Quadrupolar correlations and deformation effect on two neutrino $\epsilon\beta^+$ and $\epsilon\epsilon$ modes of 156Dy isotope

P K Rath1, R Chandra1,2, S Singh1, P K Raina2 and J G Hirsch3

1Department of Physics, University of Lucknow, Lucknow-226007, India
2Department of Physics and Meteorology, IIT, Kharagpur-721302, India
3Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, México 04510 D.F., México

Abstract. The two-neutrino positron double-β decay modes of 156Dy isotope are studied in the Projected Hartree-Fock-Bogoliubov framework for the $0^+ \rightarrow 0^+$ transition. Theoretically calculated half-lives of electron-positron conversion and double-electron capture modes are presented. The effect of the quadrupolar deformation on nuclear transition matrix element $M_{2\nu}$ is also investigated.

PACS numbers: 21.60.Jz, 23.20.-g, 23.40.Hc
1. Introduction

The nuclear $\beta\beta$ decay, which is mediated by strangeness conserving charged weak current is expected to occur through double-electron emission ($\beta^-\beta^-$), double-positron emission ($\beta^+\beta^+$), electron-positron conversion ($\epsilon\beta^+$) and double-electron capture ($\epsilon\epsilon$) with the emission of two neutrinos, no neutrinos, single Majoron and double Majorons. The $\beta^+\beta^+/\epsilon\beta^+/\epsilon\epsilon$ processes are energetically competing and we refer to them as $e^+\beta\beta$ decay. The $(\beta\beta)_{2\nu}$ decay conserves the lepton number exactly and is an allowed process in standard model of electroweak interactions (SM). The lepton number violating $(\beta\beta)_{0\nu}$ decay, which is theoretically possible in many different nuclei beyond the SM, has not been observed so far. All the present experimental efforts are devoted to its observation, which would immediately imply that neutrinos are massive Majorana particles. In comparison to the $\beta^-\beta^-$ decay, less attention has been paid to study the $e^+\beta\beta$ decay due to relatively low Q-values and low abundances of $e^+\beta\beta$ emitters. The experimental and theoretical developments in the study of nuclear $e^+\beta\beta$ decay have been excellently reviewed over the past years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The half-life $T_{1/2}^{2\nu}$ of $(\beta\beta)_{2\nu}$ decay is a product of accurately known phase space factor $G_{2\nu}$ and nuclear transition matrix element (NTME) $M_{2\nu}$. Hence, the validity of different models employed for nuclear structure calculations can be tested by comparing the calculated NTMEs $M_{2\nu}$ with those extracted from the experimentally observed half-lives $T_{1/2}^{2\nu}$ for the $0^+ \rightarrow 0^+$ transition of $(\beta^-\beta^-)_{2\nu}$ mode. In contrast to the $(\beta^-\beta^-)_{2\nu}$ mode, which has been observed in ten $\beta^-\beta^-$ emitters out of 35 potential candidates, the $(e^+\beta\beta)_{2\nu}$ decay modes have not been observed experimentally so far. However, limits on their half-lives $T_{1/2}^{2\nu}$ have been given for 24 out of 34 possible isotopes [11]. Meshik et al have reported on a positive observation of ^{130}Ba decay with half-life $T_{1/2} = (2.16 \pm 0.52) \times 10^{21}$ y for all modes [12] and this result is consistent with theoretical expectations for the $(\epsilon\epsilon)_{2\nu}$ mode [13]. This value is in slight contradiction with the experimental limit $T_{1/2} > 4 \times 10^{21}$ y reported in [14]. If confirmed, it would be the very first observation of $e^+\beta\beta$ decay. In the absence of experimental data, there is no way to judge the reliability of present nuclear structure calculations. In principle, the $\beta^-\beta^-$ decay and $e^+\beta\beta$ decay can provide the same information. The observation of $(e^+\beta\beta)_{2\nu}$ decay will be interesting from the nuclear structure point of view, as it will be a challenging task to calculate the NTMEs of these modes along with the $(\beta^-\beta^-)_{2\nu}$ mode in the same theoretical framework and it will further constrain the nuclear models employed to study the $\beta\beta$ decay. In addition, the observation of $(e^+\beta\beta)_{0\nu}$ decay will be helpful in deciding finer issues like dominance of mass mechanism or admixture of the right handed current in the electroweak interaction [13].

Rosen and Primakoff were the first to study the $(e^+\beta\beta)_{2\nu}$ decay theoretically [1]. Later on, Kim and Kubodera estimated the half-lives of all the three modes with estimated NTME and non-relativistic phase space factors [14]. Abad et al performed similar calculations using relativistic Coulomb wave functions [16]. In addition, some other theoretical studies were done by Zel’dovich et al [17], Eramzhyan et al [18], Bernabeu et al [19] and Balaev et al [20]. The $(e^+\beta\beta)_{2\nu}$ decay has been studied mainly in three types of models, namely shell model and its variants, the quasi-particle random phase approximation (QRPA) and its extensions and alternative models [7]. The nuclear many-body problem is solved as exactly as possible in the shell-model and it is the best choice for the calculation of the NTMEs. However, the number of
Quadrupolar correlations and deformation effect on two neutrino $\epsilon\beta^+$ and $\epsilon\epsilon$ modes of 156Dy isotope

basis states increases quite drastically for most of the $\beta\beta$ decay emitters as they are medium or heavy mass nuclei and hence, Vergados has studied the \((e^+\beta\beta)_{2\nu}\) decay of 58Ni, 92Mo and 96Ru nuclei in the weak coupling limit. Over the past years, the large scale shell-model calculations have been successfully performed to study the potential $\beta\beta$ emitters \cite{21, 22, 23, 24}. In the shell-model, the \((e^+\beta\beta)_{2\nu}\) decay modes of 40Ca \cite{25}, 36Ar, 54Fe, 58Ni \cite{26} and 92Mo \cite{27} isotopes have been investigated.

The QRPA has emerged as the most successful model in explaining the observed quenching of NTMEs by incorporating the particle-particle part of the effective nucleon-nucleon interaction in the proton-neutron channel \cite{28, 29} and the observed half-lives $T_{1/2}^{2\nu}$ of several \((\beta\beta)_{2\nu}\) decay emitters were reproduced successfully \cite{30}. In the QRPA model, Staudt et al have evaluated the NTMEs for \((\beta^+\beta^+)_{2\nu}\) mode \cite{31}. The \((e^+\beta\beta)_{2\nu}\) decay modes were studied in the QRPA and its extensions \cite{13, 14, 31, 32, 33, 34, 35}. In spite of the success of the QRPA in the study of $\beta\beta$ decay, there is a need to include the deformation degrees of freedom in its formalism. The deformed QRPA model has been developed for studying $\beta\beta$ decay of spherical as well as deformed nuclei. However, these studies have been mainly restricted to $\beta^-\beta^-$ decay so far \cite{36, 37, 38}. The \((e^+\beta\beta)_{2\nu}\) decay modes are the SU(4)$_{\nu\nu}$, SSDH \cite{40} and pseudo-SU(3) \cite{41}.

In fact, the subtle interplay of pairing and quadrupolar correlations present in the effective two-body interaction decides the complex structure of nuclei. In addition to the pairing interaction, which plays an important role in all even Z-even N $\beta\beta$ emitters, the crucial role of deformation degrees of freedom in the structure of 100Mo and 150Nd isotopes has been already reported \cite{42, 43}. In the Projected Hartree-Fock-Bogoliubov (PHFB) model, the two crucial components of effective two body interaction, namely pairing and quadrupolar correlations are incorporated on equal footing and the rotational symmetry is restored by projection technique providing wave functions with good angular momentum for the parent and daughter nuclei involved in the $\beta\beta$ decay. However, the PHFB model is unable to provide information about the structure of intermediate odd Z-odd N nuclei in its present version and hence, on the single-β decay rates and the distribution of GT strength. In spite of this limitation, the PHFB model, in conjunction with pairing plus quadrupole-quadrupole (PQQ) interaction \cite{44}, has been successfully applied to study the $0^+ \rightarrow 0^+$ transition of \((\beta^+\beta^+)_{2\nu}\) modes \cite{45, 46, 47, 48}, where it was possible to describe the lowest excited states of the parent and daughter nuclei along with their electromagnetic transition strengths, as well as to reproduce their measured $\beta^-\beta^-$ decay rates \cite{49, 48}.

In the PHFB model, the existence of an inverse correlation between the quadrupole deformations and the magnitudes of NTMEs $M_{2\nu}$ has been shown \cite{45, 47, 48}. In addition, it has been observed that the NTMEs are usually large in the absence of quadrupolar correlations. With the inclusion of the quadrupolar correlations, the NTMEs are almost constant for small admixture of the QQ interaction and suppressed substantially in realistic situation. For similar deformations of parent and daughter nuclei, the NTMEs have well defined maximum \cite{49}. In the Interacting Shell Model (ISM) \cite{50, 51}, similar observations have been also reported. Presently, we aim to study the $e^+\beta\beta$ decay of 156Dy isotope. The deformation parameters β_2 for parent 156Dy and daughter 156Gd nuclei are 0.2929 ± 0.0016 and 0.3376 ± 0.0018, respectively, which will provide a typical case study of the deformation effect. The present paper is organised as follows. We briefly present in section 2 the required theoretical formalism. In section 3, we calculate half-lives $T_{1/2}^{2\nu}$ for the
Quadrupolar correlations and deformation effect on two neutrino ϵ+ and $\epsilon\epsilon$ modes of 156Dy isotope

$0^+ \rightarrow 0^+$ transition of $(\epsilon^+\beta^+)_{2\nu}$ and $(\epsilon\epsilon)_{2\nu}$ modes for 156Dy isotope together with various spectroscopic properties, specifically, yrast spectra, reduced $B(E2;0^+ \rightarrow 2^+)$ transition probabilities, quadrupole moments $Q(2^+)$ and gyromagnetic factors $g(2^+)$ of 156Dy and 156Gd nuclei. The expressions to calculate these spectroscopic properties in the PHFB model are given in [52]. Moreover, we study the effect of deformation on NTME $M_{2\nu}$ of $(\epsilon^+\beta^+)_{2\nu}$ decay modes vis-a-vis the changing strength of the QQ interaction. Finally, the concluding remarks are presented in section 4.

2. Theoretical framework

The inverse half-lives for the $0^+ \rightarrow 0^+$ transition of $(\epsilon^+\beta^+)_{2\nu}$ decay modes are given by

$$\left[T_{1/2}^{2\nu}(\beta) \right]^{-1} = G_{2\nu}(\beta) |M_{2\nu}|^2$$

where β denotes $(\beta^+\beta^+)_{2\nu}/(\epsilon^+\beta^+)_{2\nu}$ mode. The phase space factors $G_{2\nu}(\beta)$ have been calculated to good accuracy [4] and the nuclear model dependent NTME $M_{2\nu}$ is expressed as

$$M_{2\nu} = \sum_N \frac{\langle 0_F^+|\sigma^{-}||1_N^+\rangle \langle 1_N^+|\sigma^{-}||0^+ \rangle}{(E_N - E_I) + E_0}.$$ \((2) \)

To evaluate equation (2), one has to explicitly sum over all states of the intermediate odd Z-odd N nuclei. However, it is not possible to study the structure of intermediate odd-odd nuclei in the present version of the PHFB model. Alternatively, the summation over the intermediate states can be carried out by using the summation method [53], when the GT operator commutes with the effective two-body interaction [54, 55, 41]. We use the latter procedure to sum over the intermediate states for evaluating the NTME $M_{2\nu}$ [45, 47, 48].

Presently, the nuclear wave functions are generated in the HFB framework by using a Hamiltonian consisting of an effective two-body interaction with pairing and quadrupolar correlations [44]. Explicitly, the Hamiltonian is written as

$$H = H_{sp} + V(P) + \zeta_{qq}V(QQ)$$ \((3) \)

where H_{sp}, $V(P)$ and $V(QQ)$ denote the single particle Hamiltonian, the pairing and QQ part of the effective two-body interaction. Further, ζ_{qq} denotes the strength of QQ part of the effective two-body interaction. The purpose of introducing it is to study the role of deformation by varying the strength parameter ζ_{qq}. The final results are obtained by setting the $\zeta_{qq} = 1$.

The two-body part of the Hamiltonian given by Eq. (3) contains only pairing and quadrupole-quadrupole interactions. The quadrupole-quadrupole interaction commutes with the Gamow-Teller operator (a complete proof can be found in Ref. [54]). In principle, we should employ a pairing interaction, which includes not only the proton-proton and neutron-neutron $T=1$ channels, but also proton-neutron $T=1$ and $T=0$ channels. With them a pairing interaction can be built, which commutes with the GT operator [56] when both channels have the same strengths. On the other side, it has been shown that both the $T=0$ and $T=1$ proton-neutron gaps go to zero [57] at the mean field level for medium to heavy mass nuclei with $N - Z > 6$. While it would be very important to include a spin-isospin channel in the Hamiltonian, this can be done beyond mean field, for example, by employing the QRPA over the PHFB.
Quadrupolar correlations and deformation effect on two neutrino $\varepsilon\beta^+$ and $\varepsilon\varepsilon$ modes of 156Dy isotope model. For the restricted mean field calculations presented below, there is no practical difference in employing the full pairing interaction or pairing only in the proton-proton and neutron-neutron channels. For simplicity, we use the latter. It follows that the NTME $M_{2\nu}$ for the $0^+ \rightarrow 0^+$ transition of $(e^+\beta\beta)_{2\nu}$ decay in the PHFB model in conjunction with the summation method is given by \[47, 48\]

$$ M_{2\nu} = \sum_{\pi, \nu} \langle \Psi_{00}^{J_f=0} | \sigma \sigma \tau^2 \tau^- | \Psi_{00}^{J_f=0} \rangle$$

$$ = [n_{Z,N}^{J_f=0} n_{Z-2, N+2}^{J_f=0}]^{-1/2} \int_0^\pi n_{(Z,N), (Z-2,N+2)}(\theta)$$

$$ \times \sum_{\alpha\beta\gamma\delta} \frac{\langle \alpha \beta | \sigma_1 \sigma_2 \tau^- \tau^- | \gamma \delta \rangle}{E_0 + \varepsilon(n_\pi, l_\pi, j_\pi) - \varepsilon(n_\nu, l_\nu, j_\nu)}$$

$$ \times \sum_{\varepsilon\eta} \left[1 + F^{(\nu)}_{Z,N}(\theta) f^{(\nu)*}_{Z-2,N+2} \right]^{-1}_{\varepsilon\alpha} (f^{(\nu)*}_{Z-2,N+2}) \varepsilon\beta$$

$$ \times \left[1 + F^{(\pi)}_{Z,N}(\theta) f^{(\pi)*}_{Z-2,N+2} \right]^{-1}_{\gamma\eta} (F^{(\pi)*}_{Z,N}) \gamma\delta \sin \theta d\theta$$

(4)

where π and ν refer to protons and neutrons in the parent and daughter nuclei involved in the $(e^+\beta\beta)_{2\nu}$ decay modes. Further,

$$ \varepsilon(n_\nu, l_\nu, j_\nu) - \varepsilon(n_\pi, l_\pi, j_\pi) = \left\{ \begin{array}{l} \Delta_C - 2E_0 \\ \Delta_C - 2E_0 + \Delta E_{s.o.splitting} \end{array} \right. $$

(5)

for $n_\nu = n_\pi, l_\nu = l_\pi, j_\nu = j_\pi$ and $n_\nu = n_\pi, l_\nu = l_\pi, j_\nu = j_\pi$, respectively and the Coulomb energy difference Δ_C is given by \[58\]

$$ \Delta_C = \frac{0.70}{A^{1/3}} \left[(2Z + 1) - 0.76 \left((Z + 1)^{4/3} - Z^{4/3} \right) \right] $$

(6)

The expressions to calculate $n_{(Z,N), (Z-2,N+2)}(\theta)$, $f_{Z-2,N+2}$ and $F_{Z,N}(\theta)$ are given in \[46, 47\].

In the present scheme, the difference in proton and neutron single particle energies with the same quantum numbers corresponding to the energy of the Isobaric Analog States is well described by the difference in Coulomb energy Δ_C. Further, the spin-orbit energy splitting is added whenever required. The explicit inclusion of the spin-orbit splitting in the energy denominator of equation (5) implies that it cannot be factorized out of the sum in equation (5). In the present context, it is noteworthy that the use of the summation method is richer than the closure approximation, because each proton-neutron excitation is weighted depending on its spin-flip or non-spin-flip character, and in addition, employing the summation method in conjunction with the PHFB formalism goes beyond what was done in previous applications of the pseudo-SU(3) model \[11, 54, 55\].

3. Results and discussions

In the HFB framework, the nuclear wave functions for 156Dy and 156Gd isotopes are generated using the same model space and single particle energies (SPE’s), but for the SPE’s of $0h_{11/2}$, $1f_{7/2}$ and $0h_{9/2}$ orbits, which are 4.6 MeV, 11.0 MeV and 11.6
we present the calculated NTME result is available for the (96Tg nuclei. Therefore, a natural choice to understand the role of deformation on the NTME present in the effective two-body interaction play a crucial role in the deformation of 156In the PHFB model, the calculated half-lives are smaller by a factor of 4.4 approximately than that due to pseudo-SU(3) model [41].

A small increment in the size of M can almost reproduce the excitation energy E_2^\ast of all considered parent and daughter nuclei in this model space. Specifically, the Q_2 moments follow the notations of Doi et al [4] in the approximation $\epsilon_{\beta\beta}=1$, $\epsilon_{\beta\beta}(\text{effective})=0.5\epsilon_{\beta\beta}(\text{bare})$ and $\epsilon_{\beta\beta}(\text{effective})=0.5\epsilon_{\beta\beta}(\text{bare})$. It is possible to include an effective way the role of higher j orbitals not included in the model space, by using a different set of effective gyromagnetic ratios, namely $g_1^\pi=0.7$, $g_2^\pi(\text{effective})=0.5g_2^\pi(\text{bare})$ and $g_2^\pi(\text{effective})=0.8g_2^\pi(\text{bare})$ as suggested by the analysis of Rath and Sharma [62], which can almost reproduce the g-factors $g(2^+)$ of all considered parent and daughter nuclei in this model space. Specifically, the g-factors $g(2^+)$ for 156Dy and 156Gd isotopes are off from the experimental data.

In the calculation of g-factors for 156Dy and 156Gd isotopes, we use bare values for $g_1^\pi=1$, $g_2^\pi=0$, $g_2^\pi(\text{effective})=0.5g_2^\pi(\text{bare})$ and $g_2^\pi(\text{effective})=0.5g_2^\pi(\text{bare})$. It is possible to study its variation with respect to changing strength of the like particle components of the QQ interaction are fixed as $G_p = G_n = 30/A$ MeV. The strengths of the like particle components of the QQ interaction are taken as $\chi_{pp} = \chi_{nn} = 0.0105$ MeV b^{-4}, where b is oscillator parameter. For a given model space, SPE’s, G_p, G_n and χ_{pp}, we fix the strength of proton-neutron (pn) component of the QQ interaction χ_{pn} by reproducing the excitation energy E_2^\ast of the 2^+ state. The adopted values of χ_{pn} (in MeV b^{-4}) for 156Dy and 156Gd isotopes in the present calculation are 0.01817 and 0.02989, respectively. All these input parameters are kept fixed throughout the subsequent calculations.

We present the calculated as well as experimentally observed results for yrast spectra [59], reduced $B(E2:0^+ \rightarrow 2^+)$ transition probabilities [60], static quadrupole moments $Q(2^+)$ and gyromagnetic factors $g(2^+)$ [61] of 156Dy and 156Gd nuclei in table[1]. We tabulate only the adopted value for the experimentally observed reduced $B(E2:0^+ \rightarrow 2^+)$ transition probabilities [60]. The calculated $B(E2:0^+ \rightarrow 2^+)$ are in excellent agreement with the observed ones. No experimental $Q(2^+)$ result is available for 156Dy isotope. The agreement between the calculated and experimental $Q(2^+)$ for 156Gd nucleus is also quite good. However, the calculated gyromagnetic factors $g(2^+)$ for 156Dy and 156Gd isotopes are off from the experimental data.

The phase space factors of ($\epsilon\beta^+$)$_{2\nu}$ and ($\epsilon\epsilon$)$_{2\nu}$ modes for 156Dy are calculated following the notations of Doi et al [4] in the approximation $C_1 = 1.0$, $C_2 = 0.0$, $C_3 = 0.0$ and $R_{1,1}(\epsilon) = R_{+1}(\epsilon) + R_{-1}(\epsilon) = 1.0$. The calculated phase space factors are $G_{2\nu}(\epsilon\beta^+) = 4.723 \times 10^{-24}$ y^{-1} and $G_{2\nu}(\epsilon\epsilon) = 2.962 \times 10^{-20}$ y^{-1}. However, it is more justified to use the nuclear matter value of g_A around 1.0 in heavy nuclei. Hence, the theoretical half-lives $T_{1/2}^{2\nu}$ are calculated for both $g_A = 1.0$ and 1.261. In table[2] we present the calculated NTME $M_{2\nu}$ and half-lives $T_{1/2}^{2\nu}$ of ($\epsilon\beta^+$)$_{2\nu}$ and ($\epsilon\epsilon$)$_{2\nu}$ modes for 156Dy isotope along with other available theoretical results. No experimental result is available for the ($\epsilon\beta^+$)$_{2\nu}$ decay modes of 156Dy isotope. Theoretically, the $0^+ \rightarrow 0^+$ transition of ($\epsilon\epsilon$)$_{2\nu}$ mode for 156Dy has been investigated only in the pseudo-SU(3) model [41]. The calculated NTME $M_{2\nu}$ in the PHFB model is 0.0138, which is smaller by a factor of 4.4 approximately than that due to pseudo-SU(3) model [41]. In the PHFB model, the calculated half-lives $T_{1/2}^{2\nu}$ of ($\epsilon\beta^+$)$_{2\nu}$ and ($\epsilon\epsilon$)$_{2\nu}$ modes for $g_A = (1.261-1.0)$ are $(1.115-2.819) \times 10^{26}$ y and $(1.778-4.496) \times 10^{23}$ y, respectively.

The multipolar correlations in general and quadrupolar correlations in particular present in the effective two-body interaction play a crucial role in the deformation of nuclei. Therefore, a natural choice to understand the role of deformation on the NTME $M_{2\nu}$ is to study its variation with respect to changing strength of the QQ interaction ζ_{qq}. The results are presented in table[3] and figure 1(a). It is observed that the $M_{2\nu}$ remains almost constant as the strength of ζ_{qq} is changed from $\zeta_{qq} = 0.0 - 0.4$. As ζ_{qq} is further increased up to 1.05, the NTME $M_{2\nu}$ starts decreasing except at $\zeta_{qq} = 0.80$, where a small increment in the size of $M_{2\nu}$ is noticed. For a further variation of ζ_{qq}
Quadrupolar correlations and deformation effect on two neutrino $\varepsilon\beta^+$ and $\varepsilon\varepsilon$ modes of 156Dy isotope

Figure 1. (a) Dependence of $M_{2\nu}$ and $M_{2\nu}^{\text{DGT}}$ on the strength of QQ interaction ζ_{qq}. (b) NTMEs $M_{2\nu}$ and DGT matrix elements $M_{2\nu}^{\text{DGT}}$ of $(\varepsilon\beta^+)_{2\nu}$ and $(\varepsilon\varepsilon)_{2\nu}$ modes for 156Dy nucleus as a function of the difference in the deformation parameter $\Delta\beta_2$. “\times” denotes the value of NTME for calculated $\Delta\beta_2$ at $\zeta_{qq} = 1$.

The DGT matrix elements are scaled down by a factor of 20 in order to plot them on the same scale as used for NTMEs calculated using the summation method.

from 1.05 to 1.50, the NTME $M_{2\nu}$ remains almost constant. In addition, a direct proportionality between the quadrupole moment Q_2 and deformation parameter β_2 exists. Specifically, the deformation parameter β_2 is obtained using the expression given by Raman et al. \cite{60}:

$$\beta_2 = \left(\frac{4\pi}{3Z R_0^2}\right) \times \left(\frac{B(E2 : 0^+ \rightarrow 2^+)}{e^2}\right)^{1/2}$$

(7)

where

$$R_0^2 = (1.2 \times 10^{-13} A^{1/3} cm)^2$$

= 0.0144 $A^{2/3} b$ \hspace{1cm} (8)

In our earlier works \cite{47, 48}, it has been shown that the NTMEs $M_{2\nu}$ are usually large for $\zeta_{qq} = 0.0$ i.e. when both the parent and daughter nuclei are spherical. With the increase of ζ_{qq}, the NTMEs remain almost constant and then decrease around the physical value $\zeta_{qq} = 1.0$ establishing an inverse correlation between $M_{2\nu}$ and deformation parameter β_2. Presently, a similar inverse correlation between the NTME $M_{2\nu}$ and Q_2 as well as β_2 also exists. The effect of deformation on $M_{2\nu}$ is quantified by defining a quantity $D_{2\nu}$ as the ratio of $M_{2\nu}$ at zero deformation ($\zeta_{qq} = 0$) and full deformation ($\zeta_{qq} = 1$). The ratio $D_{2\nu}$ is 13.64 for 156Dy nuclei.

To investigate the observed suppression of the NTMEs as observed in the $\beta^-\beta^-$ decay with respect to the spherical case when the parent and daughter nuclei have different deformations \cite{37, 49, 51}, we present in figure 1(b), the NTME $M_{2\nu}$ as a function of the difference in the deformation parameters $\Delta\beta_2 = \beta_2(\text{parent}) - \beta_2(\text{daughter})$ of the parent and daughter nuclei. The NTME is calculated by keeping the deformation of parent nucleus fixed at $\zeta_{qq} = 1$ and the deformation of daughter nucleus is varied by taking $\zeta_{qq} = 0.0$ to 1.5. It is noticed from the figure 1(b) that the NTME is maximum when the absolute of the difference in deformation $|\Delta\beta_2|$ is minimum and when the $|\Delta\beta_2|$ increases the NTME $M_{2\nu}$ is strongly reduced. Thus, it is clear from this behaviour of $M_{2\nu}$ with respect to changing ζ_{qq}, that the NTME tends to be large in the absence of quadrupolar correlations i.e. for a pair of spherical
Quadrupolar correlations and deformation effect on two neutrino $\epsilon\beta^+$ and $\epsilon\epsilon$ modes of 156Dy isotope

e$^+\beta\beta$ parent and daughter $\beta\beta$ emitters. In figure 2, we present the 3-dimensional view of variation in NTME with respect to $\zeta_{qq} = 0.0 - 1.5$ for parent and daughter nuclei independently. The plateau corresponds to the maximum value of $M_{2\nu}$ for small admixture of quadrupolar correlations corresponding to $\beta_2(\text{parent}) = 0.0 - 0.086$ and $\beta_2(\text{daughter}) = 0.0 - 0.163$. The next peak is due to the increase in the magnitude of $M_{2\nu}$ around $\zeta_{qq} = 0.8$ and finally at $\zeta_{qq} = 1.0$, the small physical $M_{2\nu}$ is obtained.

In order to understand the connection between the closure approximation and the summation method, we extract the closure double Gamow-Teller (DGT) matrix element $M_{DGT}^{2\nu}$ and average energy denominator E_d. Further, the deformation effects due to the energy denominator are investigated by studying the variation of $M_{DGT}^{2\nu}$ with respect to ζ_{qq} and deformation parameters β_2 of parent and daughter nuclei. In the PHFB model, the extracted closure DGT matrix element $M_{DGT}^{2\nu}$ is 0.3975 and it turns out that the NTME $M_{2\nu}$ calculated in the summation method can be obtained by taking an average energy denominator $E_d = 14.72$ MeV, reasonably close to the value $E_d = 13.99$ MeV recommended by Haxton and Stephenson [63]. In Figs. 1(a) and 1(b), we also plot the variation of closure $M_{DGT}^{2\nu}$ with respect to ζ_{qq} and $\Delta \beta_2$ respectively. It is clear from Figs. 1(a) and 1(b) that the deformation effects on the closure DGT matrix elements and NTMEs calculated using the summation method are similar but not the same.

4. Conclusions

To conclude, we have tested the reliability of HFB intrinsic wave functions for 156Dy and 156Gd nuclei by calculating the spectroscopic properties, namely the yrast
Quadrupolar correlations and deformation effect on two neutrino $\varepsilon\beta^+$ and $\varepsilon\varepsilon$ modes of 156Dy isotope

spectra, reduced $B(E2:0^+ \rightarrow 2^+)$ transition probabilities, static quadrupole moments $Q(2^+)$ and g-factors $g(2^+)$ of these isotopes and comparing them with the available experimental data. An overall agreement between the calculated and observed spectroscopic properties suggests that the PHFB wave functions generated by fixing χ_{pn} to reproduce the $E2^+$ are quite reliable. Subsequently, we employ the same PHFB wave functions to calculate NTME $M_{2\nu}$ as well as half-lives $T_{1/2}(\varepsilon\beta^+)$ and $T_{1/2}(\varepsilon\varepsilon)$ of 156Dy isotope for the $0^+ \rightarrow 0^+$ transition. We also examine the effect of deformation on NTME $M_{2\nu}$ by varying the strength of QQ part of the effective two-body interaction. It is noticed that the $M_{2\nu}$ is the largest in the absence of quadrupolar correlations. Moreover, it is reduced by a factor of 13.6 due to the quadrupolar correlations, which may be taken as a conservative estimate of the deformation effect in view of the approximations inherent in the present calculation. Further, the NTME has a well defined maximum when the deformations of parent and daughter nuclei are similar. Employing the closure approximation for calculating the DGT matrix elements, it has been shown that the dependence on deformation is a general qualitative feature, which does not depend on details of the energy denominator.

This work was partially supported by DST, India vide sanction No. SR/S2/HEP-13/2006, by Conacyt-México and DGAPA-UNAM.

Quadrupolar correlations and deformation effect on two neutrino $\epsilon\beta^+$ and $\epsilon\epsilon$ modes of 156Dy isotope.
Quadrupolar correlations and deformation effect on two neutrino $\varepsilon\beta^+$ and $\varepsilon\varepsilon$ modes of 156Dy isotope

Table 1. Excitation energies (in MeV) of $J^\pi = 2^+$, 4^+ and 6^+ yrast states, reduced $B(E2;0^+ \rightarrow 2^+)$ transition probabilities in $e^2 b^2$, static quadrupole moments $Q(2^+)$ in e^2 in nuclear magneton for 156Dy and 156Gd isotopes. Here $B(E2)$ and $Q(2^+)$ are calculated for effective charge $e_{p} = 1 + e_{\text{eff}}$ and $e_{n} = e_{\text{eff}}$ with $e_{\text{eff}} = 0.06$ and $g(2^+)$ has been calculated for $g^\pi_l = 1.0$, $g^\nu_l = 0.0$ and $g^\pi_s = g^\nu_s = 0.50$.

<table>
<thead>
<tr>
<th>Decay</th>
<th>Theory 156Dy</th>
<th>Experiment 156Dy</th>
<th>Theory 156Gd</th>
<th>Experiment 156Gd</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{2^+}</td>
<td>0.1379</td>
<td>0.1378a</td>
<td>0.0886</td>
<td>0.0889a</td>
</tr>
<tr>
<td>E_{4^+}</td>
<td>0.4572</td>
<td>0.4041b</td>
<td>0.2936</td>
<td>0.2882b</td>
</tr>
<tr>
<td>E_{6^+}</td>
<td>0.9528</td>
<td>0.7703c</td>
<td>0.6119</td>
<td>0.5847d</td>
</tr>
<tr>
<td>$B(E2)$</td>
<td>3.888</td>
<td>3.710e</td>
<td>4.052</td>
<td>4.64b</td>
</tr>
<tr>
<td>$Q(2^+)$</td>
<td>-1.786</td>
<td>-1.93f</td>
<td>-1.96f</td>
<td>-1.96f</td>
</tr>
<tr>
<td>$g(2^+)$</td>
<td>0.550</td>
<td>0.39c</td>
<td>0.602</td>
<td>0.387c</td>
</tr>
</tbody>
</table>

a denotes the adopted value.

Table 2. Theoretically calculated $M_{2\nu}$ and corresponding $T_{1/2}^{2\nu}(0^+ \rightarrow 0^+)$ of $(\varepsilon\beta^+)^{2\nu}$ and $(\varepsilon\varepsilon)^{2\nu}$ modes for 156Dy nucleus. The $T_{1/2}^{2\nu}$ is calculated for $g_A = 1.261$ and 1.0. * denotes the present work.

| Decay | Ref. | Model | $|M_{2\nu}|$ | $T_{1/2}^{2\nu}(y)$ |
|----------------|------|------------|--------------|---------------------|
| $\varepsilon\beta^+$ | PHFB | 0.0138 | 1.115\times1035 | 2.819\times1035 |
| $\varepsilon\varepsilon$ | PHFB | 0.0138 | 1.778\times1023 | 4.496\times1023 |

b p-SU(3) 0.061 9.073\times1021 2.294\times1022

Table 3. Effect of the variation in ζ_{qq} on $\langle Q^2_0 \rangle$, β_2 and $M_{2\nu}$ for 156Dy isotope.

| ζ_{qq} | 156Dy $\langle Q^2_0 \rangle$ | 156Dy β_2 | 156Dy $|M_{2\nu}|$ | 156Gd $\langle Q^2_0 \rangle$ | 156Gd β_2 | 156Gd $|M_{2\nu}|$ |
|---------------|-----------------------------------|----------------------|--------------------------|-----------------------------------|----------------------|--------------------------|
| 0.00 | 0.000 | 0.000 | 0.191 | 0.000 | 0.000 | 0.191 |
| 0.20 | 0.093 | 0.073 | 0.187 | 0.071 | 0.071 | 0.187 |
| 0.40 | 0.345 | 0.083 | 0.187 | 1.672 | 0.082 | 0.187 |
| 0.60 | 0.233 | 0.102 | 0.187 | 65.81 | 0.220 | 0.187 |
| 0.80 | 0.218 | 0.218 | 0.029 | 0.285 | 0.029 | 0.029 |
| 0.90 | 0.250 | 0.250 | 0.022 | 0.305 | 0.022 | 0.022 |
| 0.95 | 0.276 | 0.276 | 0.018 | 0.311 | 0.018 | 0.018 |
| 1.00 | 0.300 | 0.300 | 0.014 | 0.316 | 0.014 | 0.014 |
| 1.05 | 0.308 | 0.308 | 0.003 | 0.319 | 0.003 | 0.003 |
| 1.10 | 0.310 | 0.310 | 0.002 | 0.321 | 0.002 | 0.002 |
| 1.20 | 0.312 | 0.312 | 0.003 | 0.323 | 0.003 | 0.003 |
| 1.30 | 0.315 | 0.315 | 0.003 | 0.324 | 0.003 | 0.003 |
| 1.40 | 0.317 | 0.317 | 0.002 | 0.326 | 0.002 | 0.002 |
| 1.50 | 0.318 | 0.318 | 0.002 | 0.327 | 0.002 | 0.002 |