like any Lifshitz-type models, the Horava gravity can be viewed as stochastic quantization of a lower-dimensional theory [15], which in the present case is three-dimensional topological massive gravity.

Acknowledgments. This work is partially supported by a grant from FQXi. One of us (F.W.) thanks Department of Physics and Astronomy, University of Utah for warm hospitality, where this work was done. F.W. is supported by a grant from CQUPT. Y.S.W. is supported by US NSF grant PHY-0756958.