Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors

Alessandra Buonanno, 1, 2 Bala R Iyer, 2, 3 Evan Ochsner, 1 Yi Pan, 1, 4 and B S Sathyaprakash 3

1Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742, USA
2Raman Research Institute, Bangalore, 560 080, India
3School of Physics and Astronomy, Cardiff University, 5, The Parade, Cardiff, UK, CF24 3YB

(Dated: August 5, 2013)

The two-body dynamics in general relativity has been solved perturbatively using the post-Newtonian (PN) approximation. The evolution of the orbital phase and the emitted gravitational radiation are now known to a rather high order up to $O\left(v^9\right)$, $v$ being the characteristic velocity of the binary. The orbital evolution, however, cannot be specified uniquely due to the inherent freedom in the choice of parameters used in the PN expansion as well as the method pursued in solving the relevant differential equations. The goal of this paper is to determine the disagreement between different PN waveform families in the context of initial and advanced gravitational wave detectors.

The waveforms employed in our analysis are those that are currently used by Initial LIGO/VIRGO, namely the time-domain PN models TaylorT1, TaylorT2, TaylorT3, the Fourier-domain templates TaylorF2 (or stationary phase approximation, SPA) and the effective-one-body (EOB) models, and two more recent models, Taylor4 and TaylorE2. For these models we examine their overlaps with one another for a number of different binaries at 2PN, 3PN and 3.5PN orders to quantify their differences. We then study the overlaps of these families with the prototype effective-one-body family, currently used by Initial LIGO, calibrated to numerical relativity simulations to help us decide whether there exist preferred families, in terms of detectability and computational cost, that are the most appropriate as search templates. We conclude that as long as the total mass remains less than a certain upper limit $M_{\text{crit}}$, all template families at 3.5PN order (except TaylorT3 and TaylorE2) are equally good for the purpose of detection. The value of $M_{\text{crit}}$ is found to be $12M$ for Initial, Enhanced and Advanced LIGO. From a purely computational point of view we recommend that 3.5PN TaylorF2 be used below $M_{\text{crit}}$ and EOB calibrated to numerical relativity simulations be used for total binary mass $M > M_{\text{crit}}$.

PACS numbers:

I. INTRODUCTION

Sensitivity of several interferometric gravitational-wave detectors has either already reached, or is close to, the design goals that were set more than a decade ago [1, 2, 3, 4, 5, 6, 7]. Upgrades that are currently underway and planned for the next four to five years will see their sensitivity improve by factors of a few to an order-of-magnitude [2]. Coalescing binaries consisting of neutron stars and/or black holes are probably the most promising sources for the direct detection of gravitational waves. At current sensitivity levels, initial interferometers are capable of detecting binary neutron star inspirals at distances up to 30 Mpc, the range increasing to 60 Mpc for enhanced detectors (circa 2009-2011) and 175 Mpc for advanced detectors (circa 2014+). Binary black holes or a mixed system consisting of a neutron star and a black hole can be detected at a far greater distance depending on the total mass and the mass ratio.

The range of interferometric detectors for coalescing binaries is computed by assuming that one can pull the signal out of noise by matched filtering. This in turn means that one is able to follow the phasing of gravitational waves typically to within a fraction of a cycle over the duration of the signal in band. The reason for this optimism comes from the fact that one knows the phase evolution of the signal to a high order in post-Newtonian (PN) form from [8]. Several authors have assessed whether the accuracy with which the form from provides the waveform is good enough.
for the purpose of detection and parameter estimation. The problem, as we shall see below, is complicated since the PN approximation does not lead to a unique model of the phase evolution. Moreover, though PN results are good up to mildly relativistic velocities, the standard PN approximants become less and less accurate in the strongly relativistic regime as one approaches the last stable orbit (LSO). Resummation methods [24] and in particular the effective-one-body (EOB) [25, 26, 27, 28, 29, 30] extensions of the PN approximants are needed for analytical treatment close to and beyond the LSO.

The success in numerical-relativity simulations of binary black holes [29, 30, 31, 32, 33] now provides results for gravitational-wave signals that can be compared to standard PN results and other resummed extensions. On the one hand, the analytical PN results for the inspiral phase of the evolution are needed to calibrate and interpret the numerical relativity waveforms of coalescence and merger. On the other hand, the numerical relativity results extend the analytical approximations beyond the inspiral phase and provide the important coalescence and merger phases, producing the strongest signals that are crucial for the detection of binary black holes. However, numerical simulations are still computationally expensive and time-consuming and presently only a small region of the parameter space can be explored. Even in the foreseeable future, numerical relativity may not be able to handle, tens of thousands of cycles that are expected from highly asymmetric systems (e.g., a neutron star falling into an intermediate-mass black hole of 100 M\(_\odot\) or lower) or symmetric systems (e.g., a binary neutron star). Analytical models that smoothly go from the inspiral through coalescence to quasinormal ringing would be needed and this has led to phenomenological templates [34, 35, 36], and EOB waveforms [37, 38, 39, 40, 41, 42, 43, 44, 45]. In particular, the recent improved EOB models [43, 44] which also incorporate a multiplicative decom position of the multipolar waveform into several physically motivated factors supplemented by a suitable hybridization (using test particle results) [46], and an improved treatment of non-quasi-circular corrections, show evidence of remarkable success in modeling accurately the numerical relativity waveforms for different mass ratios.

The emphasis of this work is different. Recently, there have been investigations [47] on the ability of various standard families of PN templates to detect a specific signal model TaylorT4 [48, 49, 50] and the often-used TaylorF2 to detect a complete numerical relativity signal including merger and ringdown [35, 36]. Reference [43] modeled the signal by the TaylorE approximant at 3.5PN order and looked at the effectiveness and systematics in the estimation of mass parameters for TaylorT1, TaylorF4 and TaylorF2 templates in the LIGO and Virgo detectors. It also looked into the possibility of proving the effectiveness by using unphysical values of beyond the maximum value of 0.25. It was found that the overlaps of a TaylorE signal with TaylorT1, TaylorF4 and TaylorF2 template is smaller than 0.97 and involved for equal mass system a large bias in the total mass. For unequal mass systems higher overlaps can be obtained at the cost of a large bias in mass and symmetric mass ratio which can be further improved by using unphysical values of beyond 0.25. The templates are more useful with increasing total mass. To detect optimally the complete numerical-relativity signal, including merger and ringdown, Ref. [43] suggested the possibility of using the TaylorF2 template with bank with frequency cut-off \( f_+ \) larger than the usual upper cut-off (i.e., the Schwarzschild LSO) and closer to the fundamental quasinormal mode frequency of the black hole. Moreover, they proposed to further improve this family by allowing either for unphysical values of or for the inclusion of a pseudo 4PN (p4PN) core in the template parameter, calibrated to the numerical simulations. Reference [48] extended the results of Ref. [43] to more accurate numerical waveforms, found that 3.5PN templates are nearly always better and are actually slightly worse while 2PN templates, and proposed simple analytical frequency cut-off for both Initial and Advanced LIGO. For example for Initial LIGO they recommend a strategy using p4PN templates for M = 35M\(_\odot\) and 3.5PN templates with unphysical values of for larger mass. However, we notice that there is no reason for changing the template bank above 35M. Reference [48] could have used the p4PN template over the entire mass region, if they had not em played in their analysis the p4PN core used in Ref. [43], but had calibrated it to the highly accurate waveform used in their paper.

In this work our primary focus is on binary systems dominated by early inspiral and on a critical study of the variety of approximants that describe this. Towards this end, in this paper we will provide a sufficiently exhaustive comparison of different PN models of adiabatic inspiral for an illustrative variety of different systems and quantify how (dis)similar they are for the purpose of detection. The choice of the PN models used in this paper is motivated by the fact that they are available in the LIGO Algorithm Library (LAL) and some of them have been used in the searches by Initial LIGO. We also compare all these PN models with one ducial EOB model calibrated to numerical relativity simulations [50] to delineate the range of mass values where one must definitely go beyond the inspiral-dominated PNM templates to a more complete description including plunge and coalescence. The choice of this ducial, preliminary EOB model is only motivated by the fact that it is the EOB model available in LAL and it is currently used for...
Post-Newtonian approximation computes the evolution of the orbital phase \( t \) of a compact binary as a perturbative expansion in a small parameter, typically taken as \( v = \left(M F^{i 3}\right) \) (characteristic velocity in the binary), or \( x = v^2 \); although other variants exist. Here \( M \) is the total mass of the binary and \( F \) the gravitational-wave frequency. 

In the adiabatic approximation, and for the restricted waveform in which case the gravitational wave phase is twice the orbital phase, the theory allows the phasing to be specified by a pair of differential equations \( (t) = v^2 = M ; = F(v) = E(v) \); where \( M \) is the total mass of the system, \( F \) is the gravitational-wave luminosity, and \( E(v) \) is the derivative of the binding energy with respect to \( v \). Different PN families arise because one can choose to treat the ratio \( F = E^2(v) \) differently while being equivalent with the same PN order. For instance, one can leave the PN expansions of the luminosity \( F(v) \) and \( E^2(v) \) as they appear (the so-called Taylor T1 model), or expand the rational polynomial \( F(v) = E^2(v) \) to obtain a consistent PN order (the Taylor T2 model), or cast as a pair of parametric equations \( (v) \) and \( (v) \) (the Taylor T3 model), or the phasing could be written as an explicit function of the (the Taylor T4 model). These different representations are made possible because one is dealing with a perturbative series. Therefore, one is at liberty to "resum" or "reexpand" the series in any way one wishes (as long as one keeps track of the correct order in the perturbation expansions), or even retain the expression as the quotient of two polynomials and treat them numerically. There is also the freedom of writing the series in a different variable, say (suitably dimensional) \( E \) (the so-called Taylor T6 model).

In addition to these models, there have been eorts to extend the evolution of a binary beyond what is naturally prescribed by the PN formalism. Let us brie y discuss two reasons why the PN evolution cannot be used all the way up to the merger of the two bodies. PN evolution is based on the so-called adiabatic approximation according to which the fractional change in the orbital frequency \( \omega_{\text{orb}} \) over each orbital period is negligible small, i.e., \( \omega_{\text{orb}} = F^2 \). This assumption is valid during most of the evolution, but begins to fail as the system approaches the LLO where \( f_{\text{LLO}} = \left(6^{1/2}M \right) \). In some cases, the frequency evolution stops from being monotonic and \( F \)-changes from being positive to negative well before reaching the LLO | an indication of the breakdown of the approximation.

From the viewpoint of binary mixing detection, potential one is also interested in going beyond the inspiral phase. The merger and ringdown phases of the evolution, when the luminosity is greatest, cannot be modeled by standard PN approximation. The use of resummation techniques more than a decade ago was followed by the construction of the EOB model \( \left(22, 23, 24\right) \), which has analytically provided the plunge, merger, and ringdown phases of the binary evolution. As mentioned before, more recently, these models have been calibrated to numerical relativity simulations \( \left(23, 25, 26, 27, 28, 29\right) \). We now have a very reliable EOB model that can be used to model the merger dynamics.

An astronomically binary is characterized by a large number of parameters: some of which are intrinsic to the system (e.g., the masses and spins of the component stars and the changing eccentricity of the orbit) and others that are extrinsic (e.g., source location and orientation relative to the detector). In this paper, we will worry about only the detection problem. Furthermore, we w ill assume that a coincident detection strategy will be followed so that we do not have to worry about the angular parameters such as the direction to the source, wave's polarization, etc. If binaries start their lives when their separation \( r \) is far larger compared to their gravitational radius (i.e., \( r \sim GM/c^2 \)) by the time they enter the sensitivity band of ground-based detectors any intrinsic eccentricity would have been lost due
to gravitational radiation reaction, which tends to circularize2 a binary [53, 54]. Therefore, we shall consider only systems that are on a quasi-circular inspiralling orbit. We shall also neglect spins which means that we have to worry in reality about only the two masses of the component bodies.

Our goal is to explore how (dis)similar the different waveform families are. We do this by computing the (normalized) cross-correlation between signals and templates, max-aximizing either only over the extrinsic parameters of the template (faithfulness) or over the intrinsic and extrinsic parameters of the template (e. g. actualness), the noise power spectral density of the detector serving as a weighting factor in the com putation of the correlation (see Sec. III). Our conclusions, therefore, will depend on the masses of the compact stars as well as the detector that we hope to observe the signal with.

The overlaps (i.e., the normalized cross-correlation) maximized over various parameters and weighted by the noise power spectral density) we shall compute are sensitive to the shape of the noise spectral density of a detector and not on how deep that sensitivity is. Now, the upgrade from initial to advanced interferometer will see in proven tests in sensitivity not only at a given frequency but over a larger band. Therefore, the agreement between different PN models will be sensitive to the noise spectral density that is used in the inner product. Thus, we will compare the PN families using power spectral densities of initial and advanced interferometric detectors.

We end this brief overview with the following observation. As mentioned earlier, following all present gravitational wave data analysis pipelines, this paper works only in the restricted wave approximation. This approximation assumes the waveform amplitude to be Newtonian and thus includes only the leading second harmonics of the orbital phase. Higher PN order amplitudes bring in harmonics of the orbital phase other than the dominant one at twice the orbital frequency. Their effects can be significant [61, 62], especially close to merger [64], and they need to be carefully included in future work.

III. THE PN APPROXIMANTS

For the convenience of the reader, in this section, we recapitulate the basic formulas for the different PN families from Refs. [17, 18]. While comparing the expressions below to those in Refs. [13, 14] we recall = 1.987 x 3081 = 11831 x 9240 = 64, 63 and = 64, 62, 67, 66, 65. In addition to the evolution equations, we shall also provide initial and boundary conditions. From the perspective of a data analyst, the initial condition is simply a starting frequency $F_0$ and phase $\phi$; which can be translated, with the help of evolution equations, as conditions on the relevant variables. We shall also give explicit expressions for the evolution of the gravitational wave frequency, namely $F(x) = F_0 + \frac{dF}{dx}$; or more precisely, the dimensionless quantity $E - F$, which is used to study the rate at which the binary coalesces in different PN families, which will help us understand the qualitative difference between them. The contents of this section should act as a single point of reference for anyone who is interested in implementing the waveforms for the purpose of data analysis and other applications.

The basic inputs for all families are the PN expressions for the conserved 3PN energy (per unit total mass) [62, 63, 68, 67, 66, 65] $E_3(v)$ and 3PN energy $ux$ [64, 65, 71, 72] $F_{3.5}(v)$,

$$E_3(v) = \frac{1}{2} v^2 \left( \frac{3}{4} + \frac{1}{12} v^2 \right) \frac{27}{8} \left( 1 + \frac{1}{24} v^4 \right) ^{\frac{3}{4}} \left( \frac{675}{64} \right) \left( \frac{576}{576} \right) \left( \frac{205}{96} \right) ^{\frac{3}{4}} \left( \frac{155}{96} \right) ^{\frac{3}{4}} \left( \frac{35}{5184} \right) ^{\frac{3}{4}} v^6; \quad (3.1)$$

$$F_{3.5}(v) = \frac{32}{5} v^2 \left( \frac{1}{7} \right) ^{10} \left( \frac{35}{12} \right) ^{12} \left( \frac{44711}{9072} \right) \left( \frac{9271}{504} \right) \left( \frac{65}{18} \right) ^{2} \left( \frac{8191}{672} \right) \left( \frac{583}{24} \right) v^5 + \frac{16}{6985440} \left( \frac{2}{3} \right) ^{10} \left( 105 \right) \left( 48 \right) \left( 7776 \right) \left( 3024 \right) \left( 324 \right) \left( 105 \right) \log (16v^2) v^6$$

$$= \frac{16}{12825} \left( 1728 \right) \left( 3024 \right) ^{2} v^7; \quad (3.2)$$

where $\log = 0.577216 \ldots$ is the Euler constant. In the adiabatic approximation one assumes that the orbit evolves slowly so that the fractional change in the orbital velocity over an orbital period is negligibly small. That is, $\frac{1}{1};$

2 Though this assumption is justified for the prototypical binaries we focus on in this work, there exist credible astrophysical scenarios that lead to inspiral signals from binaries with non-negligible eccentricity in the sensitive detector bandwidth. A more involved treatment is then called for and available. See e.g. [55, 55, 55, 55, 55].
or, equivalently, \( \frac{1}{2} \). In this approximation, one expects the luminosity in gravitational waves to come from the change in orbital energy averaged over a period. For circular orbits this means one can use the energy balance equation \( F = \frac{dE}{dt} \) where \( E = M \frac{\dot{v}^2}{2} \).

In the adiabatic approximation one can write an equation for the evolution of any of the binary parameters. For instance, the evolution of the orbital separation \( r(t) \) can be written as \( \frac{dE}{dt} = F \). Together with Kepler's law, the energy balance equation can be used to obtain the evolution of the orbital phase:

\[
\frac{d}{dt} \frac{\dot{v}^3}{M} = 0; \tag{3.3a}
\]

\[
\frac{d\dot{v}}{dt} + \frac{F(v)}{M E^0(v)} = 0; \tag{3.3b}
\]

or, equivalently,

\[
\dot{v}(v) = \frac{Z v_{\text{ref}}}{v} \frac{E^0(v)}{F(v)}; \tag{3.4a}
\]

\[
(v) = \frac{Z}{v} v_{\text{ref}} \frac{E^0(v)}{F(v)}; \tag{3.4b}
\]

where \( v_{\text{ref}} \) and \( t_{\text{ref}} \) are integration constants and \( v_{\text{ref}} \) is an arbitrary reference velocity.

**A. Taylor T1**

The Taylor T1 approximant refers to the choice corresponding to leaving the PN expansions of the luminosity \( F(v) \) and \( E^0(v) \) as they appear in Eq. (3.3) as a ratio of polynomials and solving the differential equations numerically.

\[
\frac{d}{dt} \frac{\dot{v}^3}{M} = 0; \tag{3.3a}
\]

\[
\frac{d\dot{v}}{dt} + \frac{F(v)}{M E^0(v)} = 0; \tag{3.3b}
\]

In the above but for the sake of notational simplicity we write only \( \dot{v} \); from the context the meaning should be clear. In the formulas of this section, and in the sections that follow, the expressions for \( F(v) \) and \( E(v) \) are to be truncated at relative PN orders 2, 3, and 3.5 to obtain 2PN \( 13, 73, 74, 75 \), 3PN and 3.5PN \( 18, 64, 72 \) templates or signal models respectively.

To see how to set up initial conditions, refer to Eq. (3.4). Let the initial gravitational wave frequency be \( F_0 \) or, equivalently, initial velocity \( v_0 = (M F_0)^{-1} \): one normally chooses \( t = 0 \) at \( v = v_0 \); this can be achieved by choosing \( v_{\text{ref}} = v_0 \) and \( t_{\text{ref}} = 0 \) in Eq. (3.4). The initial phase \( \dot{v} \) is chosen to be either 0 or \(-2\) in order to construct two orthogonal templates (see Sec. V A for details).

**B. Taylor T4**

Taylor T4 was proposed in Ref. [22] and investigated in Refs. [32, 33, 76], thus many years after the other approximants discussed in this paper were proposed (with the exception of Taylor ET, which is even more recent). However, it is a straightforward extension of Taylor T1 and at 3.5PN order by coincidence is found to be in better agreement with numerical simulations of the inspiral phase \( 22, 35, 37, 41, 42, 43, 76 \). The approximant is obtained by expanding the ratio of the polynomials \( F(v)/E^0(v) \) to the consistent PN order. The equation for \( v(t) = v(t) \) at 3.5PN order reads,

\[ \text{(3.5a)} \]

\[ \text{(3.5b)} \]

Recall that the gravitational-wave phase is twice the orbital phase for the restricted waveform and leads to differences in factors of 2 between the equations here for the orbital phase and those in 11 for the gravitational-wave phase.
\[
\frac{dv}{dt} = \frac{32}{5} \frac{M}{r^3} v^9 + \frac{11}{4} v^2 + 4 v^3 + \frac{34103}{18144} v^4 + \frac{13661}{2016} v^5 + \frac{59}{18} v^2 + \frac{4159}{672} v^4 + \frac{189}{8} v^5
\]  
\[+ \frac{16447322263}{139708000} + \frac{16}{3} 1712 + 451 v^2 + \frac{56198689}{217728} + \frac{541}{896} + \frac{5605}{2592} + \frac{856}{105} \log(16v^2) v^6.
\]

(3.6)

The orbital phase \((T^4)\) is determined, as in the case of Taylor T1, by Eq. (3.36) and numerical solution of Eq. (3.35) and (3.36) yields the Taylor T4 approximant.

Note that although Taylor T1 and Taylor T4 are perturbatively equivalent, the evolution of the phase can be quite different in these two approximations. The asymptotic structure of the approximants are also quite different: while \(v\) can have a pole (although not necessarily in the region of interest) when using Eq. (3.5b) none is possible when Eq. (3.6) is used. Differences of this kind can, in principle, mean that the various PN families give different phasing of the orbit. The hope is that when the PN order up to which the approximation is known is large, then the difference between the various PN families becomes negligible.

Setting up the initial conditions for Taylor T4 is the same as in the case of Taylor T1.

C. Taylor T2

Taylor T2 is based on the second form of the phasing relations Eq. (3.4). Expanding the ratio of the polynomials \(F(v) = E^S(v)\) in these equations to consistent PN order and integrating them one obtains a pair of parametric equations for \(v(t)\), the Taylor T2 model.

\[
\begin{align*}
T^2_{(T^2)}(v) &= \frac{(T^2)_{ref}}{N} v^N k^k v^k; \\
T^2_{(T^2)}(v) &= \frac{(T^2)_{ref}}{N} x^N k^k v^k;
\end{align*}
\]

(3.7)

0 of all models considered in this study, Taylor T2 is computationally the most expensive. This is because the phase evolution involves solving a pair of transcendental equations which is very time-consuming.

\[
\begin{align*}
T^2_{(T^2)}(v) &= \frac{(T^2)_{ref}}{2} \frac{1}{32} + 3715 v^2 + \frac{55}{1008} v^2 + 10 v^2 + \frac{15293365}{1016064} v^2 + \frac{27145}{1008} v^2 + \frac{3085}{144} v^2 \\
+ & \frac{38645}{672} v + \frac{65}{8} \ln v + \frac{v^5}{\log(16v^2)} + \frac{12348611926451}{1877662720} v^5 + \frac{160}{3} v^5 + \frac{1712}{21} v^5 + \frac{2255}{48} v^5 + \frac{15737765635}{12192768} v^5;
\end{align*}
\]

(3.8a)

\[
\begin{align*}
T^2_{(T^2)}(v) &= \frac{(T^2)_{ref}}{2} \frac{5M}{256} v^9 + \frac{743}{252} v^2 + \frac{11}{3} v^2 + \frac{32}{5} v^2 + \frac{3058673}{508032} v^2 + \frac{5429}{504} v^2 + \frac{617}{72} v^2 + \frac{7729}{252} v^2 + \frac{13}{3} v^2 + \frac{10052469856691}{23471078400} v^2 + \frac{128}{3} v^2 + \frac{5484}{105} v^2 + \frac{2341753127}{3048192} v^2 + \frac{451}{12} v^2 \\
+ & \frac{15211}{1728} + \frac{25563}{1296} + \frac{3424}{105} v + \frac{log(16v^2)}{\log(16v^2)} v^6 + \frac{15419335}{27088} v^6 + \frac{75703}{756} v^6 + \frac{14809}{378} v^6;
\end{align*}
\]

(3.8b)

In this case, \(t_{ref}\) has to be chosen so that \(t = 0\) when \(F = F_0\) or \(v = v_0\). This can be achieved most simply by solving for \(t_{ref}\) using Eq. (3.8b), substituting \(v = v_0\) on the right hand side and putting the left side to zero.
D. Taylor T

This form of the approximant goes a step further than the previous Taylor T2 approximant. After computing as before a parametric representation of the phasing formula \( v(\tau) \) and \( t(v) \), one explicitly inverts \( t(v) \) to obtain \( v(t) \) and uses it to produce an explicit representation of \( (T) \) \( v(t) \). This is the Taylor T3 approximant:

\[
\frac{(T^3)}{n=2} (t) = \frac{(T^3)}{n=2} \text{ref} + \frac{X_N}{k} \sum_{k=0}^{\infty} \text{ref} \; \frac{X^k}{k!};
\]

\[
F_{n=2}^{(T^3)} (t) = \frac{X^N}{k} \sum_{k=0}^{\infty} \text{ref} \; \frac{F^k}{k!};
\]

where \( \text{ref} = \left[ (\text{ref} = 5M) \right]^{t=t_0} \) and \( F \) for \( (2d = dt)(2) = v^3 \approx (M) \) is the instantaneous gravitational-wave frequency.

\[
\left(\frac{(T^3)}{35} \right) = \frac{(T^3)}{35} \text{ref} = \frac{1}{5} \frac{1}{5} \frac{3715}{8064} \frac{55}{96} + \frac{2}{4} \frac{3}{4} + \frac{9275495}{14450688} \frac{284875}{258048} + \frac{1855}{2048} 2^4
\]

\[
+ \frac{38645}{21504} \frac{45}{256} \sum_{5}^{5} \frac{83103245074935}{5768252275840} \frac{53}{2} + \frac{126510088985}{416178144} + \frac{2255}{2048} 2^2
\]

\[
+ \frac{107}{56} \frac{154565}{1835008} \frac{1179625}{1769472} \frac{107}{56} \log(2) + \frac{173408256}{516096} \frac{141769}{2} 2^7 ;
\]

\[
\left(\frac{(T^3)}{35} \right) = \frac{3}{8} M \frac{1}{5} \frac{2688}{32} \frac{11}{10} + \frac{2}{4} \frac{3}{4} + \frac{1855099}{14450688} \frac{56975}{258048} + \frac{371}{2048} 2^4 + \frac{7729}{21504} 2^5
\]

\[
+ \frac{720817631400877}{28841261139200} \frac{53}{2} + \frac{2530217977}{280} + \frac{451}{416178144} + \frac{2048}{2048} 2^2
\]

\[
+ \frac{30913}{1835008} \frac{235925}{1769472} \frac{107}{280} \log(2) + \frac{188516689}{433520640} \frac{97765}{258048} + \frac{141769}{1290240} 2^7 ;
\]

The initial conditions in this case are slightly more complicated than the previous cases. Given an initial frequency \( F_0 \), one numerically solves Eq. \( (3.10) \) to find the value of \( \text{ref} \) at which \( F = F_0 \) and \( t = 0 \) (recall that \( \text{ref} \) involves \( t \)). Not that \( \text{ref} \) ! \( \text{ref} \) from a general \( F \) diverges.

E. Taylor T

The Taylor T was recently introduced in Ref. [45,46,53]. Introducing \( \text{ref} = 2E = \) (recall that our \( E \) is conserved energy per total mass), the Taylor T approximants are obtained starting from Eq. \( (3.1) \) for \( E(x) \) or \( x \) and inverting it to obtain \( x(r) \):

\[
x = \frac{1}{4} \frac{1}{12} + \frac{9}{2} \frac{17}{8} + \frac{1}{18} 2^2 + \frac{405}{16} \frac{205}{96} \frac{4795}{72} + \frac{55}{64} \frac{35}{1296} 3^3 3^3 ;
\]

With this choice of variable the equation determining the evolution of \( v \), Eq. \( (3.3a) \), transforms to the balance equation for \( E \) rewritten in terms of the variable:

\[
\frac{d}{dt} = \frac{2F(v(t))}{M};
\]

There is no difference between T1 and T4 approximants in the E-parametrization and the gravitational-wave phasing equations Eq. \( (3.5a) \) and Eq. \( (3.5b) \) in terms of \( \text{ref} \) becomes \( [47] \).

\[\text{Note that the in this paper is denoted variously by } \text{ref} \text{ in [44] but by } \text{ref} \text{ in e.g. [45].}\]
\[
\begin{align*}
\frac{d}{dt} (E_{\text{ref}}(t)) &= \frac{3!}{1} \left( \frac{9}{8} + \frac{1}{8} \right) + \frac{891}{128} + \frac{201}{64} + \frac{11}{128} + 2 + \frac{41445}{1024} + \frac{309715}{3072} + \frac{205}{64} \\
&\quad + \frac{1215}{1024} + \frac{45}{1024};
\end{align*}
\] (3.13a)

\[
\frac{d}{dt} = \frac{64}{5} \left( \frac{1}{1 + \frac{13}{336} \frac{5}{2}} + 4 \right) \frac{1}{3} + \frac{1712}{105} + \frac{369}{32} + \frac{2486197}{72576} + \frac{488849}{16128} + \frac{85}{64} + \frac{3}{105} \frac{3}{8};
\] (3.13b)

To set up the initial condition note that \(2 F = 2d = \text{dt}; \) given an initial frequency \(F_0\) one finds the initial value \(\dot{f}_0\) of \(\dot{f}\) by numerically solving Eq. \(3.13a\), by setting the left hand side to \(F_0\):

\[ F = \text{TaylorF2} \]

The most commonly used form of the approximant is the Fourier representation computed using the stationary phase approximation (SPA). Using the SPA, the waveform in the frequency domain at \(M = 1\) may be written as:

\[
\tilde{r}^{\text{sta}}(f) = \frac{a(t_\ell)}{E(t_\ell)} e^{i \left[ f \left( t_\ell \right) - \gamma \right]}; \quad \dot{f}(t) \quad 2 \quad f(t)\quad 2 \quad (t); \]

(3.14)

where \(t_\ell\) is the saddle point defined by solving \(t, d \dot{f}(t) = 0\), i.e., the time \(t_\ell\) when the gravitational-wave frequency \(F(t)\) becomes equal to the Fourier variable \(f\). In the adiabatic approximation, denoting \(t_\ell = (M f)^{1/3}\) the value of \(t_\ell\) and \(\dot{f}(t_\ell)\) are given by the following integrals:

\[
t_\ell = t_{\text{ref}} + M \int_{v_{\text{ref}}}^{v_t} \frac{E_0(v)}{F(v)} dv; \quad \dot{f}(t_\ell) = 2 ft_{\text{ref}} + 2 \int_{v_{\text{ref}}}^{v_t} (v_3^3 - v_3^2) \frac{E_0(v)}{F(v)} dv;
\]

(3.15a, 3.15b)

As in the time domain case it is more efficient to use the equivalent differential form

\[
\frac{d}{dt} 2 = 0; \quad \frac{dt}{\dot{f}} + \frac{M^2 E_0(f)}{3v^2 F(f)} = 0;
\]

(3.16)

and this characterizes the TaylorF1 approximant.

The analogue of the TaylorF2 in the frequency domain follows by explicitly truncating the energy and flux functions to consistent post-Newtonian orders and exploiting the \(v\)-integration in the above. This leads us to a Fourier-domain waveform, the TaylorF2, which is the most often employed PN-approximant, given by

\[
\tilde{r}(f) = A f^{\gamma_{\text{eff}}(f)} e^{i (f)}; \]

(3.17)

where \(A / M^{5/2} \text{Q (angles)} = D\), and \(D\) the distance to the binary. To 3.5PN order the phase of the Fourier domain waveform is given by

\[
(\ref{3.15}) \quad \dot{f}(f) = 2 ft_{\ell} + \frac{3}{4} \frac{128}{18} v_2 + 1 + \frac{20}{9} \frac{743}{336} + \frac{11}{4} v^2 + 16 v^2 + 10 \frac{3058673}{1016064} + \frac{5429}{1008} + \frac{3}{144} 2 v^4 + \frac{617}{144} 2 v^4
\]

\[
+ \frac{38645}{9} \frac{65}{1 + 3 \log \frac{v}{v_{\text{lo}}}} v^5 + \frac{11583231236531}{4694215680} \frac{640}{3} \frac{6848}{21} + \frac{6848}{21} \log(4 v)
\]

\[
+ \frac{15737765635}{12} \frac{2255}{12} \frac{76055}{76055} + 127825 \frac{1728}{1296} + 3 \frac{77096675}{254016} + \frac{378515}{1512} + \frac{74045}{756} 2 v^3;
\]

(3.18)
where \( v = (M_f f)^{1/3} \).

In this case one has to specify the constants \( c_\text{e} \) and \( e_\text{f} \) and they can be chosen arbitrarily.

\[ \text{G. The effective-one-body model} \]

In this paper since we are not particularly concerned with the coalescence signal, we employ the less sophisticated earlier version of the EOB model calibrated to numerical-relativity simulations from Ref. \[39\] (for more sophisticated versions of the EOB model see Refs. \[41,42,43,44,45\]). Below we briefly review the EOB model from Ref. \[33\].

Introducing polar coordinates \((r; \phi)\) and their conjugate momenta \((p_r, p_{\phi})\), the EOB effective metric takes the form \[26\]

\[
\text{ds}^2 = A(r)\text{d}t^2 + \frac{D(r)}{A(r)}\text{d}r^2 + r^2 \left(\frac{\text{d}\phi}{\text{d}r}\right)^2 + \sin^2 \phi \frac{\text{d}^2 \phi}{\text{d}r^2}:
\] (3.19)

The EOB Hamiltonian reads

\[
H^\text{real}(r;p_r;p_{\phi}) = \frac{s^2}{r^2} + M + 2H^\phi:H^\phi_\text{real} = M_\text{f} + 2H^\phi
\] (3.20)

with the effective Hamiltonian \[26,28\]

\[
H^\phi(r;p_r;p_{\phi}) = \frac{\sqrt{\frac{2}{A(r)}}}{\sqrt{1 + \frac{A(r)}{D(r)}p_r^2 + \frac{p_{\phi}^2}{r^2} + 2(4\pi G)}) + \frac{p_{\phi}^4}{r^4}}
\] (3.21)

The Taylor approximants to the coefficients \(A(r)\) and \(D(r)\) can be written as \[26,28\]

\[
A_k(r) = \frac{\chi^k}{(1 - a_i^0)^k}; \quad i = 0 \quad \text{(3.22a)}
\]

\[
D_k(r) = \frac{\chi^k}{a_i^0}; \quad i = 0 \quad \text{(3.22b)}
\]

The functions \(A(r), D(r), A_k(r)\) and \(D_k(r)\) all depend on the symmetric mass ratio through the (dependent) coefficients \(a_i^0\) and \(a_i^k\). These coefficients are currently known through 3PN order (i.e., up to \(k = 4\)) and can be read from Ref. \[33\]. During the last stages of inspiral and plunge\(^5\), the EOB dynamics are adjusted closer to the numerical simulations by including in the radial potential \(A(r)\) a 4PN coe\(\text{cient} a_5(\) and \(a_6(\) with \(0\) a constant\(^6\). In order to assure the presence of a horizon in the effective metric \[33\], a zero needs to be factored out from \(A(r)\). This is obtained by applying a Padé resummation \[26\]. The Padé coefficients for the expansion of \(A(r)\) and \(D(r)\) at 4PN order are denoted \(A_i^k(r)\) and \(D_i^k(r)\), and their explicit form can be read from Ref. \[33\].

The EOB Hamilton equations are written in terms of the reduced (i.e., dimensionless) quantities \(\text{t} = tM\) and \(\text{b} = \text{b}_0 = ! M \quad \text{(27)}\)

\[
\frac{\text{dr}}{\text{db}} = \frac{\text{q}^\text{real}(r;p_r;p_{\phi})}{\text{q}_r}; \quad i = 0 \quad \text{(3.23a)}
\]

\[
\frac{\text{d}p_r}{\text{db}} = \frac{\text{q}^\text{real}(r;p_r;p_{\phi})}{\text{q}_r} \quad \text{(3.23c)}
\]

\[
\frac{\text{dp}_{\phi}}{\text{db}} = \frac{\phi(r;p_r;p_{\phi})}{\text{q}_r}; \quad i = 0 \quad \text{(3.23d)}
\]

\[\text{To deal with the steep rise of various quantities during the plunge, it is advantageous to consider the EOB equations in terms of the tortoise radial coordinate \(r\) and its conjugate \(p_r\) rather than in terms of the standard radial coordinate \(r\) and \(p_r\) as above. The form of \(H^\phi\) in the two cases will be different.} \]

\[\text{Note that } a_5 \text{ was denoted in Ref. \[33\], and } a_6 \text{ in Refs. \[39,42,43\].}\]
with the definition $b = d = \Phi$. Another critical input to the EOB model is the form for the radiation reaction force arising from the basic PN expression of the energy $\mathcal{E}$. Different choices include Padé resummation [44], and the most recent $n_{c} -$ resummation [33]. It also further includes the introduction of terms describing next-to-quasi-circular effects. Here, for convenience of the radiation-reaction force we use the less sophisticated Keplerian Padé-approximant to the energy $\mathcal{E}$ as given by Eq. (15) of Ref. [33].

The inspiral-plunge EOB waveform at leading order in a PN expansion reads

$$h_{\text{insp plunge}}(t) \; E^{-3} \cos[2(\mathcal{E})]; \quad (3.24)$$

The merger-ringdown waveform in the EOB approach is built as a superposition of quasi-normal modes [27,37,38,39,42,77], as

$$h_{\text{n. merger RD}}(t) = \sum_{n=0}^{N} A_{n} e^{-i \omega_{n}(t - t_{\text{match}})}; \quad (3.25)$$

where $n$ is the overtone number of the Kerr quasi-normal mode, $N$ is the number of overtones included in our model, and $A_{n}$ are complex amplitudes to be determined by a matching procedure described below. The quantity $n = !_{n}$, where the oscillation frequencies $\omega_{n} > 0$ and the inverse decay times $\tau_{d. n} > 0$, are numbers associated with each quasi-normal mode. The complex frequencies are known functions of the black-hole mass and spin and can be found in Ref. [79]. The black-hole masses and spins are obtained from the fits to numerical results worked out in Ref. [33].

The complex amplitudes $A_{n}$ in Eq. (3.25) are determined by matching the EOB merger-ringdown waveform with the EOB inspiral-plunge waveform close to the EOB light ring. In particular, in Ref. [33] the matching point is provided analytically by Eq. (37). In order to do this, $N$ independent complex equations are needed. The $N$ equations are obtained at the matching time $t_{\text{match}}$ by imposing continuity of the waveform and its time derivatives,

$$\frac{d^{k}}{dt^{k}}h_{\text{insp plunge}}(t_{\text{match}}) = \frac{d^{k}}{dt^{k}}h_{\text{n. merger RD}}(t_{\text{match}}); \quad (k = 0;1;2;\ldots;N) \quad (3.26)$$

In this paper we use $N = 3$. The above matching approach is referred to as point matching. It gives better smoothness around the matching time, but it is not very stable numerically when $N$ is large and higher order numerical derivatives are needed. More sophisticated matching procedures have been proposed in the literature to overcome the stability issue. Reference [39] introduced the combination matching approach where $N$ equations are obtained at $N$ points evenly spaced in a small time interval $t_{\text{match}}$ centered at $t_{\text{match}}$. More recently, to improve the smoothness of the combination matching Ref. [43] introduced the hybrid combination matching where one chooses a time interval $t_{\text{match}}$ ending at $t_{\text{match}}$, and in addition only the continuity of the waveform at $N$ 4 points evenly spaced from $t_{\text{match}}$ to $t_{\text{match}}$, but also requires continuity of the first and second order time derivatives of the waveform at $t_{\text{match}}$, $t_{\text{match}}$ and $t_{\text{match}}$

Finally, the full (inspiral-plunge-merger-ringdown) EOB waveform reads

$$h(t) = h_{\text{insp plunge}}(t_{\text{match}} + t) + h_{\text{n. merger RD}}(t_{\text{match}}); \quad (3.27)$$

where we denote with the Heaviside step function.

H. Waveforms and terminations conditions

Before concluding this Section we note a few other points concerning the generation of the waveform. Since our goal is to study the agreement between different waveforms it is necessary to separately consider the two different polarizations but only the detector response. For time-domain models TaylorT1, TaylorT2, TaylorT3, TaylorT4 and EOB the waveform is taken as:

$$h_{\Lambda}(t) = C v_{\Lambda}^{2} \sin[2 \omega_{\Lambda}(t)];$$

where $v_{\Lambda}$ and $\omega_{\Lambda}(t)$ are computed using the relevant formulas corresponding to the approximant $A$. In the case of TaylorT5 the waveform is taken to be

$$h_{\text{ET}}(t) = C \sin[2 \omega_{\text{ET}}(t)];$$

In all cases the constant $C$ is fixed by demanding that the norm of the signal be unity (cf. Sec. V). The initial phase of the signal is set to 0, while in the case of ten plates we construct two orthonormal waveforms corresponding to the starting phases of 0 and $\pi/2$. 
TABLE I: Term ination condition for waveform generation is chosen to be either LSO corresponding to Schwarzschild metric \( v_0 = 6 \) or the extremal demanded by the P-approximant of the energy function as in [14] which is \( v_{P1} \) at 2PN and \( v_{P3} \) at 3- and 3.5PN. In the case of Taylor T3 at 3.5PN, as the frequency evolution is not monotonic, the evolution has to be term inated prematurely at \( v_0 \) such that \( E(v_0) = 0 \).

<table>
<thead>
<tr>
<th>Order/Approx</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Et</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PN</td>
<td>( v_s )</td>
</tr>
<tr>
<td>3PN</td>
<td>( v_s )</td>
</tr>
<tr>
<td>3.5PN</td>
<td>( v_s )</td>
</tr>
</tbody>
</table>

The waveform s are term inated when \( v \) reaches the value quoted in Table I or before, if the frequency evolution is not monotonic (see next Section). For instance, in the case of Taylor T3 at 3.5PN order the approximant has an unusual behavior where the frequency evolution ceases to be monotonic well before \( v \) reaches the nominal value of \( 1 = 6 \). In the case of Taylor T1, Taylor T2 and Taylor T3, the term ination is at the LSO demanded by the Schwarzschild metric, namely \( v = 1 = 6 \); at all PN orders, but we also check for monotonicity of the frequency evolution. For other approximants, except EOB, we terminate at the extremum of the P-approximant energy function [14]. In the case of EOB, the waveform is term inated at the end of the quasi-normal ringing.

IV. FREQUENCY EVOLUTION

The quantity that determines the evolution of a binary, its phasing and the duration for which it lasts starting from a particular frequency, is the acceleration of the bodies under radiation reaction. Equivalently, it is the evolution of the derivative of the gravitational wave frequency \( E = \frac{dF}{dt} \) which determines the phasing of the waves. When the separation between the bodies is large, the frequency evolution is slow and the quantity \( \frac{dF}{dt} \) measures the fractional change in the frequency over a period, is small: \( F \frac{dF}{dt} \approx 1 \). As the binary evolves, this quantity increases but, as seen in numerical evolutions, remains finite and positive all the way up to the merger of the two bodies. In what follows we will explore the behaviour of as a function of the PN parameter \( v \) rather than \( t \) because the form or parameter is (mass) scale free, unlike the latter.

Computing the adiabaticity parameter \( v \) in the case of Taylor T1 and Taylor T4 is straightforward using Eqs. (3.5b) and (3.6). In the case of Taylor T2, one differentiates Eq. (3.8b) with respect to \( v \) and then takes its reciprocal. Finding \( v \) in the case of Taylor EOB is more involved. The frequency \( F \) is given by Eq. (6.1a) but the right hand side is a function of \( \nu \) one must, therefore, combine Eqs. (3.13a) and (3.13b) to nd the derivative of the frequency:

\[
E = \frac{dF}{dt} = \frac{d}{dt} \left( \frac{dF}{dt} \right) = \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt}.
\]

The above equation still gives \( E \) as a function of \( \nu \) One can then use Eq. (6.1b) to get \( \nu \); Consequently, there is no guarantee that \( v \) will be monotonic in the region of interest. However, we do nd that the function \( E(v) \) is positive in the region of interest and therefore \( v \) increases monotonically for Taylor T. To nd \( (v) \) for Taylor T3, \( E \) is given by di erentiating Eq. (3.10a) with respect to \( t \) (recall \( = (t) \)) and then one uses the same equation to nd \( v = \frac{d}{dt} \) at a given \( t \). It turns out that for Taylor T3 the function \( v \) can become negative in the region of interest (exactly when this happens depends on the PN order and mass ratio) and so \( v \) does not generally increase monotonically.

Figure 1, left panel, plots \( v \) for two values of the mass ratio: \( = 0.10 \) and \( = 0.25 \). When \( v \) is small \( v = 6 \) \( (v) \) for the di erent approximants is the same. Therefore, in systems for which \( v \) remains small when the signal is in band (as, for example, in a binary neutron star), the di erent approximants, as we shall see in the next Section, agree well with each other. As \( v \) approaches \( = 6 \), the di erent approximations tend to di er greatly, which means we cannot expect good agreement between the di erent PN families. Of the approximants considered here, Taylor T3 seems to have the smallest value of \( v \) at any given \( v \) Therefore, the evolution will be slower, and the duration of the waveform from a given frequency larger, than the other approximants [14]. Taylor T3 also di ers from all others because \( v \) becomes negative before the last stable orbit, and so \( v \) does not generally increase monotonically for this approximant. This behavior can be seen at 2PN and 3.5PN orders in the left panel of Fig. 1. The reason for this can be seen in Fig. 1, right panel, where we have shown the time development of \( (T3) \) for two values of \( = 0.10; 0.25 \). Since \( E \) becomes negative before reaching the last stable orbit, the waveform has to be term inated before \( v \) reaches \( = 6 \).
Figure 1: On the left hand panel the plots show the evolution of frequency in different PN families. The adiabaticity parameter \( \nu \) is essentially the same for all the different approximations at \( \nu = 0.1 \) as the binary gets close to coalescence the various approximations begin to differ from each other. The right hand panel shows the adiabaticity parameter as a function of time at 3.5PN order. Note that \( \nu_3(t) \) begins to decrease and even becomes less than zero before \( \nu \) reaches its nominal value of \( \nu = 0.1 \). This leads to waveforms that are significantly shorter in the case of TaylorT3.

Figure 2: Schematic plot of distance (or mismatch) relation between template and exact, numerical and EOB waveform.

V. Effectualness

The goal of this study is to compare the different PN approximations by measuring their mutual effectualness (i.e., overlaps maximized over intrinsic and extrinsic parameters) for a number of different mass pairs. To this end it will be very useful to define the scalar product of waveforms. Given waveforms \( h_k \) and \( q_k \), \( k = 0; \ldots; N \), where \( h_k \) is the \( k \)-th sample of the signal \( h(t) \) at time \( t_k = k \); \( = 1/2 \) being the sampling interval corresponding to the sampling rate \( f_s \); their scalar product is defined by

\[
\langle h, q \rangle = \frac{1}{N} \sum_{m=0}^{N-1} \left[ h_m Q_m + H_m Q_m \right] e^{i 2 \pi \frac{m}{f_s t_k}}
\]

\[ (5.1) \]

It is conventional to define the scalar product in the continuum limit. Here, however, we have given the definition for a discretely sampled data and this is the expression that is used in computing the overlaps.
where $f = f_s N; f_m = m$ and $k = k'$ is the lag of the template | a measure of the relative time shift between the template and signal, $H_n = \frac{1}{N} \sum_{k=0}^{N-1} h_k e^{i 2 \pi n k / N}$ is the discrete Fourier transform of $h(t)$ (similarity, $Q_m$ ) and $S_n (f_m)$ is the one-sided noise power spectral density of a detector. In comparing two waveforms $\phi$, the overall amplitude is of no interest and we should, therefore, consider waveforms with unit norm, namely $h = h = \phi; h: \phi$; Consequently, the relevant quantity is the scalar product between normalized waveforms defined by

$$D = \sum_{n=0}^{N-1} h_n^* \phi_n$$

(5.2)

A. Maximization of the overlaps

The signal and the template both depend on a set of parameters of the source (e.g., mass and initial spins of the component masses) and its orientation relative to the detector. We shall be concerned with binaries with non-spinning component on quasi-circular orbits. Such systems are characterized by two intrinsic parameters, namely the mass $m_1$ and $m_2$ of the components, and two extrinsic parameters, namely the time of coalescence $t_c$ and the phase of the signal at that time. The overlap integral, therefore, depends on the parameters of the signal and the template and the relevant quantity is the overlap $\max \phi$ maximized over these parameters.

The data analysis problem is concerned with digging out a specific signal buried in noisy data. This means that the parameters of the signal are fixed but the data analyst is at liberty to maximize over the parameters of the template. In this paper we will explore the usefulness of templates; that is to say, the overlap $\max \phi$ maximized over a template's parameters keeping those of the signal fixed. We will do this for several choices of the component masses of the binary. However, the time of coalescence $t_c$ and the phase $\phi$ of the signal at that time are arbitrarily chosen to be equal to zero. A caveat is in order concerning the value of the eucational arising as a result of our choice of $t_c$ and $\phi$: the $\max \phi$ maximized overlap is not very sensitive to our choice of $t_c$ but it could vary by several percents depending on the choice of a signal's phase, especially when the signal and the template are not in the geometric extreme sense.

$\max \phi$ maximization over a template's mass is carried out using a bank of templates and the template bank is set up such that for all signals of the same family as the template their best overlap with the nearest template is larger than a certain value called the minimum match $MI$. Our template placement is as in Ref. [7], which is known to produce, with probability close to 1, matches larger than the minimum match for the TaylorT1, TaylorT3, TaylorF2 and EO B families of signals (and templates) for the range of masses considered in this paper. We have checked this to be true also for TaylorF1 and TaylorF4 families.

We have used a minimum match of $MM = 0.99$ in all cases. $\max \phi$ maximization over time of coalescence is accomplished by looking at the overlap integral of the event lags $\max \phi$: Finally, since our template parameters are of the form $h_k = A_k \cos (k h_0)$, where $h_0$ is an unknown constant phase or offset, $\max \phi$ maximization over $h_0$ can be achieved by using two quadratures of the template, $h_k^2 = A_k \cos (k \varphi)$ and $h_{k+2} = A_k \cos (k + 2\varphi)$:

$$\max \phi [h; q] = \frac{D}{E} \sum_{n=0}^{N-1} h_n^0 q + h_{n+2}^0 q$$

(5.3)

When the signal and the template belong to the same family the $\max \phi$ maximized overlap is at least $MM$. When the waveforms belong to different families the $\max \phi$ maximized overlap is less than $MM$.

Our approach to finding the $\max \phi$ maximization of a template with a signal of $\phi$ parametrized is here somewhat different from what is normally followed in the literature, but one appropriate in the context of data analysis. In the literature on the parameters of different PN models, one normally measures either the best or the minimum overlap $[14]$. The best overlap gives the maximum overlap of the overlap over the masses and $t_c$ but $\max \phi$ maximized over the constant phases of both the signal and the template. On the other hand, the minimum overlap is the overlap $\max \phi$ maximized over the masses and $t_c$ but $\min \phi$ minimized over the constant phases of the signal and the template. As mentioned earlier, we $x$ the phase of the signal to be equal to zero and hence our $\max \phi$ maximization is, in principle, smaller than best overlaps but larger than minimum overlaps. The difference between the best and minimum overlaps is tiny when the $\max \phi$ maximization is intrinsically large (i.e., close to 1), but could be as low as 5% when the best overlap is 0.8. This should be kept in mind while interpreting our results. Moreover, as mentioned earlier, instead of numerically searching for the $\max \phi$ maximization of the overlap in the space of masses we just use a grid of templates with a minimum match of $MM = 0.99$:

We will compute $\max \phi$ maximization for every possible template and signal. If our template is the PN approximation $A$ and the signal is the PN approximation $B$ then we are interested in computing the matrix $\max \phi^{AB}$ defined by

$$\max \phi^{AB} = \max \phi [h_A (A); h_B (B)]$$

(5.4)
where \( A \) and \( B \) are the parameters of the template and the signal, respectively. The overlap is symmetric in its argument \( h_A \) and \( h_B \) only if the signal and the template, together with their parameters, are interchanged. That is, \( \delta ( h_A ( A^2 ) ; h_B ( B^2 ) ) = \delta ( h_B ( A^2 ) ; h_A ( B^2 ) ) \) but, in general, \( \delta ( h_A ( A^2 ) ; h_B ( B^2 ) ) \neq \delta ( h_B ( A^2 ) ; h_A ( B^2 ) ) \). Therefore, the maximized overlap \( \delta_{AB} \) need not be symmetric. The process of maximization, in which the parameters of the template are kept fixed and those of the \( \text{template} \) in the signal are varied, breaks down the symmetry. The lack of symmetry arises primarily because the signal template \( M_{AB} \), representing the two templates are distinct; the nearest distance from a coordinate point \( P \) on \( M_A \) to a point on \( M_B \) need not be the same as the nearest distance from \( P \) on \( M_B \) to a point on \( M_A \).

B. E. Truthfulness, faithfulness and loss in event rates

A direct measure of the efficiency of a template bank is the loss of event rates due to differences between the template family and the exact signal. The loss of event rates is determined by two factors: the exactness of the template in matching the exact waveform and the mismatch of the template bank itself. In this section, we will quantify this relation.

In Fig. 2, we sketch a portion of the waveform space. The solid line represents the template family subspace. Dots represent various waveform \( s ( i ) h_{\text{template}}(x_1) \) and \( h_{\text{template}}(x_2) \) are two neighboring templates in the template bank with physical parameters \( x_1 \) and \( x_2 \); \( (i) h_{\text{template}}(x_0) \) and \( h_{\text{template}}(x_0^0) \) are waveforms in the same familly as the template to be chosen as discussed below; \( (ii) h_0(x_0) \). \( h_R(x_0) \) and \( h_{\text{EOB}}(x_0) \) are exact, numerical and EOB waveforms of the same physical parameters \( x_0 \), respectively. The EOB waveform is calibrated to the numerical simulation.] We choose \( x_0^0 \) such that the overlap between \( h_{\text{template}}(x_1) \) and \( h_{\text{template}}(x_0^0) \) is the minimum match (see below) of the template bank. We choose \( x_0^0 \) such that \( h_0(x_0) \) is the exact waveform that has larger overlap with \( h_{\text{template}}(x_0^0) \) than with any other waveform \( s \) in the template family. This overlap is larger than the one between \( h_0(x_0) \) and \( h_{\text{template}}(x_0) \) even though they have the same physical parameters, because of the systematic difference between the family of exact waveforms and the family of template waveforms.

We denote the distance in the waveform space between two waveform \( s h \) and \( q \) by the scalar product \( \delta ( h ; q ) \). For convenience, we denote the m in m al method to be the square of the overlap between \( h_{\text{template}}(x_1) \) and \( h_{\text{template}}(x_0) \) as the m in m al match and we denote the corresponding m in m al method by \( d_{\text{MM}} = \delta ( h ; q ) \). Similarly, 1 and \( q \) are the exactness and faithfulness of the template family with the exact waveform \( h_0(x_0) \), respectively. The m in m al match between \( h_0(x_0) \) and the closest template \( h_{\text{template}}(x_1) \) quantifies the reduction in signal-to-noise ratio when the template bank is used to search for the exact waveform. We denote this m in m al method by \( d_{\text{MM}} \). When these m in m al methods are small enough, by Pythagorean theorem, we have an approximate relation \( d_{\text{MM}} \approx d_{\text{MM}} + d_{\text{ER}} \). An assimilated spatial distribution of sources, the reduction in event rate is 1 \( \left[ \frac{1}{3} \delta_{\text{MM}} \right]^2 \). Therefore, if we want to satisfy the usual requirement of \( < 10 \% \) loss in event rate, we need \( d_{\text{ER}} = d_{\text{MM}} + d_{\text{ER}} < 35 \\% \). Typically, in n m al match adopted in current searches has either \( d_{\text{MM}} = 3 \% \) or \( d_{\text{MM}} = 1 \% \), which means, in the first case, an extremely rigorous requirement on the e. exact method; \( d_{\text{ER}} < 0 \\% \), or in the second case, a reasonable requirement on \( d_{\text{ER}} < 25 \\% \). The latter is achievable by PN models. Note that, if both the m in m al match of a template bank and the e. e. exactness of the template m odels are 97 \%, the loss in event rate rises to 17 \%.

However, it is not possible to calculate \( d_{\text{ER}} \) since we do not know the exact waveform \( h_0(x_0) \). In this paper, we adopt two strategies to estimate \( d_{\text{ER}} \): (i) we calculate the m utual exactness of PN models for low-ess binaries and assume e it is a good representation of their e. exactness with exact waveform \( s \); (ii) we approximate \( h_0(x_0) \) with the EOB waveform \( h_{\text{EOB}}(x_0) \) calibrated to the num erical simulations. Wc can verify the goodness of the latter assumption as follows. The m in m al match between the best EOB waveform \( s \) and the num erical waveform \( s \) is less than 10 \%.

In Ref. [3], the authors calculated the m in m al match between exact numerical waveform \( s \) generated by simulations with different resolutions and/or extraction schemes, as well. They found that the m in m al match is less than 10 \%. Wc consider the latter as an estimator of the m in m al match between exact and numerical waveform \( s \). In the worst case, the m in m al match between the exact and EOB waveform \( s \) with the same e. physical parameters is roughly \( \left( 10 \right)^3 \). Therefore, we can conclude that by approximating \( h_0(x_0) \) with \( h_{\text{EOB}}(x_0) \), we underestimate the loss of event rate by at most 0.5 \%.

Notice that the e. exactness result presented in the following sections is slightly different from 1 \( \delta_{\text{MM}} \). It is obtained through discrete searches over template parameters using template banks with \( M = 0.99 \) rather than through continuous searches. Therefore, the m in m al method associated with the e. exactness result includes already the discreteness e. exact in the template banks, i.e., a m in m al method \( d_{\text{MM}}^{(0.99)} = 0.01 \). In this case, if a search is carried out with

---

Footnote: This figure is very similar to Fig. 3 of Ref. [3].
a template bank of a different minimal match, say $M = 1$, $d_M = 0.97$, to calculate the loss of event-rate, a match of $d_{	ext{EM}} = 0.92$, instead of $d_{M}$, needs to be added to the effectualness result in this paper, i.e. $d_{	ext{EM}} = d_M - d_E$. The only exception in this paper is the effectualness result between EOB models presented in the Conclusions which is obtained through a continuous search.

C. Choice of binary systems and PN orders

We have chosen three conventional systems, binary neutron stars (BNS), binary black holes (BBH) and binary neutron star-black hole systems, but we have chosen the BNS and BBH systems to be slightly asymmetric, $(1.38; 1.42)M$ and $(9.5; 10.5)M$, but NS-BH is chosen to be the conventional $(10; 13.4)M$ system. To this we have added another binary with component masses $(4.8; 5.2)$ which lies on the border line between where most PN families are similar to one another and where they begin to differ.

We compute overlaps maximized over a template bank between seven different models (TaylorT1, TaylorT2, TaylorT3, TaylorT4, TaylorF2, TaylorEt, EOB), each at three different PN orders ($v^4; v^5; v^6$). The results will be presented in the form of a set of figures. For each mass pair there will be one figure consisting of 9 panels (one panel for each PN order), each panel containing seven curves (one each for each template family at that order) and each curve with 21 data points corresponding to signals from the seven PN families at each three different PN orders, 2PN, 3PN and 3.5PN.

VI. RESULTS OF THE EFFECTUALNESS OF PN TEMPLATES

We will present the results of our investigation in two complementary ways. We will first discuss the effectualness of the different PN families with each other. Such an analysis will help us understand how well the PN approximations has "converged" for the selection of detection templates. We then go on to look at the effectualness of the different approximations with the EOB signal that contains not only the inspiral but also the merger and ringdown parts. The goal of the latter analysis is to identify the region in the parameter space where one can safely use any PN approximant template in a search, without worrying about the loss in signal-to-noise ratio that might arise due to our lack of knowledge of the real signal, but without expending undue computational resources. Outside this region, however, one must use template families that are calibrated to waveforms obtained from numerical relativity simulations.

A. Mutual effectualness of various PN inspiral template banks

The effectualness of the different PN families with each other is shown in Figs. 3 (Initial LIGO) and 4 (Advanced LIGO) for four different systems with component masses as indicated at the top of each sub-figure. In each sub-figure, the top panels correspond to the effectualness of different template families at 3.5PN order, middle panels to 3PN order and bottom panels to 2PN order. For each template family considered we then overlap with signals from different PN orders (as indicated along the x-axis) and approximants (as indicated by the text T1, T2, etc.). Each symbol corresponds to the overlap obtained by a different template family: (black) circles to TaylorT1, (red) squares to TaylorT2, etc., with signals from different PN families. Note that we have used the logit scale for the vertical axis. This is so that small discrepancies between the different approximants are made clearly visible. Note that since we are considering systems with low total mass, say $20M$, in this section we use the EOB model term indicated at the EOB "light ring", that is we do not include the merger and ringdown parts.

Conventionally, one says that two approximants A and B are in close agreement with each other if their mutual effectualness $\chi_{AB}$ is 0.956 or greater [17]. Since we see in this study that a rather large number of different PN families (21 in all), we shall relax this condition a bit to 0.95. However, we shall indicate in Sec. VII, the region of the parameter space where the effectualness is better than 0.956, but we shall also quote regions where the effectualness drops to a lower value of 0.9: The latter should be helpful for data analysis pipelines that employ a multi-stage hierarchical search, the first stage of which deploys a coarse grid of templates.

These figures reveal any different aspects of the (dis)agreement between the different approximants but we shall only mention in our discussion the "diagonal" behaviour, i.e. overlaps of each template family with a signal family
from the same ePN order. Focusing first on the InitialLIGO results (Fig. 3), we see the evidence for the clustering of the various approximants at 3PN and 3.5PN orders for systems with a smaller total mass. In the case of BNS with component masses (1.38; 1.42)M\(_\odot\), 2PN diagonal overlaps are dispersed between 0.74 to 1, 3PN and 3.5PN overlaps are all above 0.95, with TaylorET having the smallest overlaps.

In the case of BBH with component masses (4.8; 5.2)M\(_\odot\), 2PN overlaps are between 0.8 and 1, 3PN overlaps are all greater than 0.95 except TaylorET, 3.5PN overlaps are greater than 0.95 for all except TaylorET, TaylorT3 and EOB. There are several important points to note: As discussed in Sec. IV, TaylorT3 term inates somewhat prematurely before reaching the last stable orbit. Therefore, one expects to have poorer overlaps for all ten plates if TaylorT3 signal term inates in band, which will be the case for system s with a total mass greater than about 10M\(_\odot\); The asymmetry in the overlaps mentioned in Sec. IV, is apparent in the case of TaylorET: The overlaps of all ten plates with TaylorET signal is greater than the converse, namely the overlaps of the TaylorET ten plates with other signals. The poorer performance of EOB ten plates (term inates at the light ring) is due to the fact that the waveform has power in band beyond the last stable orbit.

In the case of NSBH with component masses (1.4; 10)M\(_\odot\), 2PN diagonal overlaps are distributed between 0.6 and 1, 3PN and 3.5PN overlaps are consistently above 0.95 except for TaylorET signals (both orders) and TaylorT3 (at 3.5PN).

In the case of BBH with component masses (9.5; 10.5)M\(_\odot\), there is no agreement between approximants irrespective
Let us now turn to Fig. 4, which depicts the results for Advanced LIGO noise power spectral density. In the case of BNS with component masses \((1.38; 1.42) M_s\); the 2PN diagonal overlaps are between 0.4 and 1 (note that some of the data points are below the scale of 0.5 that we employ). The 3PN (except TaylorEt signal) and 3.5PN (except TaylorT3 and TaylorEt signals) overlaps are uniformly larger than 0.95. The actualness of all templates with TaylorEt signal is generally smaller (0.6-0.8) than the actualness with a TaylorEt template. In the case of BBH with component masses \((4.8; 5.2) M_s\); the 2PN overlaps could be as small as 0.65. At 3PN, all approximants (except TaylorEt templates) and 3.5PN (except TaylorEt and TaylorT3 templates) the overlaps are 0.95 or greater. In the case of NSBH with component masses \((1.4; 10) M_s\); the 2PN overlaps are as low as 0.4. At 3PN and 3.5PN, the overlaps are larger than 0.95 except in the case of TaylorEt signals (3PN, 3.5PN) and TaylorT3 templates (3.5PN). In the case of BBH with component masses \((9.5; 10.5) M_s\); the 2PN overlap could be as low as 0.7. The overlaps are larger than 0.95 at 3PN except in the case of EO B templates and TaylorEt and EO B signals. Finally, at 3.5PN order the different approximants are not seen to agree with each other very well. The cause of these features is the same as our discussion for Initial LIGO.

B. Discussion

In the case of binary neutron stars, the merger occurs far outside the sensitive band of the detector and even the late stages of inspiral is out of band. Binary neutron stars will very much be in the adiabatic regime as the signal sweeps through the band and a good test of the PN approximation is to ask how well the different waveforms agree with one another in this regime. The finite bandwidth of the detector essentially probes this regime for binary neutron stars. Note that the actualness is almost dependent on order at 2PN order is poorly poor but greater than 0.95 (with the exceptions discussed earlier) at 3PN and 3.5PN orders. In the case of Advanced LIGO (cf. Fig. 4), the lower frequency cut-off used in computing the overlap integrals is 20 Hz and a binary neutron star spends more than 750
cycles in band. Effective noise of 0.95 or greater means that the waveform remain in phase over the entire duration of the signal. Of course, in reality the parameters of the signal and the template are not the same, but even so this is a remarkable success of the PN scheme.

For a BBH system with masses (4.8; 5.2)M\(_\odot\); we see that 2PN and 3PN order templates are qualitatively similar to the binary neutron star case. However, we can see a marked deterioration of the effective noise at 3.5PN order. For a system of total mass of 10M\(_\odot\); the Schwarzschild LSO occurs at 440 Hz and the detector is sensitive to the late stages of the inspiral phase. It is not entirely surprising, therefore, that different PN orders do not agree with each other to the same extent as in the binary neutron star case. However, note that, with the exception of TaylorT3, which saturates at a frequency somewhat lower than others, and TaylorTt, all other templates have effective noises of 0.95 or better with each other. Among approximants that agree with each other, EO B has the smallest effective noise. This is because the latter model contains the plunge phase of the coalescence with ending frequencies far higher than the LSO, while other approximants do not have the plunge phase.

The LSO of a BBH with component masses (9.5; 10.5)M\(_\odot\); is at 220 Hz and the plunge phase spans 220 Hz to about 600 Hz. Therefore, the detector is quite sensitive to the late phases of the coalescence. We see deterioration of the effective noise, both at 3PN and 3.5PN orders. A part from TaylorT3, whose poor overlaps at 3.5PN are explained by the early truncation of the signal, the EO B stands out by achieving overlaps as low as 0.92 with other templates.

As a final example, the effective noise of templates for a signal from a neutron star-black hole binary of masses (1.4; 10)M\(_\odot\); we see that the different PN family templates, including the EO B, are in good agreement with each other, with the sole exception of TaylorTt. In fact, the convergence amongst different family templates seems to be somewhat better than the BBH system with component masses (9.5; 10.5)M\(_\odot\).

At this juncture, it is worth pointing out that our numerical results for effective noise in the subset of cases where TaylorTt is chosen as the template, are consistent with those in Ref. [43], which investigated the intrinsic factors to account if 3.5PN TaylorTt signals could be effectively and faithfully searched by TaylorT1, TaylorT4 and TaylorT2 templates. There is agreement too on the general features of our results with regard to systematic biases, the dependence on the total mass and qualitative factors underlying them. However, this agreement of numerical results for faithfulness and effective noise in no way extends to the general motivation and claims regarding the TaylorTt approximants [43, 44, 50] and, hence, are worth clarifying.

Indeed, there is no basis to refer to the x-based orbital phasing equation Eq. (3.50) as Newtonian [51], since the [52, 53, 54] is PN accurate (depending on the PN-generation order one is working at) and implicitly incorporates...
conservative contributions to gravitational-wave phase evolution at various PN orders. It is incorrect to claim that conservative contributions to the gravitational-wave phase evolution do not appear in the standard approximants, or that the TaylorE\-based scheme treats conservative and radiation-reaction contributions equally than the standard x-based approximants. It is misleading to refer to only TaylorE\-based approximants as "fully gauge invariant" in contrast to EOB (especially in the circular orbit case). All x-based schemes are also fully gauge invariant. Finally, one may work in specific convenient coordinate systems as do EOB and numerical relativity simulations, as long as one deals with and compares gauge invariant quantities at the end.

In our view, the very different behaviour of the TaylorE approximant relative to the standard x-based approximants may be traced to the manner in which the orbital phase is "package\-d" in the two schemes. In the x-based scheme, the orbital phase is written in a summation from which the phase is written in an appropriate PN-accurate angular velocity \( n_{PN} \) (\( n = 2,3 \) for 2PN, 3PN template families). On the other hand, the representation in terms of \( \ell \) relative to the x scheme is a re-expanded form. And indeed, based on the comparison between analytical schemes and numerical relativity simulations, the schemes do relatively worse. The feature related to the monotonically-convergence of the TaylorE scheme is of secondary importance in comparison to the main requirement of high phase accuracy of an analytical model with numerical relativity simulations over all mass ratios.

A few general comments are in order before we conclude this Section. We do not believe that at present there are convincing theoretical reasons to consider any one particular PN family of inspiral models as a privileged signal model. Consequently, the best that one can do is to examine the mutual closeness of these various inspiral models, as we have done, and work at the PN order where these various template families display the greatest agreement. It is precisely in this regard that the view point we present here differs from those in \([44,49,50]\), which assume primary for one specific approximant, namely the TaylorE approximant, based on theoretical motivations that at present do not appear to be fundamentally compelling. Consequently, though there is no difference in the numerical results in the subset of cases that are common in our investigations, there is a big difference in the conclusions that we believe can be inferred. For instance, before one can legitimately decide on the inability of standard template banks in the gravitational data pipeline to detect signals from binaries with eccentricity \([50]\), it is necessary to rest hold in the differences in the simpler quasicircular case arising on account of deferent parameterizations. Similar considerations should be borne in mind when dealing with analogous problems in the spinning case.

Based on the analysis presented heretofore, we conclude that the PN approximation has pretty much converged at
FIG. 7: Same as Fig. 6 except that the noise spectral density is that of Advanced LIGO. The contours correspond to overlaps of 0.9, 0.95 and 0.965.

3PN and 3.5PN orders\(^1\), as long as the total mass is less than about 12M\(_{\odot}\) (with the exceptions discussed in the previous Section).

For heavier binaries, the approximants begin to differ considerably, and this is almost entirely because the adiabatic approximation begins to breakdown and the plunge and merger phases become more important. Hence, in the next Section we will supplement the present analysis by looking more precisely into the overlaps of the different PN templates with a prototype of the more complete signal model, namely the EOB model, including the merger and ringdown parts.

C. Biases in the estimation of parameters

Recall that, in the computation of the actualness one maximizes the scalar product of a (normalized) signal with a template over the parameters of the template, keeping those of the signal fixed. Therefore, one can get an idea of how dissimilar the parameters of an approximant need to be in order to match a given signal. This is a systematic effect that leads to a bias in the estimation of parameters if the template approximant is not the same as the signal approximant. Let the total mass of the signal and template waveforms be, respectively, \(M_{\text{signal}}\) and \(M_{\text{template}}\); when the scalar product is maximized. The percentage bias \(M\) in the total mass is defined as \(M = 100\left(1 - \frac{M_{\text{template}}}{M_{\text{signal}}}\right)\); and similarly for the symmetric mass ratio.

For a given binary, the biases are qualitatively similar for Initial and Advanced LIGO noise power spectral densities. In general, the biases are appreciably smaller at 3PN and 3.5PN orders than at 2PN order and progressively increase with the total mass, although they are far larger than the statistical errors computed using the Fisher information matrix [23]. Figs. 5 plots the percentage biases in the total mass \(M\) and symmetric mass ratio at 3.5PN order. The left two (right two) columns use the Initial LIGO (Advanced LIGO) noise spectral density. For the four systems considered, namely (138;142)M\(_{\odot}\); (45;52)M\(_{\odot}\); (14;10)M\(_{\odot}\); and (9.5;10.5)M\(_{\odot}\) binaries, the largest bias in the total mass \(M\) is 1%, 20%, 20% and 20%, respectively, and the symmetric mass ratio is 1%, 25%, 70% and 25%, respectively.

\(^{1}\) Though qualitatively we may expect similar results for Virgo, quantification requires an analysis using the Virgo noise curves. Needless to add, that the situation for a space detector like LISA can be expected to be even more different and interesting to study.
VII. RESULTS OF THE EFFECTUALNESS OF PN TEM PLATES W ITH THE FULL WAVEFORM

Having established the convergence of PN approximations at 3PN and 3.5PN orders (for determining the actual template) in the region where the approximation is expected to be valid, let us now examine the region in the parameter space where the approximations can be used as search templates. To achieve this goal, we will use the EO model calibrated to numerical relativity simulations. For brevity, we have omitted plots of the actualness of 3PN approximants with this EO model; they are quite similar to the 3.5PN plots.

Although Ref. [39] explored the agreement between the EO model and numerical simulations for several modes, in this study we will work with only the dominant harmonic (i.e., the h_{22} mode) at leading PN order. Higher-order amplitude corrections are known to be important for parameter estimation [40,41] and a future study must repeat this investigation with the full waveform.

Fig. 4 shows the actualness of the six PN families Taylor T1, Taylor T2, Taylor T3 (top panels, respectively from left to right), Taylor T4, Taylor T5, and Taylor T6 (bottom panels, respectively from left to right) for Initial LIGO noise power spectral density. Taylor T4 at 3.5PN approximants terminate at 220M Hz: This discrepancy is so large that even with the biases in the component masses allowed in the computation of the actualness (recall that we may tune the overlap over template masses), which, in principle, makes it possible for a template of a lower mass to match a signal of a higher mass, Taylor T3 is unable to achieve good overlaps. This is because a mass in the component masses can make a template more, or less, asymmetric than the signal, which has the effect of increasing, or decreasing, the duration of the template relative to the signal. While small differences in the ending frequencies can be achieved by a mass in the total mass without exciting the signal too greatly, large differences cannot be achieved by such a mass in the parameter set.

At 3PN and 3.5PN the actualness of Taylor T4 with a EO signal for a binary of component masses (3;10)M [respectively, (10;10)M] is 0.83 and 0.90 (respectively, 0.87 and 0.89). This is because at 3.5PN approximants Taylor T5 seems to converge faster than any other. Further, an examination of the overlap at the signal of a higher mass indicates that higher order PN terms have increasingly greater overlap. In general, it has been observed that the appearance of such larger overlap at higher order terms of an approximate scheme is inevitably worsens its convergence and the present instance may be no exception to this case.

With the exception of the peculiarities noted above, we see that all approximants do progressively better at higher PN orders. Conclusions drawn in the previous Section with regard to the convergence of the PN approximations are further corroborated here where we have seen the overlap with a signal that is matched to numerical relativity simulation, which can, therefore, be taken to be close to what a real signal might be.

Computationally, Taylor T2, with its phasing formulas given explicitly in the Fourier domain, is the least expensive. This is because matched filtering is most easily carried out in the Fourier domain, which means that a time-domain approximant must be Fourier transformed before computing the cross correlation. By employing Taylor T2 models one can avoid one forward Fourier transform. Moreover, Taylor T2 offers the advantage of the choice of the ending frequency. Unlike the time-domain approximants, which have either a natural ending frequency determined by the extremum of the binding energy or the frequency evolution stops before reaching the LSO, Taylor T2 has no such restriction. In fact, as obtained in Refs. [33,34], by extending the upper cut-off beyond the usual upper cut-off (i.e., the Schwarzschild LSO), the Taylor T2 model matches remarkably well with numerical relativity waveforms for a larger range of masses. However, as noted in Ref. [33] the ending frequency that must be employed in order to achieve the best match with numerical relativity waveforms depends on the noise power spectral density. This could turn out to be an unnecessary computational burden in a data analysis pipeline. The alternative is to use the upper frequency cut-off as an additional search parameter or allow unphysical values of > 0.25 to include a p4PN term in the
tem plate phase and calibrate it to num erical sim u la ti ons \[35\]. The rst two choices would result in an unwar rant ed increase in the comp ut at on al cost of a search as also in the false alarm rate, and we advice against it. The third choice could be pursued, but it should be aug m ent ed by a more com pre hensive de s cri pt ion of the m erger/ing down sig nal. For exam ple by in tro ducing a slope break in the wave form ampli tude and a super position of Lorentzians \[34,35\].

If a search requires the min im um ampli tude to be much smaller than 0.95 (as, for exam ple, in a hierarchi cal search) one can extend a search with TaylorF2 to a total mass of 20M with the event al ne ss of 0.90:

Before ad vanced de tec tors be gin to oper ate, there will be a period when LIGO and Virgo will operate with sensi tivi ties slight ly larger than, but band wide is sim ilar to initial de tec tors (the so-called Enhanced LIGO and Virgo+). Since Virgo and Virgo+ are expected to have a sensi tivity band is sim ilar to Advanced LIGO the results presented in this paper are qual it atively sim ilar to those cases too. M ore ever, as our results are only sensi tive to the band width, conclusions drawn by using the noise spectral density of Initial LIGO will also be valid for Enhanced LIGO.

All approxi mat es (no excep tions) achieve an event al ne ss of 0.95 or bet ter at 3PN and 3.5PN orders, for binaries whose total mass is less than about 12M. From the view point of event al ne ss alone, we con clude that searches for binary black holes, in Initial, Enhanced and Advanced LIGO, could be pley any of the 3PN or 3.5PN fam iles as long as the total mass is smaller than about 12M. The nal choice of the PN fam ily should be based on other cri ter ia. If it is desired that the min im um ampli tude of a tem plate bank is 0.95 or greater, then the best strat egy would be to use the full EO B wave form calibrated to num erical re lax at ion.

Another cri ter ia to be considered is the comp ut at on al cost. A typical matched ler search in LIGO data must com put e thou sand of tem plate sig nal s for every 2048 second data seg ment. This can be a heavy bur den if it takes a signi cant amount of time to com pute each tem plate. The EO B tem plates are com put ed in the time dom ain by solv ing a set of di spec ial equations, and the fre quency dom ain sig nal is then com put ed via Fourier trans form. For low mass sys tems this cost can be signi cant and will of course vary depending on the im plement ation and hard ware used.

We have esti mated the cost to com pute TaylorF2 and EO B tem plates using their implemen ta tion in the LIGO Al gor ithm Li br aries (LAL) code used for matched ler searches in LIGO data. We nd that for a total mass 40M, the EO B tem plates take a factor of 2 longer to gen er ate than the same TaylorF2 sig nal. For a (10;10)M(5.5)M and (14;14)M binary, the EO B tem plates take a factor of about 3, 7 and 20, longer to generate, respec tively. We tested the wave form genera tion on a high per form ance com puter with 32 2.7 GHz CPUs and 132 GB of RAM. On this system, EO B tem plates with a total mass 40M can be generated in about 0.5s, while the (10;10)M EO B tem plate could be generated in about 0.55s. Since LIGO searches on pley thou sand of CPUs, this is feasible. However, for low mass sig nal s, the time needed grows rather quickly and about 4s are needed to com pute the (14;14)M EO B tem plate. It may be possible to reduce the comp ut at on al cost som e what by opt im izing the EO B wave form genera tion code, but the lowest mass tem plates would certainly still have a signi cant com put ational cost. Thus, the increased comp ut at on al cost must be con tro lled against the ben ef t of increased event al ne ss for lower mass sig nal s.

VIII. FA I T H F U L N E S S

For com plet eness, we also report on the faith fulness of the dif fer ent PN approxi mat es with respect to one an other. The faith fulness is the overlap be tween nor malized tem plate and signal approxi mat es when max im izing only over the time and phase at coalescence, tc and cc. In Tables \[I\] and \[II\] we list the faith fulness for each pair of PN approxi mat es at their highest PN order, that is 3.5PN order, except for the EO B m odel which uses a p4PN order con cient, for both Initial and Advanced LIGO and for each of our reference binaries.

In the rst row and column of the left panel of Table \[I\], notice that every approxi mat e has an overlap of at least 0.97 with the EO B m odel for both Initial and Advanced LIGO. That all approxi mat es have good agreement for a low mass binary without searching over m ass param eters is fur ther ev idence that the 3.5PN approxi mat es are rather close to one another during the adiabat ic inspi ral. Note that the T2, T3, T4 and F2 approxi mat es all have a faith fulness of 0.99 with the EO B m odel, while the T1 and Et approxi mat es have some what wor se agree ment at about 0.97. For each pair, the faith fulness for Initial and Advanced LIGO are quite sim ilar for these low mass binaries.

In the right panel of Table \[I\], we increase the total mass to 10M while keeping the m ass ratio nearly equal. The faith fulness drops for each pair of approxi mat es as the m erger begins to enter the sensitive band. Recall that for these mass es, all pairs of approxi mat es can achieve an event al ne ss of at least 0.95 by searching over the mass param eters. When we x the mass es, the T2, T4 and F2 approxi mat es still have very good agree ment with the EO B m odel, with faith fulness of 0.97. The EO B-T3 faith fulness has de cayed some what to 0.93 and the T1 approxi mat es have rather poor agree ment with the EO B m odel with faith fulness in the range 0.84 - 0.92. Note that the faith fulness is typi cally lower for Advanced LIGO than for Initial LIGO. We at tribute this to the sig nal s having a longer duration (and thus more time to accum ulate a phase differ ence) in Advanced LIGO's wider sensitivity band.
### TABLE II: Faithfulness of different approximants for \((1\times 2;1\times 3)M\) (left panel) and \((5\times 2;4\times 8)M\) (right panel) binaries. The rows label template approximant, while the columns label signal approximant. For each pair, the top number is \(\text{Initial LIGO}\) while the bottom number is \(\text{Advanced LIGO}\). All approximants are at 3.5PN order, except our \(\text{EOB model}\) which has a 4PN coefficient.

<table>
<thead>
<tr>
<th>EOB</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Et</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOB</td>
<td>1</td>
<td>.969</td>
<td>.994</td>
<td>.976</td>
<td>.990</td>
<td>.970</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.971</td>
<td>.996</td>
<td>.998</td>
<td>.991</td>
<td>.974</td>
</tr>
<tr>
<td>T1</td>
<td>.969</td>
<td>1</td>
<td>.982</td>
<td>.981</td>
<td>.987</td>
<td>.928</td>
</tr>
<tr>
<td></td>
<td>.971</td>
<td>1</td>
<td>.984</td>
<td>.983</td>
<td>.990</td>
<td>.920</td>
</tr>
<tr>
<td>T2</td>
<td>.994</td>
<td>.982</td>
<td>1</td>
<td>.998</td>
<td>.999</td>
<td>.958</td>
</tr>
<tr>
<td></td>
<td>.996</td>
<td>.984</td>
<td>1</td>
<td>.999</td>
<td>.999</td>
<td>.961</td>
</tr>
<tr>
<td>T3</td>
<td>.997</td>
<td>.981</td>
<td>.998</td>
<td>1</td>
<td>.997</td>
<td>.959</td>
</tr>
<tr>
<td></td>
<td>.998</td>
<td>.983</td>
<td>.999</td>
<td>1</td>
<td>.998</td>
<td>.961</td>
</tr>
<tr>
<td>T4</td>
<td>.990</td>
<td>.987</td>
<td>.999</td>
<td>.977</td>
<td>1</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>.991</td>
<td>.990</td>
<td>.999</td>
<td>.977</td>
<td>1</td>
<td>.949</td>
</tr>
<tr>
<td>Et</td>
<td>.970</td>
<td>.928</td>
<td>.958</td>
<td>.959</td>
<td>.950</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>.974</td>
<td>.920</td>
<td>.961</td>
<td>.949</td>
<td>1</td>
<td>.961</td>
</tr>
<tr>
<td>F2</td>
<td>.994</td>
<td>.982</td>
<td>1.000</td>
<td>.999</td>
<td>.998</td>
<td>.958</td>
</tr>
<tr>
<td></td>
<td>.996</td>
<td>.984</td>
<td>1.000</td>
<td>.999</td>
<td>.999</td>
<td>.961</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EOB</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Et</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOB</td>
<td>1</td>
<td>.916</td>
<td>.974</td>
<td>.938</td>
<td>.981</td>
<td>.888</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.977</td>
<td>.973</td>
<td>.928</td>
<td>.978</td>
<td>.841</td>
</tr>
<tr>
<td>T1</td>
<td>.916</td>
<td>1</td>
<td>.974</td>
<td>.926</td>
<td>.964</td>
<td>.784</td>
</tr>
<tr>
<td></td>
<td>.877</td>
<td>1</td>
<td>.955</td>
<td>.892</td>
<td>.947</td>
<td>.653</td>
</tr>
<tr>
<td>T2</td>
<td>.974</td>
<td>.974</td>
<td>1</td>
<td>.949</td>
<td>.993</td>
<td>.861</td>
</tr>
<tr>
<td></td>
<td>.973</td>
<td>.955</td>
<td>1</td>
<td>.932</td>
<td>.994</td>
<td>.775</td>
</tr>
<tr>
<td>T3</td>
<td>.938</td>
<td>.926</td>
<td>.949</td>
<td>1</td>
<td>.949</td>
<td>.993</td>
</tr>
<tr>
<td></td>
<td>.928</td>
<td>.892</td>
<td>.932</td>
<td>1</td>
<td>.926</td>
<td>.876</td>
</tr>
<tr>
<td>T4</td>
<td>.981</td>
<td>.963</td>
<td>.939</td>
<td>.943</td>
<td>1</td>
<td>.854</td>
</tr>
<tr>
<td></td>
<td>.978</td>
<td>.947</td>
<td>.994</td>
<td>.926</td>
<td>1</td>
<td>.766</td>
</tr>
<tr>
<td>Et</td>
<td>.888</td>
<td>.785</td>
<td>.861</td>
<td>.925</td>
<td>.854</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>.841</td>
<td>.653</td>
<td>.775</td>
<td>.876</td>
<td>.767</td>
<td>1</td>
</tr>
<tr>
<td>F2</td>
<td>.970</td>
<td>.975</td>
<td>.993</td>
<td>.844</td>
<td>.995</td>
<td>.853</td>
</tr>
<tr>
<td></td>
<td>.968</td>
<td>.957</td>
<td>.995</td>
<td>.930</td>
<td>.996</td>
<td>.770</td>
</tr>
</tbody>
</table>

### TABLE III: Same as Table II but for \((10\times 5;9\times 5)M\) (left panel) and \((10\times 14)M\) (right panel) binaries.

<table>
<thead>
<tr>
<th>EOB</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Et</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOB</td>
<td>1</td>
<td>.877</td>
<td>.882</td>
<td>.650</td>
<td>.923</td>
<td>.860</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.811</td>
<td>.864</td>
<td>.721</td>
<td>.910</td>
<td>.775</td>
</tr>
<tr>
<td>T1</td>
<td>.877</td>
<td>1</td>
<td>.972</td>
<td>.712</td>
<td>.970</td>
<td>.817</td>
</tr>
<tr>
<td></td>
<td>.811</td>
<td>1</td>
<td>.955</td>
<td>.785</td>
<td>.943</td>
<td>.638</td>
</tr>
<tr>
<td>T2</td>
<td>.882</td>
<td>.972</td>
<td>1</td>
<td>.742</td>
<td>.968</td>
<td>.886</td>
</tr>
<tr>
<td></td>
<td>.864</td>
<td>.955</td>
<td>1</td>
<td>.831</td>
<td>.969</td>
<td>.874</td>
</tr>
<tr>
<td>T3</td>
<td>.850</td>
<td>.712</td>
<td>.742</td>
<td>1</td>
<td>.707</td>
<td>.716</td>
</tr>
<tr>
<td></td>
<td>.721</td>
<td>.785</td>
<td>.831</td>
<td>1</td>
<td>.794</td>
<td>.782</td>
</tr>
<tr>
<td>T4</td>
<td>.923</td>
<td>.971</td>
<td>.968</td>
<td>.707</td>
<td>1</td>
<td>.906</td>
</tr>
<tr>
<td></td>
<td>.910</td>
<td>.943</td>
<td>.970</td>
<td>.794</td>
<td>1</td>
<td>.785</td>
</tr>
<tr>
<td>Et</td>
<td>.859</td>
<td>.817</td>
<td>.886</td>
<td>.716</td>
<td>.906</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>.776</td>
<td>.639</td>
<td>.784</td>
<td>.783</td>
<td>.785</td>
<td>1</td>
</tr>
<tr>
<td>F2</td>
<td>.909</td>
<td>.982</td>
<td>.959</td>
<td>.708</td>
<td>.985</td>
<td>.846</td>
</tr>
<tr>
<td></td>
<td>.889</td>
<td>.967</td>
<td>.959</td>
<td>.790</td>
<td>.988</td>
<td>.706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EOB</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Et</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOB</td>
<td>1</td>
<td>.977</td>
<td>.973</td>
<td>.817</td>
<td>.859</td>
<td>.526</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.959</td>
<td>.972</td>
<td>.801</td>
<td>.797</td>
<td>.413</td>
</tr>
<tr>
<td>T1</td>
<td>.977</td>
<td>1</td>
<td>.972</td>
<td>.796</td>
<td>.805</td>
<td>.508</td>
</tr>
<tr>
<td></td>
<td>.959</td>
<td>1</td>
<td>.954</td>
<td>.753</td>
<td>.691</td>
<td>.398</td>
</tr>
<tr>
<td>T2</td>
<td>.973</td>
<td>.972</td>
<td>1</td>
<td>.835</td>
<td>.894</td>
<td>.543</td>
</tr>
<tr>
<td></td>
<td>.972</td>
<td>.954</td>
<td>1</td>
<td>.820</td>
<td>.834</td>
<td>.430</td>
</tr>
<tr>
<td>T3</td>
<td>.817</td>
<td>.796</td>
<td>.835</td>
<td>1</td>
<td>.851</td>
<td>.778</td>
</tr>
<tr>
<td></td>
<td>.801</td>
<td>.753</td>
<td>.820</td>
<td>1</td>
<td>.841</td>
<td>.631</td>
</tr>
<tr>
<td>T4</td>
<td>.859</td>
<td>.805</td>
<td>.894</td>
<td>.851</td>
<td>1</td>
<td>.595</td>
</tr>
<tr>
<td></td>
<td>.797</td>
<td>.691</td>
<td>.834</td>
<td>.841</td>
<td>1</td>
<td>.456</td>
</tr>
<tr>
<td>Et</td>
<td>.526</td>
<td>.508</td>
<td>.543</td>
<td>.778</td>
<td>.595</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>.413</td>
<td>.398</td>
<td>.430</td>
<td>.631</td>
<td>.456</td>
<td>1</td>
</tr>
<tr>
<td>F2</td>
<td>.990</td>
<td>.911</td>
<td>.980</td>
<td>.818</td>
<td>.852</td>
<td>.525</td>
</tr>
<tr>
<td></td>
<td>.993</td>
<td>.978</td>
<td>.976</td>
<td>.799</td>
<td>.779</td>
<td>.411</td>
</tr>
</tbody>
</table>

In the left panel of Table III, we increase the total mass to 20M while again keeping the mass ratio nearly equal. Once again, the faithfulness drops for all cases as the merger and ringdown become more important. The T4 and F2 approximants have the best agreement with EOB, they are the only approximants to achieve an overlap greater than 0.9 with EOB. The overlap between T3 and EOB has dropped dramatically to 0.65 and 0.72 for \(\text{Initial and Advanced LIGO}\) respectively.

The right panel of Table III gives the faithfulness for each approximant pair for an asymmetric \((10\times 14)M\) binary. The EOB-F2 faithfulness is very good at 0.99. The T1 and T2 approximants also have good agreement with the EOB model with faithfulness 0.86 - 0.98. The T3 and T4 have poor agreement with the EOB model with faithfulness 0.20 - 0.26. For this mass pair, the Et approximant has very poor agreement with all of the others, the faithfulness is 0.00 for every approximant except T3.

We see a clear trend of decreasing faithfulness as the total mass of the binary increases. This is due to the late inspiral, merger and ringdown moving into the sensitive band and becoming more important for higher mass binaries.
The faithfulness is typically lower for Advanced LIGO than Initial LIGO due to its broader sensitive band. The faithfulness can vary with mass ratio. For example, for the (10;1.4)M\(_{\odot}\) binary, the T1 and T2 approximants have a better faithfulness with the EO B model than the T4 approximant. However, for the nearly equal mass binaries, the T4 approximant has the greatest faithfulness with the EO B model. The TaylorF2 approximant is generally the most faithful to the EO B approximant, with one of the highest overlaps in each case. This is another argument for using TaylorF2 templates in the mass regime where EO B templates are too computationally expensive to be employed in a matched filtering search.

IX. CONCLUSIONS

In this paper we have examined the convergence of the PN approximation with the view to validating their use in the search for compact binaries in Initial, Enhanced and Advanced LIGO. We considered seven different approximants, each at three different PN orders, a total of 21 waveforms in all. We computed the effectualness of each of the waveforms with every other at 2PN, 3PN and 3.5PN orders by using a template bank constructed with a minimal match of 0.99 and Initial and Advanced LIGO noise power spectral densities. Our results from a sample of four binaries show that different PN approximants are consistent with one another at 3PN and 3.5PN order. They begin to differ only when the mass becomes so large that the plunge phase, not contained in standard PN waveforms in the adiabatic approximation, enters the detector band.

The above conclusion is best summarized by Fig. 8, where we plot the effectualness of the various PN approximants (except for TaylorT3 and TaylorT4 that we recommend be discarded, since we have shown that not only do they differ considerably from the others but in portantly have poorer overlaps with EOBNR waveforms) with 3PN inspiral-merger-ringdown signal as a function of the total mass of the binary. These plots are convenient for identifying the M\(_{\text{crit}}\) above which the PN approximants begin to differ with one another. We find that any of the above approximants could be used as detection templates with less than a 10% loss in event rate up to a total mass of 12M\(_{\odot}\) for both Initial and Advanced LIGO. Note that this value of M\(_{\text{crit}}\) is limited by the equal mass case, as the value of M\(_{\text{crit}}\) corresponding to a 10% loss in event rate is somewhat greater for mass ratios of 4:1 and 10:1. We attribute this result to asymmetric binaries accumulating more signal at low frequencies than in the equal mass case. Thus, for a fixed total mass, the merger and ringdown are less in portant for asymmetric binaries than for equal mass binaries. Therefore, we conclude that we can safely use any of the above 3.5PN family as search templates to detect binaries whose total mass is less than about 12M\(_{\odot}\). However, purely from the point of view of computational burden TaylorF2 is the least expensive and we recommend that TaylorF2 at 3.5 PN order be deployed as search templates below a total mass of 12M\(_{\odot}\). It is quite remarkable to note that up to a total mass of 30M\(_{\odot}\), the uncalibrated EO B model at 3.5PN order is rather close to the calibrated EO B inspiral-merger-ringdown signal. In fact, Ref. [43] found a phase difference of only 0.05 radians after 30 GW cycles, at roughly 3 GW cycles before merger between the EO B at 35P order and the highly accurate equal mass numerical waveform of Caltech/Cornell collaboration. For systems with total mass larger than about 12M\(_{\odot}\), TaylorF2 at 3.5PN might be effectual if the upper cut
frequency is artificially extended to a higher frequency. However, this might require a tweaking of the upper frequency cut-off depending on the noise spectral density of the detector \( \text{ILD} \) and the mass ratio of the system, and either the extension to unphysical values of \( M \) or the inclusion of a p4PN term in the template phase \( \psi \) calibrated to the numerical simulations. We believe that a better alternative for heavier systems are the EOB template calibrated to numerical relativity simulations \( \text{ILD} \). The most recent EOB models are in near perfect agreement with the most accurate numerical simulations to date, although only a small number of systems corresponding to different mass ratios have been studied so far. Nevertheless, a physical model with physical meaningful parameters is a far safer bet than search tem plates unless, of course, if the model in question is not in agreement with the waveform predicted by numerical relativity. So far, the EOB is the best physical model we have and this is what we recommend be used to search for binaries with masses greater than about 12M⊙.

In this paper we adopted the preliminary dual EOB model of Ref. \( \text{ILD} \), because it is the EOB model currently available in LAL and it is used for searches by Initial LIGO. For completeness, here we quantify the closeness between the EOB model used in this paper and the most recent improved version of the EOB model \( \text{ILD} \) (which is similar to the one of Ref. \( \text{ILD} \)). The latter was calibrated to longer and more accurate numerical relativity simulations generated by the Caltech/Cornell pseudo-spectral code \( \text{ILD} \). Reference \( \text{ILD} \) found that the faithfulness of the improved EOB model to these highly accurate numerical waveform simulations is better than 0.996. In Table IV we show both the faithfulness and the e-actualness of the EOB model \( \text{ILD} \) to the improved EOB model \( \text{ILD} \) using noise spectral densities of Initial LIGO as well as the bias in the parameter \( M \) and when achieving the e-actualness. The search for e-actualness in this test is done continuously in the parameter space, instead of using a template bank. Although there is some systematic trend in the tests due to the difference in the EOB model, the main result is that the faithfulness and the e-actualness are always better than 0.97 and 0.995, respectively. A summary of the numerical waveform simulations of Ref. \( \text{ILD} \) are exact, the EOB model of Ref. \( \text{ILD} \) used in this paper is accurate for detection purpose with a loss of event rates of 0.7% and may cause 10% bias in estimating the mass parameter.

In this study we considered PN waveforms in the so-called restricted PN approximation. Restricted waveforms contain only the second harmonic of the orbital frequency. Inclusion of other harmonics is necessary, especially when a binary is arbitrarily oriented with respect to a detector and the component masses are dissimilar. Recent studies \( \text{ILD} \) have shown the tremendous advantage of including these other harmonics in the GW templates. Therefore, it is necessary that a future e-ort undertakes a study similar to this, but includes all the amplitude corrections. Fortunately, Ref. \( \text{ILD} \) has shown that by supplementing the PN results by the available test particle results up to 5.5PN improves the match between the EOB models and numerical relativity simulations. This can be expected to lead to further in proven results in the results obtained here in the future.

### Table IV: E-actualness and faithfulness of the EOB template model used in this paper (and currently employed by Initial LIGO) to the most recently improved EOB model \( \text{ILD} \). We also show the bias in the parameters \( M \) when achieving the e-actualness. For each pair, the top number is Initial LIGO while the bottom number is Advanced LIGO. The sign of the bias is such that in all cases the EOB template slightly overestimate the total mass and underestimate the mass ratio of the improved EOB signal.

<table>
<thead>
<tr>
<th>E-actualness</th>
<th>M -M</th>
<th>Faithfulness</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14;14M)</td>
<td>0.999 -0.0% -1.63%</td>
<td>0.999</td>
</tr>
<tr>
<td>(14;14M)</td>
<td>0.999 -0.0% -1.63%</td>
<td>0.999</td>
</tr>
<tr>
<td>(138;142M)</td>
<td>0.999 0.96% -1.0%</td>
<td>0.992</td>
</tr>
<tr>
<td>(138;142M)</td>
<td>0.999 0.89% -1.49%</td>
<td>0.995</td>
</tr>
<tr>
<td>(5;5M)</td>
<td>0.999 1.32% -2.12%</td>
<td>0.973</td>
</tr>
<tr>
<td>(5;5M)</td>
<td>0.999 2.06% -3.47%</td>
<td>0.976</td>
</tr>
<tr>
<td>(48;52M)</td>
<td>0.999 2.42% -4.08%</td>
<td>0.973</td>
</tr>
<tr>
<td>(48;52M)</td>
<td>0.999 2.11% -3.54%</td>
<td>0.976</td>
</tr>
<tr>
<td>(10;10M)</td>
<td>0.999 2.70% -4.62%</td>
<td>0.974</td>
</tr>
<tr>
<td>(10;10M)</td>
<td>0.999 2.59% -4.29%</td>
<td>0.962</td>
</tr>
<tr>
<td>(95;105M)</td>
<td>0.998 1.40% -1.94%</td>
<td>0.974</td>
</tr>
<tr>
<td>(95;105M)</td>
<td>0.997 2.67% -4.54%</td>
<td>0.964</td>
</tr>
<tr>
<td>(15;15M)</td>
<td>0.999 4.80% -9.98%</td>
<td>0.987</td>
</tr>
<tr>
<td>(15;15M)</td>
<td>0.999 2.49% -4.23%</td>
<td>0.973</td>
</tr>
<tr>
<td>(25;25M)</td>
<td>0.995 4.95% -12.6%</td>
<td>0.982</td>
</tr>
<tr>
<td>(25;25M)</td>
<td>0.994 3.00% -5.56%</td>
<td>0.985</td>
</tr>
</tbody>
</table>
We thank Luc Blanchet for useful comments and Steve Fairhurst for discussions.

Acknowledgments

We acknowledge support from NSF Grant No. PHY-0603762.
