A n Estimate of the Branching Fraction of B^0 to $J^{PC}=0^-$ Decay

S. Nussinov1,2 and A. Sofer1

1Tel Aviv University, Tel Aviv, 69978, Israel
2Schm id College of Science, Chapman University, Orange, CA 92866, USA

(Dated: August 11, 2013)

We calculate the expected branching fraction of the second-class-current decay $B^0 \to J^{PC}=0^-$, motivated by a recent experiment upper limit in determinations of this quantity. The largest contribution to the branching fraction is due to the intermediate state $a_0(980)$ scalar meson, assuming it is a ud state. Smaller contributions arise from $a_1(1450)$, (770), and (1450). Our calculated values are substantially below the experimental upper limit, and are smaller still if the $a_0(980)$ is a four-quark state, as often suggested. Thus, a precise measurement or tight upper limit has the potential to determine the nature of the $a_0(980)$, as well as search for new scalar interactions.

PACS numbers:

I. INTRODUCTION

In a recent paper1, we considered the branching fraction of the isospin-violating decay $B^0 \to J^{PC}=0^-$, motivated by a recent experiment upper limit in determinations of this quantity. The largest contribution to the branching fraction is due to the intermediate state $a_0(980)$ scalar meson, assuming it is a ud state. Smaller contributions arise from $a_1(1450)$, (770), and (1450). Our calculated values are substantially below the experimental upper limit, and are smaller still if the $a_0(980)$ is a four-quark state, as often suggested. Thus, a precise measurement or tight upper limit has the potential to determine the nature of the $a_0(980)$, as well as search for new scalar interactions.

In our calculations we take $Z_{gg} = 0$, as this yields the most conservative limit on B^0, and since the modification for finite values of Z_{gg} is straightforward.

Calculations of B^0 in Refs.2 rely on extrapolations utilizing intermediate states, low mass $J^{PC}=0^-$ and 0^- states. Obvious intermediate states for the decay $B^0 \to J^{PC}=0^-$ are the ground-state ud mesons (770) and (980). In the case of $B^0 \to J^{PC}=0^-$, these are off-shell processes, and the contributions of these resonances are suppressed. On the other hand, we do have now on-shell decays involving the next 1 and 0-- states. These are the $a_1(1450)$ and $a_2(1450)$, which contribute to the P- and S-wave components of the decay, respectively.

The $B^0 \to J^{PC}=0^-$ decay is a ground state and first radial excitation, respectively. However, the theoretical assignment of the $a_0(980)$ (and, consequently, that of the $a_0(1450)$ as well) is ambiguous, generating the largest uncertainty in both B and B^0. Conversely, information on these branching fractions can help resolve the longstanding dilemma of the ΛK-threshold state $a_0(980)$. The significance of branching fractions of $a_0(980)$ and $f_0(980)$ decays to $K \bar{K}$, despite the very small phase space, seem consistent with these mesons being the ground states of the quark-meson coupling nonet, motivating a four-quark (udss) interpretation3. In this case, the ud scalar ground state should most likely be identified with $a_0(1450)$. However, this would make the scalar 190 MeV heavier than the axial-vector state $a_1(1260)$, implying a pattern of S splitting different from what is observed in any other $L=1$, $q \bar{q}^5$ system. The most appealing possibility, namely, that the two 980 MeV states are indeed just ud states, may have been partially resurrected in recent work4, in which the $D_0(2005)$ ukksson six-quark vertex was utilized to admix the 2- and 4- quark states.

I. INTRODUCTION

In a recent paper1, we considered the branching fraction of the isospin-violating decay $B^0 \to J^{PC}=0^-$, motivated by a recent experiment upper limit in determinations of this quantity. The largest contribution to the branching fraction is due to the intermediate state $a_0(980)$ scalar meson, assuming it is a ud state. Smaller contributions arise from $a_1(1450)$, (770), and (1450). Our calculated values are substantially below the experimental upper limit, and are smaller still if the $a_0(980)$ is a four-quark state, as often suggested. Thus, a precise measurement or tight upper limit has the potential to determine the nature of the $a_0(980)$, as well as search for new scalar interactions.

In our calculations we take $Z_{gg} = 0$, as this yields the most conservative limit on B^0, and since the modification for finite values of Z_{gg} is straightforward.

Calculations of B^0 in Refs.2 rely on extrapolations utilizing intermediate states, low mass $J^{PC}=0^-$ and 0^- states. Obvious intermediate states for the decay $B^0 \to J^{PC}=0^-$ are the ground-state ud mesons (770) and (980). In the case of $B^0 \to J^{PC}=0^-$, these are off-shell processes, and the contributions of these resonances are suppressed. On the other hand, we do have now on-shell decays involving the next 1 and 0-- states. These are the $a_1(1450)$ and $a_2(1450)$, which contribute to the P- and S-wave components of the decay, respectively.

The $B^0 \to J^{PC}=0^-$ decay is a ground state and first radial excitation, respectively. However, the theoretical assignment of the $a_0(980)$ (and, consequently, that of the $a_0(1450)$ as well) is ambiguous, generating the largest uncertainty in both B and B^0. Conversely, information on these branching fractions can help resolve the longstanding dilemma of the ΛK-threshold state $a_0(980)$. The significance of branching fractions of $a_0(980)$ and $f_0(980)$ decays to $K \bar{K}$, despite the very small phase space, seem consistent with these mesons being the ground states of the quark-meson coupling nonet, motivating a four-quark (udss) interpretation3. In this case, the ud scalar ground state should most likely be identified with $a_0(1450)$. However, this would make the scalar 190 MeV heavier than the axial-vector state $a_1(1260)$, implying a pattern of S splitting different from what is observed in any other $L=1$, $q \bar{q}^5$ system. The most appealing possibility, namely, that the two 980 MeV states are indeed just ud states, may have been partially resurrected in recent work4, in which the $D_0(2005)$ ukksson six-quark vertex was utilized to admix the 2- and 4- quark states.
The plan of this note is as follows. As we did in Ref. [1], we discuss separately our estimates of the P- and S-wave contributions to B^0. In Sec IV, we present the more robust results for the P-wave part, calculating upper bounds on the contributions of the $0^- + 0^-$ using recently published experimental data involving 0^- and 0^- decays. In Sec III, we present the less clear-cut estimate of the S-wave component. This contribution depends most strongly on whether the $a_0(980)$ is a quark state or the ud ground state. In any event, our predictions for $B(1^+ 0^-)$ lie significantly below the BABAR limit [3]. A brief summary and future outlook are given in Sec IV.

II. THE $L=1$ CONTRIBUTION

In Ref. [1], we obtained the $L=1$ contribution to B assuming that it was dominated by the s, an assumption justified by the large branching fraction $B(1^- 0^-)$. We compared this branching fraction to B using the ratio of coupling constants $g = g$, where g was related to the width of the s, and g was obtained by analyzing the Dalitz-plot distribution of the decay $1^- + 0^-$. Taking the scalar contribution to $1^- + 0^-$ from $B(1^- 0^- 0^-)$.

This procedure is not directly applicable to B^0, since there is no experimental information on the Dalitz-plot distribution of the decay $0^- + 0^-$, nor a measurement of $B(0^- 0^- 0^- 0^-)$. Therefore, we make use of the fact that the branching fraction $B(0^- 0^- 0^- 0^-)$ depends on the coupling constant $g = g$, under the assumption that the states dominate the decay $0^- + 0^-$. This will yield a conservative upper bound on g_0, from which we obtain an upper bound on the contribution to $0^- + 0^-$. We discuss the likelihood of this assumption and its implications below.

The differential branching fraction of $0^- + 0^-$ as a function of the Dalitz-plot position is given by

$$\frac{d \sigma}{dQ} = \frac{(g_0 g)^2}{384 \pi^3 m^2} Q^2 M^r \int dX dY;$$

where

$$Q = \frac{m - 3m}{3m}$$

is the kinetic energy in the decay, and

$$X = \frac{P}{Q} (T, T);$$

$$Y = \frac{3}{Q} 1$$

are the Dalitz-plot variables, with T, being the kinetic energy of the pion with charge c. Assuming dominance, we obtain from Eq. (15) of Ref. [1] the reduced matrix element

$$M^r = \frac{1}{2} \frac{1}{2} (Y^2 + X^2) \frac{1}{2} \frac{1}{2} (Y^2 + X^2);$$

where

$$r = \frac{m - 1}{m^2 + 1} \frac{m - 1}{m^2 + 1} = 1 \times 0.71; \text{ (8)}$$

The product $(g_0 g_0)^2$ is then found by integrating Eq. (8) over the Dalitz plot. In the $0^- + 0^-$ case, we exploit the small value of r to simplify the expression by expanding in r. Due to the $0(1)$ value of r for $0^- + 0^-$, we resort to numerical integration, which yields

$$Z = \int X dY = 2 \pi; \text{ (9)}$$

From this we obtain, using $B(0^- + 0^-) = 3.7 \times 10^{-3}$ [3] and $g = 6 \times 10^{-5}$,

$$g_0 < 0.525; \text{ (10)}$$

As a cross check, we apply the procedure to the decay $0^- + 0^-$, obtaining $g_0 < 0.52$. This value is to be compared to the one obtained from the more precise Dalitz-plot analysis in Ref. [1], $g_0 = 0.585$. The factor of 6 ratio between the results reflects the fact that the procedure used here yields but a conservative upper bound, obtained by assuming that the decay $0^- + 0^-$ is dominated by the resonances. This assumption is manifestly false, as the $0^- + 0^-$ Dalitz-plot distribution is in much better agreement with a distribution than with that expected from dominance [3]. By contrast, in Ref. [1], the value of g obtained from the Dalitz-plot distribution yielded good agreement between the expected and measured values of $B(0^- + 0^-)$.

With this point in mind, we proceed to use the upper bound on g_0 to calculate the upper bound on the contribution to $B(1^- 0^-)$. We do this by relating $B(1^- 0^-)$ to $B(1^- 0^-)$ via the ratio of coupling constants and phase-space factors

$$\frac{B(1^- 0^-)}{B(1^- 0^-)} = \frac{g_0}{g_0} \frac{2V(1^- 0^-)}{V(1^- 0^-)};$$

where (\cdot) indicates that the 0^- is observed in the 0^- final state, and $V(X)$ is the integral over the Dalitz plot of the three-body decay X. The ratio of phase-space integrals is 0.06, with up to 15% variation depending on whether one uses Blatt-Weisskopf and is dependent on the angular distribution of the decay. Using $B(1^- 0^-) = 3 \times 10^{-5}$ [3], we obtain

$$B(1^- 0^-) < 2 \times 10^{-8};$$

more than two orders of magnitude below the BABAR upper limit, Eq. (3).

Next, we evaluate the contribution of the on-shell 0^-. One expects that this state, being a radial excitation and hence having a node in its wave function, couples to the ground-state particles and more weakly than
We hypothesize that this 5 suppression mechanism works equally strongly for the final states 0 and 5, leading to an equality of the ratios of the squared matrix elements

$$\frac{\mathcal{B}(\pi^- \rightarrow ^0 \pi^- \pi^+ \pi^-)}{\mathcal{B}(\pi^- \rightarrow ^5 \pi^- \pi^+ \pi^-)} \approx \frac{\mathcal{B}(\pi^- \rightarrow ^5 \pi^- \pi^+_\alpha \pi^-)}{\mathcal{B}(\pi^- \rightarrow ^0 \pi^- \pi^+_\alpha \pi^-)}$$

The relevant phase-space integral ratios are

$$\frac{\mathcal{B}(\pi^- \rightarrow ^0 \pi^- \pi^+ \pi^-)}{\mathcal{B}(\pi^- \rightarrow ^5 \pi^- \pi^+ \pi^-)} = 0.058;$$
$$\frac{\mathcal{B}(\pi^- \rightarrow ^5 \pi^- \pi^+_\alpha \pi^-)}{\mathcal{B}(\pi^- \rightarrow ^0 \pi^- \pi^+_\alpha \pi^-)} = 2.5$$

We use the upper bound of Eq. (12) and the central value plus one standard deviation of the recent Belle result to obtain the conservative upper limit

$$\mathcal{B}(\pi^- \rightarrow ^0 \pi^- \pi^+ \pi^-) < 8 \times 10^{-5};$$

We note that this is an upper bound both due to the way we use Eq. (15) and since Eq. (12) is an upper bound.

III. THE L = 0 CONTRIBUTION

Calculating the $L = 0$ contributions to B^0 is not as straightforward as the $L = 1$ case, where one can make use of the dominant coupling to the leptonic vector current. Therefore, it is important to evaluate the scalar component using different methods, as has been done for the $\pi^- \rightarrow \pi^- \pi^+ \pi^-$ decay. It should be noted that these calculations are performed under the assumption that the relevant scalar resonances are ud states. The coupling of a 4-quark state to the ud scalar current is $\Delta f h^3$ suppressed, making it significantly smaller than the predictions.

Here we perform a more detailed version of the calculation used in Ref. [1]. We begin with the ratio of branching fractions

$$\mathcal{R}_{a_1}^{a_0} = \frac{\mathcal{B}(\pi^- \rightarrow a_0)}{\mathcal{B}(\pi^- \rightarrow a_1)} = \frac{p_{a_0}}{p_{a_1}} \frac{0\pi^+}{0\pi^-} \frac{\mathcal{J}_1}{\mathcal{J}_1} J_{1/2}^2;$$

where a_0 stands for either $a_0(980)$ or $a_0(1450)$, a_1 is the $a_1(1260)$. p_{a_i} is the rest-from mass term in the product of the decay $\pi^- \rightarrow X \pi^- \pi^+ \pi^-$. $J_{1/2}$ is the hadronic axial vector current, and $J_{1/2}^2$ is the leptonic current. The calculation of the leptonic parts of this ratio is well defined, while all the uncertainty in the hadronic parts comes down to a single parameter, $\mathcal{R}_{a_1}^{a_0}$, which shall be defined shortly. With this in mind, we can take the a_0 matrix element to be

$$\mathcal{R}_{a_1}^{a_0} = f_{a_0} \frac{d}{m_{a_0}} \mathcal{R}_{a_1}^{a_0} \mathcal{R}_{a_1}^{a_0};$$

where f_{a_0} is an isospin-violation suppression factor, and $\mathcal{R}_{a_1}^{a_0}(x)$ is the scalar current operator. The weak vector current is conserved up to the difference between the u- and d-quark masses, plus a smaller electromagnetic part that we neglect. Therefore,

$$\mathcal{R}_{a_1}^{a_0}(x) \propto \mathcal{R}_{a_1}^{a_0}(x) \propto \mathcal{R}_{a_1}^{a_0}(x);$$

Using this relation in Eq. (15) yields

$$f_{a_0} = \frac{m_u}{m_{a_0}};$$

We use the fact that both the a_0 and the a_1 are P-wave states to relate the axial and scalar decay constants

$$\mathcal{R}_{a_1}^{a_0} = \frac{m_u}{m_{a_0}};$$

We note that this is renormalization of applying SU(6) or, in this case, just SU(4) avor-symmetry to the $(L = 0)$ 15-plet plus singlet containing π, η, and σ, or the $(L = 1)$ states a_0, a_1, f_0, and h_1. Naively, one expects in Eq. (17) to be of order unity. However, this parameter incorporates all the hadronic uncertainty in our procedure. With Eqs. (15) and (17), Eq. (17) become, after spin averaging and index contraction,

$$\mathcal{R}_{a_1}^{a_0} = \frac{1}{2} (m_u m_{a_0} m_{a_1})^{-1/2} m^2 a_1 a_0 a_1 - 2$$

This yields the branching fractions

$$\mathcal{B}(\pi^- \rightarrow a_0(980) \pi^-) = 1 \times 10^{-6} \times 10^{-6};$$
$$\mathcal{B}(\pi^- \rightarrow a_0(1450) \pi^-) = 6 \times 10^{-5} \times 10^{-6};$$

where, as in Ref. [1], we chose the mass difference of the two light quarks to be 4 MeV [13] and, assuming that the $\pi^0 \pi^- \pi^- \pi^+$ decay is dominated by the a_1, we took $\mathcal{R}_{a_1}^{a_0} = 0.058$. We compare $\mathcal{B}(\pi^- \rightarrow a_0(980) \pi^-)$ to $\mathcal{B}(\pi^- \rightarrow a_0(1450) \pi^-)$ obtained from the more elaborate calculation of Ref. [1], with the contribution to $\mathcal{B}(\pi^- \rightarrow a_0(1450) \pi^-)$ of 5 $\times 10^{-6}$. This yields $\mathcal{R}_{a_1}^{a_0} = 3 \times 10^{-7};$

The $a_0(1450)$ contribution to $\pi^- \pi^- \pi^+ \pi^-$ depends also on the branching fraction $\mathcal{B}(\pi^- \rightarrow a_0(1450) \pi^- \pi^- \pi^+ \pi^-), regarding
which there is only partial information. However, from the branching-fraction measurements that have been made \cite{13}, it is clear that \(B(a_0(1450)!^0) < 0.3 \). Hence

\[
B(\uparrow a_0(1450), \uparrow 0) < 1 \times 10^{-7} ; \quad (25)
\]

If the \(a_0(1450) \) is a radial excitation, which is the case if the \(a_0(980) \) is the ud ground state, then \(B(\uparrow a_0(1450), \uparrow 0) \) should be suppressed by an additional wave-function overlap factor.

Next, we look at the contribution of the \(a_0(980) \) to \((\uparrow a_0(1450), \uparrow 0) \), which can be extracted from the relation

\[
\frac{B(\uparrow a_0(1450), \uparrow 0)}{B(\uparrow a_0(1450), \uparrow 0)} \approx \frac{\langle \uparrow \rangle}{\langle \uparrow \rangle} \quad \text{equation} (26)
\]

where

\[
R = \frac{M(a_0(1450)!^0)}{M(a_0(980)!^0)} \quad (27)
\]

is the square of the ratio between the relevant hadronic-decay matrix elements. We assume that \(R \) equals the corresponding ratio of \(a_0(1450)-\text{decay matrix elements} \), and is hence obtained from

\[
R = \frac{B(a_0(1450)!^0)}{B(a_0(1450)!^0)} \quad (28)
\]

where \(p_x \) is the \(a_0(1450)-\text{rest-frame momentum of the products of the decay a}_0 \). Even though the 50% error \cite{13} on the ratio of branching fractions appearing in Eq. \((28) \) and the uncertainty on the \(a_0(1450) \) width, \(R \) comes out in the range \([0.25;1.25]\). The ratio of the products of the decay \(a_0(1450) \) must, for the branch fraction for which we have some dependence on what one takes for the \(a_0(980) \) width. Using

the range for \(B \) from Eq. \((26) \), we obtain

\[
B(\uparrow a_0(980), \uparrow 0) \approx 0.2 \text{ to } 1 \times 10^{-6} ; \quad (29)
\]

IV. CONCLUSIONS

Combining Eqs. \((12) \), \((13) \), \((25) \), and \((29) \), we obtain the branching fraction in it

\[
B(\uparrow 0) < 1 \times 10^{-6} ; \quad (30)
\]

in no conflict with the experimental upper limit, Eq. \((3) \), which is about two times greater. Our result is dominated by the \(a_0(980) \) contribution, assuming it is a ud state.

The experimental limit was obtained with only a third of the currently available BaBar and Belle data sets, and with the reconstructed only in the final state. Therefore, an improved limit in the limit can be expected from the current generation of B factories, but probably not to the level of Eq. \((31) \). By contrast, a Super B factory \cite{14}, with two orders of magnitude more luminosity, will be able to use \(B \) and \(B^0 \) to investigate the nature of the \(a_0(980) \) and to search for new interactions mediated by heavy scalars \cite{1}.

Acknowledgments

This research was supported in part by grant number 2006219 from the United States-Israel Binaational Science Foundation (BSF), Jerusalem, Israel. The authors thank Leonid Frank and Swagato Banerjee for useful discussions and suggestions.

\[14\] M. Bona et al. \texttt{[arXiv:0709.0451 [hep-ex]]}.