The MiniBooNE anomaly, the decay $D^+_h \rightarrow \mu^+$ and heavy sterile neutrino

S.N. Gninenko and D.S. Gorbunov

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312

(Dated: August 15, 2013)

It has been recently suggested that the anomalous excess of low-energy electron-like events observed by the MiniBooNE experiment, could be explained by the radiative decay of a heavy sterile neutrino h of the mass around 500 MeV with a muonic mixing strength in the range $|U_{\mu h}|^2 \sim (1 \text{ - } 4) \times 10^{-3}$. If such h exists its admixtures in the decay $D^+_h \rightarrow \mu^+$ would result in the decay $D^+_h \rightarrow \mu^+$ with the branching fraction $\text{Br}(D^+_h \rightarrow \mu^+)$ $(1.2 \text{ - } 5.5) \times 10^{-3}$, which is in the experimentally accessible range. Interestingly, the existence of the $D^+_h \rightarrow \mu^+$ decay at this level may also explain why the currently measured decay rate of $D^+_h \rightarrow \mu^+$ is slightly higher than the predicted one. This enhances motivation for a sensitive search for this decay mode and makes it interesting and complementary to neutrino experiments probing sterile-active neutrino mixing. Considering, as an example the CLEO-c experiment, we suggest to perform a search for the decay $D^+_h \rightarrow \mu^+$ with the analysis of existing data. The discrepancy between the measured and theoretical description of the decay $D^+_h \rightarrow \mu^+$ is also discussed in brief.

PACS numbers: 14.80.-j, 12.20.Fv, 13.20.Cz

I. INTRODUCTION

The MiniBooNE collaboration, which studies the interactions of neutrinos from the 7Be decays in light at FNAL, has observed an excess of low energy electron-like events in the energy distribution of charge-current quasi-elastic electron neutrino events [1]. This anomaly has been recently further confirmed with larger statistics [2]. As the collaboration has not yet clarified the origin of the excess, several models involving new physics were considered to explain the discrepancy, see e.g. [2] and references therein.

It is well known, that the neutrino weak avor eigenstates $(e\,;\,\mu\,;\,\tau\,;\,\nu_{\tau})$ need not coincide with the mass eigenstates $(1\,;\,2\,;\,3\,;\,4\,;\,\ldots)$, but would, in general, be related through a unitary transformation. Such a generalization of mixing:

$$\begin{align*}
\begin{array}{c}
\begin{bmatrix}
X \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \
\end{array}
\end{align*}
\begin{align*}
U_{\mu h}^2 i = 1
\end{align*}
$$

results in neutrino oscillations when the mass differences are small, and in decays of heavy neutrinos when the mass differences are large. In the recent work [3] it has been shown that the MiniBooNE excess could be explained by the production of a sterile neutrino, h, of the mass around 500 MeV, which, being created by mixing in neutral-current interactions, decay (dominantly) into photons and light neutrinos in the MiniBooNE detector target. Such kind of h could arise in many interesting extensions of the Standard Model (SM), such as GUTs, Superstring inspired models, Left-Right Symmetric models, and others. It can decay radiatively into μ^+, if e.g. there is a non-zero transition magnetic moment (μ_r) between the h and active neutrino ν. The required mixing strength

$$|U_{\mu h}|^2 \sim (1 \text{ - } 4) \times 10^{-3}$$

was found to be consistent with existing experimental

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{The shaded area is the experimentally allowed region of the mixing strength $|U_{\mu h}|^2$ calculated for $\mu_r = 10^{-3}$.}
\end{figure}
data for τ^\prime (1.6) 10^9 b (here b is the Bohr magneton) [3]. For illustration, experimentally allowed region of the mixing strength $J_{h'f}$ in the m mass range around 500 M eV is shown in Fig. 1 for $\tau^\prime = 10^9$ b together with the parameter region favorable for the explanation of the M in B coE anomaly. It worth to mention that the model [3] is also consistent with the absence of a significant low-energy excess in M in B coE antineutrino data [5].

In this letter we put forward an idea that sterile-active neutrino mixing in the allowed range shown in Fig. 1 could be tested by searching for the admixtures of h' in the decay D_{s}^+ \rightarrow h'. In addition we point out that the present discrepancy of about 3 between the measured and predicted decay rate of D_{s}^+ \rightarrow h' could be explained by the unrecognized contribution from the decay D_{s}^+ \rightarrow h'.

II. THE DECAY D_{s}^+ \rightarrow h' AND HEAVY NEUTRINO

If the h' exists, it could be a component of τ^\prime, and as follows from Eq. (1), would be produced by any source of h' according to the mixing $J_{h'f}$ and kinematical constraints. In particular, h' could be produced in any lepton-to- and semi-lepton decays of sufficiently heavy mesons and baryons. For the interesting mass range $m_{h'}$ $=$ 400 - 600 M eV the most promising process is the leptonic decay D_{s}^+ \rightarrow h'.

In the SM, D_s meson decays leptonically via annihilation of the c and \bar{c} quarks through a virtual W^+. The decay rate of this process is given by

$$\langle D_{s}^+ \rightarrow 1 \rangle = \frac{G_F^2}{8} \left(\frac{m_{D_s}^2}{M_{D_s}} \right)^2 \frac{m_{h'}}{m_{c}}$$

where the M_{D_s} is the D_{s}^+ meson mass, m_{c} is the mass of the charged lepton, f_{D_s} is the decay constant, V_{cs} is the Cabibbo-Kobayashi-Maskawa matrix element which value equals 0.97334 [6].

The decay rate (3) is suppressed by the lepton mass squared, since the very leptonic decay is due to chiral-ψ.

The mixing between the sterile neutrino and muon neutrino results in the decay D_{s}^+ \rightarrow h', as illustrated in Fig. 2. For the interesting mass interval $m_{h'}$ $=$ 400 - 600 M eV the chiral-ψ is mostly due to sterile neutrino m mass which results in

$$\left(D_{s}^+ \rightarrow h' \right) = \left(D_{s}^+ \rightarrow \psi \right) \frac{m_{h'}}{m_{\mu}}$$

Using Eq. (2) and taking into account the most precise determination of the D_{s}^+ branching ratio $Br(D_{s}^+$ \rightarrow h') \approx 0.565 \pm 0.045 \pm 0.017% [7], we find that the branching fraction of D_{s}^+ \rightarrow h' is in the experimentally accessible range:

$$Br(D_{s}^+ \rightarrow h') \approx 1\% \pm 5\% \left(\frac{m_{h'}}{m_{\mu}} \right)^2$$

III. DIRECT EXPERIMENTAL SEARCH FOR THE DECAY D_{s}^+ \rightarrow h'

Consider now, as an example, the CLEO-c experiment, where the search for the decay D_{s}^+ \rightarrow h' could be performed. In this experiment several of the most precise measured properties of D_{s}^+ mesons have been performed by using the CLEO-c detector at CESR [8]. Recently, the CLEO collaboration studying the process $e^+ e^- \rightarrow D_{s}^+ D_{s}^- \rightarrow D_{s}^+ h' + D_{s}^+$ has reported on measured events of the decay constant f_{D_s} of D_s, D_s, and D_{s}^+ mesons to a precision of a few % [7, 9], see also [10].

The detector is well equipped to identify and measure the momenta, energy, and directions of charged particles and photons. The experiment was performed at a centre-of-mass energy of 4170 M eV, where the cross section of a charm meson pair production is relatively large. This allowed to fully reconstruct the decay D_{s}^+ as a tagged and study the leptonic decay properties of the other through the decay chains

$$e^+ e^- \rightarrow D_{s}^+ D_{s}^- \rightarrow D_{s}^+ h' + D_{s}^+$$

The decays D_{s}^+ \rightarrow h' were identified by selecting the events with a single single meson missing massless neutrino, for which the mesons mass squared, M_{M^2}, evaluated by taking into account the reconstructed h', should peak at zero. The M_{M^2} is calculated as

$$M_{M^2} = \left(\frac{E_{CM}}{E+E} \right)^2$$

where E_{CM} and p_{CM} are the centre-of-mass energy and 3-mom entum of the fully reconstructed h', and E and p are the energy and 3-mom en tum of the photon and h'.

Similarly to this approach, the basic idea of probing the model is to search for a peak corresponding to the value $m_{h'}^2$ in the M_{M^2} distribution. It should be calculated taking into account the measured properties of observed D_s, D_{s}^+ and photon from the decay.
chains:
\[
\begin{align*}
\text{e}^+ \text{e}^- D_s D_s^+ D_s D_s^+ D_s^+ + h^+ \\
\text{e}^+ \text{e}^- D_s D_s^+ D_s D_s^+ D_s^+ + h^+ \\
\text{e}^+ \text{e}^- D_s D_s^+ D_s D_s^+ D_s^+ + h^+ \\
\text{e}^+ \text{e}^- D_s D_s^+ D_s D_s^+ D_s^+ + h^+ \\
\end{align*}
\]
where \(h^+ \) denotes a photon from the dominant decay mcode \(h^+ \) of sterile neutrino. In the largest part of the \((\mathcal{J}_h^+ f^+ ; \nu)\) parameter space covered by M inBooNE, the \(h^+ \) is expected to be a short-lived particle with the lifetime less than \(10^9 \) s [3]. Then, its decay length is significantly less than the radius of the CLEO detector (95 cm), and most of the \(h^+ \) decays would occur inside the CLEO-c detector ducidal volume in the vicinity of the prn any vertex.

The experimental signature of the decay \(h^+ \) is a peak in the mass range 0.16–0.36 GeV\(^2\) of the distribution of (7). Using Eqs.(2,4) and the total number of \((2355 \pm 138)^+ \) events observed by CLEO-c with 600 pb\(^{-1}\) [7], (5 22) new MeV\(^2\) events are expected to be found at the peak. To obtain the right mass value, the photon from the decay \(h^+ \) should not be used in calculations of Eq.(7). For the energy greater than threshold, \(E_{\gamma > 300 \text{MeV}} \), the \(h^+ \) could be identified as an extra photon in the event candidate for the decay chains (6).

Finally, note that a search for the decay mode \(h^+ \) is also of special interest. Although this decay is subdominant, for the mixing as large as in Eq.(2) its branching fraction could be of the order of \% \% \% [3], and a few events could be observed in the CLEO-c experiment for the 600 pb\(^{-1}\) of data. The experimental signature of the event \(h^+ \) would be two charged tracks originating from a common vertex displaced from the prim any vertex. Since there is no neutrino in the final state, it is possible to reconstruct the invariant mass of the heavy sterile neutrino, that would manifest itself as a peak in the range 0.16–0.36 GeV\(^2\) of the invariant mass squared. An observation of a few \(h^+ \) events with the same invariant mass would provide an excellent cross-check of the model.

IV. THE D\(_s^+\) h\(^+\) DECAYS PUZZLE

Interestingly, the above discussions might be relevant to the discrepancy of about 3 between the measured and predicted rates of \(D_s^+ h^+ \), see e.g. Refs. [7, 9] and discussion therein. Presently, in spite of the substantial theoretical and experimental efforts, the decay rates of \(D_s^+ h^+ \) are measured by the CLEO-c [7], Belle [11], and B AB AR [12] experiments are found to be slightly higher than the predicted one, most accurately calculated in the framework of lattice QCD [13]. Taking into account the most precise results on the \(D_s^+ h^+ \) decay rate from these experiments one arrives at

\[
\frac{\text{exp}(D_s^+ h^+)}{\text{th}(D_s^+ h^+)} = 0.166 \quad 0.060
\]

where \(\text{exp}(D_s^+ h^+ \) and \(\text{th}(D_s^+ h^+ \) are the average measured and predicted values for the \(D_s^+ h^+ \) decay rate, respectively, with the statistical and systematic uncertainties combined in quadrature. Thus, the ratio of Eq.(9) differs from zero by about 2.8 standard deviations.

Various models of new physics giving additional contribution to the rate of \(D_s^+ h^+ \) have been investigated in order to resolve the discrepancy, see e.g. [14, 15]. We propose here that the reason of why the experimental rate of \(D_s^+ h^+ \) is higher than the theoretical expectations may be due the contribution from the decay \(D_s^+ h^+ \).

Consider again, as an example, search for \(D_s^+ h^+ \) events in the CLEO experiment [7]. If the \(h^+ \) from the decay chain (8) is used, the calculated M M \(^2\) should peak at zero regardless of whether or not the \(h^+ \) is produced in the direct \(D_s^+ \) decay. This is valid under assumption that the from the \(h^+ \) decay is light. Thus, the events (8) may be accepted and contribute to the number of the \(D_s^+ h^+ \) signal events. Using Eqs.(3,4,9) one finds that in order to explain the discrepancy the branching fraction of decay mode to sterile neutrinos of mass \(m_s = 400 \)–600 MeV should be within the range

\[
\text{Br}(D_s^+ h^+) = \frac{(9.85 \pm 4.16) \times 10^{-4}}{k}
\]

where factor \(k = \frac{P(D_s^+ h^+)}{P(D_s^+)} \) is the ratio of the overall probabilities for the events (8) and (6) to pass selection criteria in the analysis of \(D_s^+ h^+ \) events in [7]. In this search, for the selection of \(D_s^+ h^+ \) candidates it was required that there should be no additional photon, not associated with the tag, detected in the ECA L with energy greater than \(300 \text{ MeV} \) (photon veto) [7]. The fraction of \(h^+ \) from (8) that would pass this veto cut is roughly estimated to be \(k \sim 40\% \). This results in

\[
\text{Br}(D_s^+ h^+) = (24.5 \pm 10.4) \times 10^{-4}
\]

The corresponding mixing strength is (cf. (5) and (2))

\[
\mathcal{J}_h f^+ = (252 \pm 10.7) \times 3 \times \frac{500 \text{ MeV}^2}{m_s}
\]

The explanation of the M inBooNE anomaly implies some additional contribution to the decay \(D_s^+ h^+ \). However, the regions for the obtained mixing strength of Eq. (12) and branching fraction of Eq. (11) overlap at the level of less than 2 \(\sigma \) with the ranges of Eqs. (2) and (5), respectively, required to explain the M inBooNE anomaly, see also Fig. 1. This enhances motivation for a sensitive search of the decay \(D_s^+ h^+ \).
In close analogy with the case of D_s^-, the mixing (2) can also be probed with a study of the leptonic decay rates of the $D_s^- \rightarrow \mu \nu$ meson. In particular, our model implies the quark singlet to (4) contribution to the total μonic decay rate of $D_s^- \rightarrow \mu \nu$. However, the achieved accuracy in m measurement of this decay rate [6] is worse than that for the $D_s^- \rightarrow \ell \nu$ meson, hence the suggested new contribution is unrecognizable yet.

It should be mentioned that the best precision in m measurement of the decay rate of $D_s^- \rightarrow \mu \nu$ has also been achieved at CLEO [9], and the result is consistent with theoretical predictions. However, from other m measurements at CLEO [7], based on study of another decay mode of outgoing ℓ-lepton, the obtained decay rate of $D_s^- \rightarrow \mu \nu$ is significantly higher than the predicted one, so that combined branching ratio deviates from the theoretical prediction at the level comparable to Eq. (9). Thus, one may speculate that this discrepancy is due to existence of an additional sterile neutrino coupled to the tau neutrino. Similar to above consideration we found that the m mixing strength required to explain $D_s^- \rightarrow \mu \nu$ discrepancy should be

$$\mathcal{U}_{\mu \tau} = 0.16 \pm 0.29$$

(13)

for the m mass range much below 190 MeV, where phase space suppression is negligible. Note, that this result is consistent with direct experimental limits [16,17].

It is worth noting that heavy sterile neutrinos of mass about 500 MeV and m mixing to muon neutrino as strong as (2), (12) can be searched in other decays of charm hadrons, beauty hadrons and ℓ-leptons. Pure leptonic modes are more promising, since heavy neutrino contribution is enhanced with respect to that of the SM by a square mass ratio of sterile neutrinos and charged lepton. This is not the case for other decay modes which branching ratios are roughly the same as corresponding decay to active muon neutrino multiplied by $\mathcal{U}_{\mu \tau}^2$, and somewhat suppressed due to reduced phase space volume. By making use of general form for m and ℓ-lepton decays to sterile neutrinos presented in Ref. [18] and similar form for baryons [19] one can obtain more accurate estimates.

V. Summary

To summarize, we show that the recently suggested explanation [3] of the MiniBooNE anomaly [1,2] can be probed by studying leptonic decays of charm mesons. This study can be undertaken with already collected data. We speculate that the present 2.8 discrepancy between the measured and predicted rate of $D_s^- \rightarrow \mu \nu$ can be a hint at the presence of heavy sterile neutrino suggested in Ref. [3].

Acknowledgments

We thank F.L. Bezrukov, N.Y. Krasnikov, V.A. Matveev, V.A. Rubakov, and M.E. Shaposhnikov for useful discussions. This work of D.G. was partially supported by the Russian Foundation for Basic Research (RFBR) grant 08-02-00473a, by the Russian Science Support Foundation, by the grants of the President of the Russian Federation Ns-1616.2008.2 and M K-1957.2008.2. S.G. has been supported by the RFBR grants 07-02-00256 and 08-02-91007. D.G. thanks for a hospitality LPPC IT PP EPFL where a part of this work was done.