THEORETICAL MODELING OF STAR-FORMING GALAXIES: EMISSION LINE DIAGNOSTIC GRIDS FOR LOCAL AND LOW-METALICITY GALAXIES

Emily M. Levesque1, Lisa J. Kewley, Kirsten L. Larson

Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822

DRAFT August 10, 2013

ABSTRACT

We use the newest generation of the Starburst99/M appings code to generate an extensive suite of models to facilitate detailed studies of star-forming galaxies and their ISM properties, particularly at low metallicities. The new models used include a rigorous treatment of metal opacities in the population synthesis modeling and more detailed dust physics in the photoionization code. These models span a wide range of physical parameters including metallicity, ionization parameter, and the adoption of both an instantaneous burst and continuous star formation history. We examine the agreement between our models and local (z < 0.1) star-forming galaxy populations from several large datasets, including the Sloan Digital Sky Survey, the Nearby Field Galaxy Survey, and samples of blue compact galaxies and metal-poor galaxies. We find that models adopting a continuous star formation history reproduce the metallicity-sensitive line ratios observed in the local population of star-forming galaxies, including the low-metallicity sample. However, we find that the current models generate an insufficiently hard ionizing radiation field, leading to deficiencies in the [SII] lines produced by the models. We consider the advantages and shortcomings of this suite of models, and discuss future work and in proven methods that can be applied to the modeling of star-forming galaxies.

Subject headings:

1. INTRODUCTION

Robust analysis of star-forming galaxy emission-line spectra can provide constraints on key physical parameters of the ionizing radiation field and the interstellar medium (ISM). The star formation rates (SFRs) of these young galaxies can be estimated from line intensities of the H\alpha line (Hunter & Gallagher 1986, Kennicutt 1998, Böker & Fritz-v. Alvensleben 2005, Kewley et al. 2007) or the [OII] line (Gallagher et al. 1989, Kennicutt 1998, Rosa-Gonzalez et al. 2002, Kewley et al. 2004, Moustakas et al. 2006), and multiple studies have examined the use of the H\alpha equivalent width to estimate the age of the young stellar population in galaxies (Schaerer & Vaucouleurs 1996, Gonzalez Delgado et al. 1999, Fernandes et al. 2003, Martín et al. 2009). Metallicity is another critical parameter in the study of star-forming galaxy ISM environments, shedding light on star formation histories and subsequent chemical evolution. A variety of optical emission line ratio diagnostics have been presented and employed to determine the metallicities, including measuring the [OIII] line ratios to determine electron temperatures, and therefore abundances (e.g., Pelmearb 1967, Garnett 1992), and use of the [NII] 6584/4921 and [NI] 6548/6584 ratio diagnostics from Pettini & Pagel (2004), the [NII] 6584/0 [OIII] 3727 ratio from Kewley & Dopita (2002), and the [OIII] 5007 + [OIII] 4959 + [OIII] 3727/H\beta (R23) ratio (e.g., Pagel et al. 1979, O'Meara 1991, Zaritsky et al. 1994, Phylip 2000, Charlton & Longhetti 2001, Kewley & Dopita 2002, Kobulnicky & Kewley 2004).

Balkin et al. (1981) present the technique of plotting optical emission line ratios, such as [NII] 6584/H\alpha vs. [OIII] 5007/H\beta, on a series of diagnostic diagrams to separate extragalactic objects according to their primary excitation mechanism. These and other diagrams were later used by Veilleux & Osterbrock (1987) to derive a semi-empirical classification scheme to distinguish between star-forming galaxies and active galactic nuclei. Kewley et al. (2001) used these same diagrams to derive a purely theoretical classification scheme, which was later extended by Kewley et al. (2003) and Stasińska et al. (2006) using data from the Sloan Digital Sky Survey. Emission line diagnostic diagrams can also be used to probe the shape of the far-ultraviolet ionizing spectrum of a galaxy (Dopita et al. 2000, Kewley et al. 2001, Kewley & Dopita 2002). As a result, diagnostic grids are often employed to test the agreement of stellar population synthesis and photoionization models with emission-line ratios measured in observations of star-forming galaxies. These comparisons effectively illustrate the evolution and proven methods of such models, and are also useful in highlighting the shortcomings of different grids and the challenges faced in modeling these galaxies and their emission spectra.

Kewley et al. (2001) use both the Starburst99 (Leitherer et al. 1999) and PEGASE (Fioc & Rocca-Volger 1997) evolutionary synthesis models in conjunction with the Mappings III photoionization code (Binette et al. 1985, Sutherland & Dopita 1993) to compute photoionization models that can reproduce a sample of 157 warm-IR starburst galaxies on a variety of optical emission line ratio diagnostic diagrams. They found that assuming a continuous star formation history is not realistic than the assumption of a single instantaneous burst. Moy et al. (2001) found a similar result using the Pagase evolutionary synthesis models and the CLOUDY photoionization code (Ferland 1996) they model young stellar populations along with underlying stellar populations.
tions, and nd that underlying populations with continuous star formation histories are more compatible with observed emission line ratios in starburst galaxies. Fernandes et al. (2003) also nd support for models describing underlying stellar populations in their population synthesis analysis of starburst and H II galaxies, using the Bruzual & Charlot (1993) evolutionary synthesis code.

Kewley et al. (2001) do, however, nd that the ionizing spectra produced by the Starburst99 m odels are not hard enough in the far ultraviolet (FUV) region of the spectrum to reproduce the observed line ratios, and propose that including the e ects of continuum metal opacities in stellar atmospheres should be a way of proving the models accuracy. This discrepancy in the FUV ionizing spectrum is noted in Panuzzo et al. (2003) and Magr i et al. (2003). Starburst99 models at the time used older stellar atmospere opacities that do not include treatmen t of opacities beyond hydrogen and helium (Schmutz et al. 1992), or else are not complete at the high temperatures or densities that prove critical when modeling the FUV ionizing radiation eld (Rausch 1997, Lejeune et al. 1997, 1998).

Another challenge that is common among previous stellar population synthesis and photoionization models is a diiculty in modeling the envir onment of metal poor galaxies (e.g. Fernandes et al. 2003, Dopita et al. 2006, Martin-Manjón et al. 2008). Dopita et al. (2006) use the latest Starburst99 code from Vazquez & Leitherer (2005) and the M appings III photoionization code to generate models of isobaric dusty HI II regions, as well as integrated galaxy spectra that model the galax ies as com positions of multiple H II regions. Dopita et al. (2006) claim that the ionization parameter varies with density, xing the ISM pressure and central cluster mass instead allowing ionization parameter to vary with time, pointing out that ionization parameter also varies with metallicity. Dopita et al. (2006) nd that these models do not reproduce the observed emission line diagnostic ratios of lower metallicity galaxies (2 < 0.92). They also note that the ionizing uxes are not hard enough to agree with the integrated spectra. Martin-Manjón et al. (2008, 2009) take a di erent approach, using sets of stellar yields from Galli et al. (2005) to model the chemical evolution of HI II galaxies, allowing metallicity to evolve with age rather than generating a grid with a range of metallicity. They also use the newer generation of CLOUDY (Ferland et al. 1998) to model the ionizing envir onment of galaxies that have undergone multiple bursts of star formation (Martin-Manjón et al. 2009), but nd that these models do not account for the most metal-de cient H II galaxies in their sample.

Metal-poor galaxies are an important avenue of study in their own right. With a gas-phase oxygen abundance of log(O/H) + 12 < 7.9 (Yin et al. 2007), they offer a relatively pristine pre-enrichment ISM in which star formation, as well as current and previous episodes of enrichment, can be examined (Brown et al. 2008). These galaxies also pose challenges to scenarios seeking to reproduce their metal-poor envir onment through a variety of evolutionary mechanisms (see Kewley et al. 2007 and references therein). It has also recently been proposed that the host galaxies of long-duration gamma ray bursts belong to the metal-poor galaxy population (Stanek et al. 2006, Fruchter et al. 2006, Kewley et al. 2007, M ojz et al. 2008). Proper modeling of these galaxies is critical to our understanding of the star formation processes and evolving stellar populations present in such environments.

Here we present models generated using the Vazquez & Leitherer (2005) Starburst99 stellar population synthesis code and the latest generation of the M appings III code, with recent improvements that include a more rigorous treatment of dust (Groves et al. 2004). Our models are tailored towards addressing the diiculties found in past work with producing a harder FUV spectrum; we do this by adopting the W M BASIC stellar atmosphere models of Pauldrach et al. (2001) and the CM FGEN H IIler & M.iller (1998) atmospheres, both of which include the rigorous treatment of continuum metal opacities that were suggested in Kewley et al. (2001). Our grid was also designed to precisely model the emission line ux of the local dark matter population, including low- and high-metallicity galaxies, adopting the full range of metallicity available in the evolutionary tracks published by the Geneva group (Schaller et al. 1992; Schaerer et al. 1993a, 1993b; Charbonnel et al. 1993).

In this paper we describe our new grid of stellar population synthesis models, detailing the inputs and free parameters that we adopt when generating the grid and examining the ionizing FUV spectra that are produced by Starburst99 in detail (x 2). We consider how these spectra a ect the behavior of a variety of optical emission line diagnostics (x 3). With these diagnostic ratios, we generate a series of optical emission line diagnostic diagrams, and compare our models to spectra of a variety of nearby (z 0.1) galaxy populations to assess their agreement (x 4). Finally, we consider the results of these comparisons and discuss potential future work in this area (x 5).

2. STARBURST 99/MAPPINGS III MODEL GRIDS

2.1. M odel Grid Parameters

To model our sample of galaxies, we have used the Starburst99 code (Leitherer et al. 1999, Vazquez & Leitherer 2005) to generate theoretical spectral energy distributions (SEDs), which in turn were used in the M appings III photoionization models to produce model galaxy spectra that could be compared to our observations. Starburst99 is an evolutionary synthesis code that can be used to generate synthetic ionizing far-ultraviolet (FUV) radiation spectra as a function of metallicity, star formation history, and the age and evolution of the stellar populations. These populations are produced by use of model stellar atmospheres and spectra along with evolutionary tracks for massive stars. For this work, we have used a Salpeter initial mass function (Salpeter 1955) with a 100 M upper mass boundary, along with Starburst99's Pauldrach/H IIler model atmospheres. These models play the W M BASIC wind model of Pauldrach et al. (2001) for younger ages when O stars dominate the luminosity (< 3 Myr), and the CM FGEN H IIler & Miller (1998) atmospheres for later ages at which W OIR asy tellar stages dominate. This di ers from the Starburst99 models presented in Dopita et al. (2000) and Kewley et al. (2001), which adopt the plane-parallel Lejeune et al. (1997) grid of atmospheres along with the Schmutz et al. (1992) extended model atmospheres for stars with higher winds.
The Schnutz et al. (1992) models, which include the critical Wolf-Rayet phase, only include continuous opacities for hydrogen and helium, neglecting what are expected to be considerable effects from continuum metal opacities. Kepley et al. (2001) suggest this as a potential shortcoming in their models, proposing that the inclusion of continuum metal opacities will result in a fraction of higher-energy radiation being absorbed and reemitted at lower energies, in the region of the FUV spectrum that is responsible for ionizing the optically thin lines. The Paulinich et al. (2001) and Hillier & Miller (1998) models address this shortcoming by including rigorous non-LTE treatments of metal opacities. In conjunction with the Paulinich/Hillier atomospheres, we also adopt two different sets of evolutionary tracks produced by the Geneva group, and consider the particulars of these tracks' mass loss rates (see Section 2.2). Starburst99 generates the analytic synthetic FUV spectrum output through use of the isochrone synthesis method first introduced by Charlie & Buzzial (1991), tying isochrones to the evolutionary tracks across different mass ranges rather than discretely assigning stellar mass bins to specific tracks.

The resulting FUV spectrum is then taken as input by the Mappings III code. The Mappings shock and photoionization code was originally developed by Brattee et al. (1985), in proved by Sutherland & Dopita (1993), and used in Dopita et al. (2000) and Kepley et al. (2001). The recent Mappings output is the same as that of Brattee et al. (2000) and Snijders et al. (2007), including a more sophisticated treatment of dust (Grove et al. 2004) that is adopted in our models, which properly treats the effects of absorption, reionizing, and photoelectric heating by the grains - for a more detailed discussion, see Grove et al. (2004) and Snijders et al. (2007). Taking the synthetic ionizing FUV spectrum output of Starburst99 and an adopted nebular geometry model, which we assume to be plane-parallel, we select a variety of electron densities and ionization parameters as inputs. Using these parameters in Mappings III, we computed a complete grid of plane-parallel isobaric photoionization models.

When generating our Starburst99/Mappings III models, we adopted a broad grid of input parameter sets to facilitate comparison with a wide range of galaxy samples.

Star Formation History (SFH): We generate models both for a zero-age instantaneous burst of star formation, with a fixed mass of 10^9 M$_\odot$, and a continuous SFH where the star formation rate (SFR) is constant at a rate of 1 M$_\odot$ per year, starting from an initial IMF and assuming a stellar population that is large enough to fully sample the IMF at high masses.

Metallicity: We adopt the full range of metallicities available from the evolutionary tracks of the Geneva group, which includes models for $Z = 0.001$ (Z = 0.05%), $Z = 0.004$ (Z = 0.22%), $Z = 0.008$ (Z = 0.42%), $Z = 0.002$ (Z = Z$_\odot$), and $Z = 0.04$ (Z = 2Z$_\odot$).

Evolutionary Tracks: We adopt the two evolutionary tracks of the Geneva group that are currently available in Starburst99: the Geneva "Standard" mass loss tracks, and the Geneva "High" mass loss tracks. The differences in these tracks are discussed in more detail in Section 2.2.

Age: We generate models ranging in age from 0 to 5 Myr in the case of an instantaneous burst star formation history in 0.5 Myr increments. For the continuous SFH models, we adopt a constant age of 5 Myr, the age at which a continuous SFH stellar population reaches equilibrium (Kepley et al. 2001). Further discussion of the age range of these models is found in Section 2.3.

Ionization parameter: The ionization parameter q (cm$^{-1}$) can be thought of as the mean um velocity possible for an ionization front being driven by the local radiation field. This definition relates to the time evolution of the ionization parameter at U by $q = c$. Rigby & Reise (2004) found a range of $3 < U < 15$ for the demensionless ionization parameter at E in local starbursts galaxies. In our models, we adopted values of the ionization parameter q_{av}, where $q = 10^7.2$, $10^8.4$, $10^9.6$, $10^9.8$, $10^9.1$, $10^9.2$, $10^8.2$, and 4×10^8 (cm s$^{-1}$). These values correspond to dimensionless ionization parameters of $U = 35$, 29, 25, 22, and 19, respectively. While these are slightly lower than the U values found in Rigby & Reise (2004), they are similar to the range of ionization parameter values adopted in Kepley (2001) and Snijders et al. (2007).

Electron density: Dopita et al. (2000) found $n_e = 10^3$ cm$^{-3}$ for typical gas-extracted H I regions, while Dopita et al. (2006) constrain the electron density in their models of H II regions to $n_e = 100$ cm$^{-3}$. In addition, Kepley et al. (2001) found an average electron density $n_e = 350$ cm$^{-3}$ for the Kepley et al. (2001) sample of warm infrared starburst galaxies. Since we wish to compare our models to normal and low-metallicity star-forming galaxies, which are expected to have lower n_e than those found in the gas-rich warm infrared galaxies, we adopt two different electron density ranges in our full model grid, adopting both $n_e = 10^3$ cm$^{-3}$ and $n_e = 100$ cm$^{-3}$.

We adopt a single isobaric density structure for these models, and thus n_e is specified by the dimensionless pressure/mass ratio. We found that the lower $n_e = 10^3$ cm$^{-3}$ produced only a slight decrease in the absolute value for the model q-sensitive lines at higher metallicity. For the remainder of this paper, we present results that adopt $n_e = 100$ cm$^{-3}$, following the results of Kepley et al. (2001) for starburst galaxies.

2.2. Stellar Evolutionary Tracks

Currently, Starburst99 includes two different evolutionary tracks produced by the Geneva group, which differ primarily in their treatment of mass loss rates for massive stars. Mass loss rates are a critical parameter when considering the contributions of massive stars to ISM enrichment (Meed & Conti 1994).

The "standard" (STD) mass loss evolutionary tracks were originally published in a series of papers by the Geneva group (Schaller et al. 1992; Schaerer et al. 1995a, 1995b; Charbonnel et al. 1993). These models adopt mass loss rates throughout the HR diagram from de Jager et al. (1988) that are scaled with metallicity according to the models of Kudritzki et al. (1988), where M \odot / Z_{\odot} W olf-Rayet (W R) stars are an exception - the mass loss rates for these stars are taken from Langer (1989) and Conti (1988) and include no correction for initial metallicity effects.
The high-mass loss evolutionary tracks (HIG), published in Meynet et al. (1994), include enhanced mass loss rates, m, that are more accurately reproduce observations of low-warm inosity W-R stars and blue-to-red supergiants in the Magellanic Clouds (Schaller et al. 1992, Meynet 1993). The adopted m mass loss rates are derived by doubling the rates adopted by the standard grid from de Jager et al. (1988), as well as doubling the standard m mass loss rate assumed for late-type W-N-type W-R stars. The mass-loss rates for early-type W-N W-R stars and later stages of W-R stars (C and O) were left unchanged — for a complete discussion, see Meynet et al. (1994). Again, the m mass loss rates of W-R stars are left uncorrected for initial mass loss effects.

While many advances have since been made in our understanding of stellar physics, adopting these tracks in our stellar population synthesis models is still scientifically sound. The standard m mass loss tracks are the most applicable to the two stars considered recent work on the effect that wind clumping has on mass loss rates (Crowther et al. 2002); however, the HIG m mass loss tracks produce a reasonable approximation of the enhanced m mass loss rates resulting from the effects of rotation, when surface mixing results in an earlier start of the WR phase (Meynet, private communication). Rotation is an important component of stellar evolution that is expected to have considerable influence on the Starburst99 ionizing spectrum and the agreement of these m models with observations at low metallicity in particular (Leitherer 2008). Since the effects of rotation are not explicitly included in these tracks, the HIG m mass loss tracks can be considered a more appropriate approximation of the rotation-driven mass loss undergone by massive stars.

2.3. Starburst99 Ionizing Spectra

The far-ultraviolet (FUV) ionizing spectra produced by Starburst99 are primarily in unison by age and mass. The effects of a changing m model age derive largely from the evolution of the massive stellar population, and are easily examined in our m models which adopt an instantaneous burst model of star formation — this star formation history allows us to observe the effects of a single stellar population that is formed at 0 Myr and evolves uniformly.

By contrast, for the continuous SFH models, we set the age constant at 5 Myr. This age describes an active emission line star-forming galaxy, where the number of stars being formed is equal to the number of stars dying. At younger ages this equilibrium is not yet reached, and at older ages there is little to no evolution in the FUV ionizing spectrum produced by the stellar population. This is consistent with the evolution of continuous SFH models for starburst galaxies, as described in Kwok et al. (2000).

Figure 1 (left) shows the FUV spectra generated when adopting an instantaneous burst SFH and the HIG evolutionary tracks, plotted from 0 Myr to 6 Myr in 1 Myr increments for our full range of mass metallicities. The hardness of the spectra decreases with age for this star-formation history, most noticeably in the higher-energy regime of the spectra (100-300 Å), a result of the mass stellar population evolving out of the O B main sequence phase.

It is apparent that the behavior of the FUV spectrum changes dramatically across the different mass metallicities. The low-mass metallicity spectra maintain a significantly harder ionizing spectrum throughout their evolution as compared to the Z ma mass metallicity spectra. Since high-mass metallicity stars spend a larger fraction of their high-energy photons ionizing their own atmospheric metals (due to the increased effects of line blanketing), there is a resulting depletion of high-energy photons available to ionize the surrounding ISM, which leads to a softer ionizing field (Snijders et al. 2007). The extensive piece of massive stars are also higher at lower mass metallicities across similar spectral types due to a shift in the evolutionary limit of hydrodynamic equilibrium (the Hayashi limit) to warmer tem peratures at lower mass metallicities (Elais et al. 1985; Levesque et al. 2006), resulting in a hotter environment and harder spectrum in the case of our low-mass metallicity spectra. Finally, main sequence lifetimes are longer at low metal metallicities as a result of lower mass loss rates, leading to a greater amount of time spent in the hot massive sequence evolutionary phases and a larger contribution to the ionizing radiation field that extends to later ages (e.g. Meynet et al. 1994, M. Aeder & Conti 1994).

Figure 1 (left) also indicates that the W-R ayet (W-R) phase for these galaxies contributes to a hardening of the ionizing spectrum, producing a distinctive bump in the high-energy region of the spectrum. The net effect of this population is only visible in the high-Z ionizing spectrum, appearing from 3 to 5 Myr in the Z = Z spectrum, and from 4 to 6 Myr in the Z = Z spectrum. The wind-driven ISM enhancement by W-R stars is stronger and longer at high metallicities, and the mass in our mass required to reach the W-R stage decreases at higher mass metallicities (taken to be 85 M at Z = 0.052 as compared to 40 M at Z = Z for the Geneva models used here; Schaller et al. 1992).

However, the most pronounced change in the spectra occurs at ages later than 5 Myr. For the 5 Myr model, there is a dramatic drop in the hardness of the spectra at 225 Å, coinciding almost perfectly with the ionizing wavelength of [O III]. This behavior is consistent with the origin of the FUV spectrum for this SFH. An instantaneous burst of star formation at 0 Myr will result in a single coeval population of massive stars as the sole source of ionizing radiation, decreasing the hardness of the FUV spectrum at later ages as the hottest massive stars (and therefore the dominant contributors of ionizing radiation), evolve rapidly to the main sequence and end their lives. The lifetime employed in the Geneva models give the explanation for the behavior of the FUV spectra shown here; the main-sequence (H-burning phase) lifetime of a typical hot massive star of initial mass 40 M is limited at an age of 5 Myr or earlier (Schaller et al. 1992, Schaerer et al. 1993b, Charbonnel et al. 1993). As a result, beyond 5 Myr the dominant massive stellar population is comprised mainly of lower-mass (25 M) stars that are beginning to evolve redder on the Hertzsprung-Russell diagram, and producing less intense ionizing radiation at shorter wavelengths (. 225 Å) to generate the line we observe for highly ionized species. Because of this lack of ionizing photons, we restrict our photoionization grids generated for an instantaneous star formation history to...
5 M yr and younger.

In practice, stellar populations in star-forming galaxies are thought to originate from episodic bursts of star formation, or from a continuous SFH. For example, Izotov & Thuan (2004) nd evidence of current ongoing star formation with an age of about 4 M yr in the extremely low-metallicity galaxy I Zw 18. In addition, they detect supergiant populations that indicate an intense star formation episode occurring 10-15 M yr ago and evidence of still older stellar populations with ages of hundreds of M yr. Noeske et al. (2007a, 2007b) examine 2905 star-forming galaxies from the AEGIS (Advanced Groth Strip International Survey) and nd that the dominant star formation mechanism in these galaxies appears to be a gradual decline of the average star formation rate, as opposed to a series of episodic bursts that decrease in frequency. Previous grids of stellar population synthesis models also nd that the assumption of a continuous SFH, with the presence of underlying older stellar populations, is more appropriate than a single instantaneous burst in most cases (Kewley et al. 2001, Moy et al. 2001, Fernandes et al. 2003, Barton et al. 2003). This suggests that, rather than modeling a single burst of star formation at 0 M yr (the current approach in Starburst99 for a burst-like SFH), a continuous SFH or multiple bursts of star formation through time would be a more realistic treatment for modeling spectra of star-forming galaxies (see also Lee et al. 2009). The instantaneous burst models presented here can therefore be employed mainly as an approximation of a burst-like SFH, representing a lower limit on star formation, while our continuous star formation models can be considered an upper limit.

After examining the behavior of the FUV spectra when adopting the HIGH evolutionary tracks, we can then compare these to the FUV spectra produced from the STD evolutionary tracks, subtracting the two spectra to examine their differences in greater detail (Figure 1, right). In this comparison, we can see that the largest differences occur at higher metallicity (Z = 0.4 Z; 22) and in the 3 to 6 M yr age range, coinciding with the ionizing flux contribution of the mass-loss-sensitive W O9eayt phase. Additional discrepancies at later ages focus on the age of the 225A drop, which is also expected to vary slightly with mass loss.

Finally, we nd that the FUV spectra shown here are harder than those shown in Kewley et al. (2001) for both the PEGASE and the Starburst99 stellar population synthesis models. The increased hardness between 225A and 1000A is particularly notable, with log (F, ergs s^-1 M^-1) = 25 to 30 for the solar-metallicity Kewley et al. (2001) models as compared to log (F, ergs s^-1 M^-1) = 35 to 45 for the solar-metallicity models shown here. This corresponds to the 1 to 4 Ryd region that Kewley et al. (2001) cites as potentially being from more vigorous treatment of continuum metal opacities, which we have adopted here via the inclusion of the Pauldrach et al. (2001) and H Iliner & Miller (1998) continuum opacities. These FUV spectra are therefore a notable improvement over the Kewley et al. (2001) grid, with higher ionizing fluxes expected to be more accurately reproduced as emission lines observed in star-forming galaxies.

Figure 2 shows the relative ionization fractions for a number of species produced by Mappings III, plotted as a function of relative distance from the inner surface of the nebula. This curve illustrates that the [SII] u or in particular is a good tracer of the hardness of the ionizing radiation eld. This is largely due to the e ects of [SII] ionization, in a soft ionization eld [SII] will be ionized out to a greater distance in the nebula, decreasing the ionization fraction of [SII] as a result. Conversely, in a hard ionizing radiation eld, [SII] will be ionized very close to the inner surface of the nebula and [SII] will dominate the ionization fraction. As a result, [SII] can be used as a powerful diagnostic tool in these models, particularly as it is a common only-detected emission feature in star-forming galaxy spectra.

3. OPTICAL EMISSION LINE DIAGNOSTICS

The nal output of the Starburst99/Mappings III code is a model galaxy emission spectrum. The model spectra calculated for our grid of input parameters allow us to probe the ISM properties of these galaxies through the use of emission line diagnostics. In this work we employ the [N II] 6584/H , [N II] 6584/Q II 3727, [O III] 5007/H , [O III] 5007/Q II 3727, and [SII] 6717,6731/H line ratios. These values can vary with the age of the young stellar population, so we examine the evolution of each ratio as a function of time across our instantaneous burst SFH models, and consider this evolution in the context of the FUV ionizing spectra shown in Figure 1. For these ratios, we assume an ionization parameter q = 2 × 10^8 cm s^-1, which corresponds to log U = 2.2, our closest ionization parameter to the log U = 2.3 value adopted by Rigby & Rieke (2004) in their models.

3.1. [N II]/H

The [N II] 6584/H ratio correlates strongly with both metallicity and ionization parameter, and is useful in diagnostic diagrams comparing these parameters (Veilleux & Osterbrock 1987, Kewley et al. 2001). The [N II] u/H ratio is independent of metallicity and occurs predominantly in intermediate-mass stars (M 0.4 M; Tosi 1985, M 0.4 M; Tosi 1986); however, a primary nitrogen production is thought to be dependent on stellar mass and metallicity (Chiappini et al. 2005, 2006; Mallery et al. 2007). At high metallicity, nitrogen production is secondary to neutron injection from supernovae, and is therefore proportional to abundance. At low metallicity, nitrogen production is also related to the star formation history of the galaxy, introducing a scatter into the relation between [N II]/H and metallicity (Kewley & Dopita 2002). The relatively low ionization potential of [N II], allowing production of this line at the lower-energy end of the FUV ionizing spectrum, also makes this ratio sensitive to ionization parameter (Kewley & Dopita 2002).

The evolution of this ratio with age is shown in Figure 3a, where we plot all model metallicities and the HIGH and STD mass loss rates for the instantaneous burst SFH.
models. We can see an increase of the [N II]/H ratio with metallicity. At the lowest metallicities (Z = 0.05Z ;Z = 0.2Z) the [N II]/H ratio increases by 80% - 160% at later ages (> 3 Myr), while at higher metallicities the ratio varies across all ages, showing deviations from the mean of up to 75% - 85%. We can also see that [N II]/H becomes double-valued at later ages (> 4 Myr) for the highest metallicities (Z = 2Z and Z = 22Z). To understand the variation of this ratio with age for an instantaneous burst SFH, we can consider the FUV ionizing spectrum. In the instantaneous burst FUV spectra, we see a larger variation with age at the ionizing threshold of [N II] as compared to the continuous burst FUV spectra, a consequence of the varying contribution from the core and main sequence star population. This variation also becomes more prominent at higher metallicities, explaining the increased variation of the [N II]/H ratio in that regime.

3.2. [N II]/[O II]

The [N II] 6584 and [O II] 3727 lines have very similar ionization potentials, making this ratio almost independent of the ionizing parameter of the radiation field. This ratio also avoids the pitfalls of being double-valued with abundance, scaling smoothly from high to low abundance (van Zee et al. 1998) and rendering it a reliable means of isolating metallicity on diagnostic diagrams (Dopita et al. 2000). [N II]/[O II] correlates very strongly with metallicity above Z = 0.4Z ; [N II]'s status as a secondary element causes it to more strongly scale with increasing metallicity than [O II]. In addition, the lower electron temperature at high metallicity produces fewer ionizing photons per electron, decreasing the number of collisional excitations in the high-energy-threshold [O II] feature as compared to the low-energy [N II] features (Kewley & Dopita 2002). At lower metallicities (Z < 0.2Z) this ratio’s utility as a tracer of metallicity decreases slightly, since nitrogen and oxygen are both primary nucleosynthesis elements and begin to scale uniformly with metallicity as a result (Dopita et al. 2000).

The evolution of this ratio is shown in Figure 3b. This ratio shows increased variation with age at higher metallicities, similar to the behavior observed in the [N II]/H ratio. As described in the [N II]/H case, there is a variation with age in the FUV spectrum at the [N II] ionizing threshold that increases at higher metallicities, leading to increased variations in the u/H of the [N II] line. In this case, we see the same behavior in the FUV spectrum at the ionizing threshold of [O II]. The slope of the FUV ionizing spectrum between these two thresholds increases with metallicity and age. This change in the relative ionizing u/H between the two species leads to a greater variation in the [N II]/[O II] u/H at higher ages and higher metallicities. We can, however, see that the [N II]/[O II] ratio increases significantly with metallicity, demystifying that on a diagnostic diagram a clear separation with metallicity will be evident across the [N II]/[O II] axis.

3.3. [O III]/H

The [O III] 5007/H ratio is sensitive to the hardness of the ionizing radiation field, and a useful means of tracing the ionizing parameter of a galaxy (Baldwin et al. 1981). However, this ratio is sensitive to metallicity and double-valued with respect to abundance, although it is far more sensitive to ionization parameter at sub-solar metallicities (Kewley et al. 2004). The close proximity of these emission lines also renders this ratio relatively insensitive to reddening corrections.

The evolution of the [O III]/H ratio is shown in Figure 3c. We can see immediately that, as described in Kewley et al. (2004), [O III]/H is double-valued with metallicity, reaching its highest value at Z = 0.4Z and decreasing for both lower and higher metallicities. We can also see that the value of the ratio decreases with age. This decrease is gradual at the lowest metallicities but is interrupted by local maxima at 3 to 5 Myr as metallicity increases. This age range combined with the behavior of the FUV ionizing spectrum indicates that these local maxima in the [O III]/H ratio are due to the short-lived contribution of the Wolf-Rayet population to the ionizing radiation.

3.4. [O III]/[O II]

The [O III] 5007/[O II] 3727 serves a similar function as the [O III]/H ratio, and is a commonly employed ionization parameter diagnostic. Dopita et al. (2000) and Kewley & Dopita (2002) found that the [O III]/[O II] is sensitive to metallicity as well, with higher abundances corresponding to lower ratios, but both the metallicity and ionization parameter relations are monotonic and do not result in this ratio being double-valued.

The evolution of the [O III]/[O II] ratio is shown in Figure 3d, and supports the conclusions of Dopita et al. (2000); we can see that the value of this diagnostic ratio decreases as metallicity increases. The evolution of this diagnostic with age is quite similar to that of the [O III]/H ratio. As in the case of [O III]/H, the [O III]/[O II] ratio here is affected by the slowly decreasing hardness of the FUV spectra and the contributions of the Wolf-Rayet phase. By contrast, the [O III] u/H in the FUV spectrum stays relatively constant at the ionizing threshold of [O II] for both SFHs, isolating the behavior of the [O III] in the evolution of this ratio.

3.5. [S II]/H

The [S II] 6716 + 6731/H line ratio is a useful means of tracing the hardness of the ionizing spectrum present in a galaxy. While the ratio retains a slight dependence on the ionization parameter, we define this value at the innermost boundary of the nebula. [S II], by contrast, forms at a greater distance from the boundary in a partially ionized zone. As the hardness of the ionizing radiation field increases, the partially ionized zone becomes more extended, generating increased [S II] u/H. The evolution of the [S II]/H ratio is shown in Figure 3e. We can see that the value of this ratio increases gradually with abundance across the lower metallicities but becomes degenerate at high metallicities.
We wish to test our Starburst99/Mappin's models against observed spectra from a variety of galaxy populations. The local ($z < 0.1$) galaxies we selected for our comparison sample are described below.

 Sloan Digital Sky Survey (SDSS) galaxies: To compare our models to the general local galaxy population, we plot emission line ratios detrended for a sample of emission-line galaxies from SDSS described in Kewley et al. (2006). These galaxies were originally taken from Data Release 4 of SDSS (Adelman-McCarthy et al. 2006) and restricted to 85224 galaxies with a $S/N > 5$ in the strong emission lines (Tremonti et al. 2004) and a redshift range between $0.04 < z < 0.1$. The lower limit of this redshift range corresponds to an aperture covering fraction of 20%, the minimum required to avoid contamination of the spectrum by aperture effects (Kewley et al. 2005, Kewley & Ellison 2008). The spectra were acquired with 3" diameter fibers. We further restrict this sample to the 60920 galaxies classified as star-forming by Kewley et al. (2006). This class selection is based on the criteria of Kaufmann et al. (2003) derived from the [NII]/H vs. [OIII]/H diagnostic diagram, and the Kewley et al. (2001) criteria based on the [SII]/H vs. [OIII]/H and [O I]/H vs. [OIII]/H diagnostic diagrams; equations are given in Kewley et al. (2006). This class selection removes contaminations from composite galaxies, Seyferts, LINERs, and am biguous galaxies that cannot be definitely classified based on the Kaufmann et al. (2003) and Kewley et al. (2001) criteria.

 Nearby Field Galaxy Survey (NFGS) galaxies: To ensure that the local galaxy population used in our analysis is not a subset of any residual aperture effects present in the SDSS sample, we include a sample of galaxies from NFGS. NFGS has integrated emission-line spectroscopy of 196 galaxies that span from $14 < M_B < 22$ and include the full range of HII region sequence morphologies, with a median redshift of $z = 0.01$ and a maximum redshift of $z = 0.07$ (Jansen et al. 2000a, 2000b). The galaxies were selected from the CFA redshift catalog, which has a limiting blue photographic magnitude $m_B = 14.5$ (Huchra et al. 1983) and observed with the FAST spectrograph at the WHT 1.5 m telescope (Jansen et al. 2000b). We limit this sample to 95 star-forming galaxies by applying the emission-line criteria for star-forming galaxies in Kewley et al. (2006) described above for the SDSS sample.

Blue Companions (BCGs): To compare our models to a sample of galaxies that show evidence of burst-like star formation histories, we include a sample of blue comp干线 galaxies (BCGs) from Kong & Cheng (2002) and Kong et al. (2002). Their sample consists of 97 galaxies selected from the of Gordon & Gottesman (1981), Thuan & Martin (1981), Kiney et al. (1993), and Thuan et al. (1999) and limited to $M_B < 0.9$ m. The spectra were observed with the OMR spectrograph on the 2.16m telescope of the Beijing Astronomical Observatory. Here we restrict our sample to those galaxies with a com around set of spectral line fluxes that satisfy the star-forming galaxy emission-line criteria in Kewley et al. (2006), giving us 36 star-forming BCGs in our final sample. Note that, for consistency with our other star-forming galaxy sample, we use the Kewley et al. (2006) criteria rather than the classification used in Kewley et al. (2002) to remove AGN and non-emission-line galaxies from their sample. This sample of BCGs has a redshift range of $0.033 < z < 0.049$ with a median redshift of $z = 0.016$.

Metal-poor Galaxies (MPGs): Finally, to examine the agreement of our stellar population synthesis and photionization models with low metallicity galaxies, we include a sample of 10 MPG spectra from Brown et al. (2008). The 10 MPG spectra are part of a survey of 38 MPG candidates selected from Data Release 4 of SDSS based on restrictions on their (M_0, g^0, r^0, i^0) colors, a magnitude limit of $g^0 < 20.5$, and a mean offset H regions in nearby galaxies through visual inspection. The remaining MPG candidates were observed with the Blue Channel spectrograph at the MMT telescope. Brown et al. (2008) nd 10 MPG s in this sample, with $log($H$) = 12 < 8$ based on their electron temperature metallicity restrictions (Izotov et al. 2006). These 10 galaxies have a redshift range of $0.03 < z < 0.081$ with a median redshift of $z = 0.073$.

All of the emission line fluxes used in our com parison s ample have been corrected for total intrinsic attenuation by dust in the direction of the galaxy. This was based on the H/H emission line ratio, assuming the Balmer decrement for case B recombination ($H/H = 2.87$ for $T = 10^4 K$ and $n_e = 10^{-2} - 10^{-4} cm^{-3}$, following Osterbrock 1987) and the Cardelli et al. (1989) reddening law with the standard total-to-selective extinction ratio $R_V = 3.1$.

These com parison samples allow us to examine the agreement of our stellar population synthesis and photionization models when applied to the local galaxy population, including nearby low-metallicity galaxies. We plot these com parison samples along with our models on a series of optical emission line ratio diagnostic diagrams, utilizing the ratios detailed in Section 3.

4. EMISION LINE DIAGNOSTIC DIAGRAMS

In Section 2, we note that [NII]/H correlates strongly with metallicity as well as with ionization parameter $e / {\epsilon}$ (Veilleux & Osterbrock 1987, Kewley et al. 2001; see Section 3.1), while [OIII]/H is primarily a measure of...
ionization parameter with a degenerate dependence on metallicity (Baldwin et al. 1981, Kewley et al. 2004; see Section 3.3). The [N II]/H vs. [O III]/H grid of Baldwin et al. (1981) allows us to examine these two ISM properties by examining the evolution of the grids with age and comparing the agreement of our models to observed galaxy spectra. In Figure 4 we plot the evolution of the [NII]/H vs. [OIII]/H diagnostic grid for our instantaneous burst SFH m grids ranging from 0.0 to 5.0 Myr, while Figure 5 shows the diagnostic grid assuming a continuous SFH and an age of 5.0 Myr; both gures com pare the m od el grid to the SDSS, NFGS, BCG, and MPG sam ples described above.

Following the observed evolution of these diagnostic ratios in Section 3, we can see that the instantaneous burst m od els in Figure 4 show a substantial decrease in the [O III]/H ux with age, attributable to the signi cant decrease in the hardness of the FUV spectrum with age. When com paring these grids to our galaxy sam ple, we see satisfactory agreement for the youngest instantaneous burst m od els (0.0 Myr, 1.0 Myr); these m od els acc om modate 69% of the SDSS galaxies, 78% of the NFGS sam ple, 58% of the BCGs, and 86% of the MPGs, a great in proven ent over previous odel grids that show poor agreement with metal-poor galaxies. However, this agreement rapidly deteriorates with age as the [O III]/H ratio in the m od els decreases and the uctuating contributions of the Wolf-Rayet phase are introduced at 3.0 to 5.0 Myr. The MPG sam ple in particular is in poor agreement with the m od els at 3.0 to 5.0 Myr. At later ages (4.0 Myr, 5.0 Myr) the H II region metallicity oxes show slightly better agreement with the data as com pared to the STD m od els. By com parison, we see that the continuous SFH m od els in Figure 5 show a better agreement with the data at 5.0 Myr, although de ciency in the m od el [O III]/H oxes are apparent.

From this diagnostic, it appears that our sam ple popu lation is restricted to the higher metallicities included in our m od els (with the MPGs and a small sam ple of ou ters as the onl y exception) and spans the full range of ionization parameter values included in our m od els, again with only a small sam ple of ou ters. How ever, the double-valued nature of this diagnostic makes it an in practical sense oxen of drawing strong conclusions about galaxies' metallicities and ionization parameter values.

In Figure 6 we plot the evolution of [NII]/[OII] vs. [OIII]/[OII] with age for the instantaneous burst SFH m od els and com pare them to our galaxy sam ples in Figure 7 we again plot the 5.0 Myr continuous SFH m od els. We can see from the m od el grids plotted in Figure 6 and Figure 7 that [N II]/[O II] isprimarily sensitive to metallicity, while [O III]/[O II] is primar ily sensitive to ionization parameter, following from a discussion of these diagnostic ratios in Sections 3.2 and 3.4.

This diagnostic shows much more consistent agreement with our sam ples—the best—m od el grids at 0.0 Myr acc ommodate 91% of the SDSS galaxies, 66% of the NFGS sam ple, 86% of the BCGs, and 86% of the MPGs. For the instantaneous burst m od els, we see a rapid decrease with age in the [O III]/[O II] ratio and uctuations from the Wolf-Rayet phase contribute at 3.0 to 5.0 Myr. The 1.0 to 2.0 Myr instantaneous burst m od els also appear to be somewhat deficient at higher metallicities in the case of the SDSS sam ple, while the 5.0 Myr grid shows poor agreement with the low-metallicity MPG sam ple. At 5.0 Myr, the high mass loss m od els are also found to be in better agreement with our galaxy sam ples than the STD m od els. By contrast, the continuous SFH m od els show consistent agreement (66%—95%) with our galaxy sam ples at 5.0 Myr for both the high and STD mass loss evolutionary track m od els, including all but the metal-poor galaxy in the MPG sam ple.

In this non-degenerate diagnostic we can see that the SDSS galaxies span the full range of metallicities adopted in our m od els, although they appear to be restricted to the lower ionization parameter oxes (q = 8 10^7 cm s^{-1}). The NFGS and BCG sam ples span a similar range in ionization parameter, but do not extend to the twi-olar metallicity regime of our m od els. Interestingly, the MPG sam ple appears to coincide with both the lowest metallicities (2 = 0.052 to 2 = 0.22) and the highest ionization parameter oxes across our com parison sam ple, along with several of the most metal-poor BCGs, ranging from q = 8 10^7 cm s^{-1} to q = 2 10^8 cm s^{-1}.

4.3. [SII]/H vs. [OIII]/H

In Figure 8 we plot the evolution of the [SII]/H vs. [OIII]/H diagnostic ratio for our m od els ranging from 0.0 to 5.0 Myr assuming an instantaneous burst SFH, while Figure 9 shows the diagnostic at 5.0 Myr for a continuous SFH. In both gures we com pare the m od el grid to our galaxy sam ples.

Both the instantaneous burst and continuous SFH m od els show partial agreement with the galaxy sam ples; however, it is clear in these diagnostics that the grid is not able to accommodate a large number of these galaxies. For the best— instantaneous burst m od els at 0.0 Myr, the metallicity oxes show agreement with 61% of the SDSS galaxies, 26% of the NFGS galaxies, 33% of the BCGs, and 50% of the MPGs. Agreement is better across the [SII]/H axis, but due to the double-valued nature of the diagnostic, we cannot determine the behavior of this line ratio. In the instantaneous burst m od els, we see uctuations in the [O III]/H ratio with age and progressively poorer agreement with the galaxy sam ples, beginning with a failure to accomodate any of the galaxies in the MPG sam ple by 3.0 Myr but progressing to only agreeing with 35% of the SDSS galaxies, 13% of the BCGs, and 6% of the NFGS galaxies by 5.0 Myr for the high mass loss grid; the STD mass loss grid shows no agreement with our galaxy sam ples at 5.0 Myr. The continuous SFH m od els maintain a somewhat satisfactory agreement at 5.0 Myr and show little distinction between the high and STD mass loss rates, but the grids are still insufficient and show on 30% agreement with the MPG sam ple. As discussed in Section 3.5, use of the [SII]/H diagnostic allows us to examine the hardness of the FUV ionizing spectrum; Figures 8 and 9 suggest that a generally harder FUV ionizing spectrum is required from the m od els to produce a more extended partially ionized zone in the theoretical nebula.

4.4. Comparison with Previous Model Grids

The stellar population synthesis and photoionization m od els presented in Dopita et al. (2006) are com parable in many ways to the m od els presented in this work.
They use the Starburst99 stellar population synthesis code, adopting the Pauldrach et al. (2001) and Hillier & Miller (1998) models atm spheres that include treatment of the metal opacities and the metallicity of the Geneva HGH evolutionary tracks. They also use the latest generation of SSPs to compute their photionization of models. The Dopita et al. (2006) m models adopt a spherical geometry in the photionization of models, while the work assumes a plane-parallel nebular geometry - these different modelings have been compared and produce equivalent results (Kewley et al. 2001). There are, however, two noteworthy differences between the models of Dopita et al. (2006) and those presented here.

First, the models of Dopita et al. (2006) do not take into account free parameters (q) as one of their free parameters; instead, q is replace by R, a parameter representing the ratio of the mass of the central aging star cluster to the pressure of the surrounding ISM. This allows q to vary with age (as well as with metallicity). In this treatment, R is fixed at a variety of values (6; 4; 2; 0, and 2) and a sequence of m models HII regions are computed at each of the given metallicity and ages increase in increments of 0.5 Myr, up to a maxum age of 6.5 Myr.

Second, Dopita et al. (2006) generate m models of individual II regions. To model the spectra of star-forming galaxies, they integrate the fluxes of a m model HII region for each of their models, essentially considering star-forming galaxies to have spectra that consist of contributions from multiple HII regions at different ages. This rem ovage as a free parameter in these m models, restricting the free parameter to metallicity and R, compared to the other models with free parameters of metallicity and q.

As compared to the Kewley et al. (2001) models, the primary differences in this work lies in the choice of m atm spheres. While this work adopts the null model of Pauldrach et al. (2001) and Hillier & Miller (1998) models atm spheres, the Kewley et al. (2001) grids utilize the Lejeune et al. (1997) and Schmutz et al. (1992) m models, which do not include treatment of metallicity. Kewley et al. (2001) cite this as a shortcoming of their models and suggest that the inclusion of continuum m etal opacities will result in a harder UV spectrum, a prediction that is supported by our m models (see Section 3). The Kewley et al. (2001) m models also include slightly different treatment of n0, (n0 = 350 cm^-3 as compared to n0 = 100 cm^-3 m models shown here) and age (adopting a continuous HII m model age of 5.0 Myr as opposed to the 5.0 Myr used in this work). However, both of these differences are expected to have negligible effects on the diagnostic grids produced by these m models.

In Figure 10 (left) we compare our 5.0 Myr instantaneous burst SFH m models to the Kewley et al. (2001) and Dopita et al. (2006) m models on the emission line diagnostic grid as described above, considering the agreement of all three grids with the SDSS and MGP galaxy sample. The Kewley et al. (2001) m models also assume a 0.0 Myr instantaneous burst SFH, and range from q = 1 to q = 3 10^7 to q = 3 10^8; the Dopita et al. (2006) m models assume an instantaneous burst SFH and range from 0.0 Myr to 4.0 Myr (q is not a free parameter in the Dopita et al. 2006 m models). For the NII/H vs. OIII/H diagnostic diagram (top left), our m models are found to be more closely agree with the data than either the Kewley et al. (2001) or the Dopita et al. (2006) grids. The Dopita et al. (2006) do not produce sufficient OIII fluxes at higher metallicity. The Kewley et al. (2001) models distribute all of the galaxies but do not properly track the empirical Kau mann et al. (2003) cut-off for star-forming galaxies that has been applied to the SDSS sample, suggesting that the OIII fluxes produced by these models are unrealistically high. By contrast, the m models produced by this work track the Kau mann et al. (2003) cut-off perfectly. In the case of the NII/OII vs. OIII/OII (center left), all three m models show agreement with the SDSS and MGP sample, although the agreement with the MGP sample is better for the Dopita et al. (2006) m models and this work (6 out of 7) than for the Kewley et al. (2001) m models (3 out of 7). Finally, the [SII]/H vs. [OIII]/H diagram (bottom right) shows the failure of the Dopita et al. (2006) m models to produce accurate [SII]/H ratios for either sample. The Kewley et al. (2001) m models have higher [OIII] fluxes than this work; however, our m models extend to higher values of [SII]/H in the SDSS sample. A cross all three of these m models, we note that regions in the diagnostic diagram have a more substantial difference in the infrared.

This comparison is noteworthy when considering that the model predictions are found to be an improvement over, or at least equivalent to, the integrated model spectra of Dopita et al. (2006). In our work we are modeling the environment in a simple way by assuming the HI regions observed within an aperture can be modeled by a luminosity-weighted mean HII region represented by a plane parallel m model. It is significant that this simple approach produces comparable results when compared with the more sophisticated treatment of m modeling the integrated spectra of m multiple HII regions emplaced by the Dopita et al. (2006) m models. We can therefore conclude that treating m model galaxies as single luminosity-weighted HII regions, particularly when assuming a zero-age instantaneous burst SFH, is a simpler and equally effective approach in stellar population synthesis and photionization m modeling.

In Figure 10 (right) we compare our 5.0 M yr continuous SFH m models to the Kewley et al. (2001) 8.0 M yr continuous SFH m models, which again range from q = 1 10^7 to q = 3 10^8. For the NII/H vs. OIII/H diagnostic diagram (top right), we can see that the agreement of our m models with the Kau mann et al. (2003) cut-off in the SDSS sample has degraded for these later-agen m models. The Kewley et al. (2001) maintain higher [OIII] fluxes. In the NII/OII [OII] vs. OIII/OII diagnostic diagram (center right), we again see a slight improvement in the agreement of our m models with the MGP sample for our m models (6 out of 7) compared to the Kewley et al. (2001) m models (4 out of 7); our m models appear to extend to lower metallicity for the [NII]/OII diagnostic ratio. Finally, on the [SII]/H vs. [OIII]/H diagnostic diagram (bottom right) we can see that both m models do a poor job of accounting for the SDSS and MGP sample, although the Kewley et al. (2001) once again has higher [OIII] fluxes compared to the m models in this work.

This result is surprising considering the speculation by Kewley et al. (2001) that the inclusion of m atm o-
spheres with metal opacities should lead to a harder FUV spectrum and strong line 1 ux es. While we do indeed produce a harder FUV spectrum by including the Pauldrach et al. (2001) and Hiller & Miller (1998) models in our Starburst99 simulations, the effect on the line ratios produced by M appings III appears to be less than anticipated. Our models do include a more accurate treatment of physical conditions, and show improved agreement with the Kauw ann et al. (2003) criteria for star-forming galaxies and the metal-poor galaxies along the metallicity-sensitive [N II]/[O II] diagnostic ratio. However, it is clear that more substantial improvements in models of star-forming galaxies will require further systematic changes in existing stellar population synthesis and photoionization codes.

5. DISCUSSION AND FUTURE WORK

We have generated an extensive suite of models for star-forming galaxies, utilizing the newest generation of the Starburst99 stellar population synthesis code and the M appings III photoionization code. With these codes we have constructed a grid of models with a variety of metalicities and ionization parameters, adopting both an instantaneous burst SFH and a continuous SFH as well as both the HIGH and STD mass loss prescriptions from the evolutionary tracks of the Geneva group. These grids have been made available to the public, and are being used to develop updated metallicity diagnostics as part of a current HST theory grant (P. I. Kew ley), with a publication of new diagnostics expected within the next few months.

We have examined the ionizing spectrum generated by Starburst99 for these models, along with the evolution of a number of optical emission line diagnostic ratios with time. We have selected a number of local ($z < 0.1$) star-forming galaxies as a comparison sample, from Data Release 4 of SDSS (Kew ley et al. 2006), the NGS Survey of Jansen et al. (2000a, 2000b), the blue compac galaxy survey of Kong & Cheng (2002) and the MPG galaxy sample of Brown et al. (2008). By comparing our model predictions to these data on a series of emission line diagnostic ratios, we are able to make the following conclusions:

1. Models that assume a continuous SFH at 50 M yr produce a FUV, ionizing spectrum and show better agreement with the observed emission line ratios of our galaxy sample as compared to models with an instantaneous burst SFH at 50 M yr. This is in agreement with past work that suggests a continuous treatment of star formation is more realistic than a single zero-age instantaneous burst when modeling star-forming galaxies (Kew ley et al. 2001, M oy et al. 2001, Feuerhan et al. 2003, Nosseke et al. 2007a, 2007b).

2. A assumption of either the HIGH or STD Geneva mass loss rates is found to make very little difference in the precision of the continuous SFH models; however, in the case of the instantaneous burst models, the HIGH mass loss rates produce better agreement with our galaxy sample, suggesting that an enhanced rate of mass loss is more realistic under the assumption of an instantaneous burst.

3. From the [N II]/Hα vs. [O III]/Hβ and [N II]/[O II] diagnostic diagrams, we find that the metallicity and ionization parameter ranges of our models are in agreement with the ISM properties of the galaxies in our comparison sample, including our low-metallicity galaxies. However, it is clear that these models require higher ionization parameters than our local, low-metallicity sample.

4. From the [S II]/Hα vs. [O III]/Hβ diagnostic diagram, it appears that our models still produce an insufficiently hard FUV ionizing spectrum that cannot fully reproduce the observed line ratios observed in our galaxy sample.

5. Our models of single luminosity-weighted H II region ionizing spectra are comparable in precision to those presented in Dopita et al. (2006), which integrate the spectra of multiple H II regions when modeling star-forming galaxies.

It is important to note that these models still include several shortcomings that must be considered when applying them to star-forming galaxies and considering future work in this area. One ongoing challenge is that the models consider the requirement of the FUV ionizing spectrum. The Starburst99 stellar population synthesis models show here have a considerably harder FUV ionizing spectrum in the 225A to 1000A regime than the Kew ley et al. (2001) models, a regime that is critical in ionizing the forbidden optical emission lines used in these analyses. This is a consequence of adopting the Pauldrach et al. (2001) and Hiller & Miller (1998) models atmospheres, which include detailed treatments of metal opacities, and in improved treatment of opacities compared to originally proposed in Kew ley et al. (2001). However, our results show that the models still do not produce sufficient UV flux in the FUV ionizing spectrum that is most evident in the case of the [S II]/Hα vs. [O III]/Hβ diagnostic. [S II] in particular requires a larger partially ionized zone generated by a harder radiation field in the models before it can properly reproduce the line ratios observed in our galaxy sample. This suggests that further systematic changes are required in the stellar population synthesis models to produce harder FUV ionizing spectra.

One potential means of addressing this issue could be the adoption of stellar evolutionary tracks that include the effects of rotation on the stellar population, such as the new generation of Geneva evolutionary tracks presented in Vazquez et al. (2007). Starburst99 outputs generated using the $z = 0.02$ rotating Geneva models have been made available to us (Leitherer, personal communication), allowing us to examine the effect that rotation has on the ionizing radiation field produced by these models. Figure 11 shows a comparison of the FUV ionizing spectrum generated by Starburst99 when adopting the HIGH, STD, and rotating Geneva models. It is evident that evolutionary tracks that include rotation produce an ionizing spectrum that is in general harder than either of the tracks employed in this work, with the differences becoming most pronounced at wavelengths shorter than 225A. This is precisely the effect that would be anticipated as a result of including rotation in massive stellar evolutionary models. As just one example of the changes expected with these new tracks, massive stars are found to be hotter and more luminous than previ-
ously thought, leading to a hardening of the SED that is most prominent in the higher-energy regime of the spectrum (Leitherer et al. 2008). In particular, these rotation effects are expected to become more pronounced at lower metallicity, as rotation eventually becomes a dominant parameter in the evolution of extremely metal-poor stars (Hirsch et al. 2008). Finally, a model of low-metallicity galaxies can also consider the mechanisms of ISM enrichment (Brown et al. 2008). Models of low-metallicity galaxies can also be used to probe potential evolutionary mechanisms for metal-poor environments (Kewley et al. 2007). Finally, a thorough understanding of metal-poor galaxies and their stellar populations could prove beneficial to studying the host galaxies of long-duration gamma-ray bursts, which are thought to be low-metallicity (Stanek et al. 2006, Fruchter et al. 2006, Kewley et al. 2007, Mollaj et al. 2008). These models still include several shortcomings that must be considered, in particular their production of an insufficiently hard FUV ionizing spectrum that specifically affects the [SII] emission line strength. Future models should include the effects of rotation on the stellar population may help to resolve this issue.

We would like to thank the anonymous referee for extremely helpful and constructive comments regarding this manuscript. We gratefully acknowledge the useful correspondence with Warren Brown, Margaret Geller, Laura Leitherer, Georges M. Meynet, and Leonie Snijders. E. Levesque's participation was made possible in part by a Ford Foundation Predoctoral Fellowship. K. Larson's participation in this project was made possible in part through the National Science Foundation's Research Experience for Undergraduates program. L. Kewley and E. Levesque gratefully acknowledge support by NSF EARLY CAREER AWARD AST-07-48559.

REFERENCES

Ferland, G. J. 1996, Haazy, a brief introduction to Cloudy, University of Kansas, Department of Physics and Astronomy, Internal Report
Gavela-Bosch, M., Buell, J. F., McLain, A. & A&A, 432, 861
Kennicutt, R. C. 1998, AR&AS, 36, 189

M. modeling Star-Forming Galaxies

11
Lejune, Th., Cuisinier, F., & Buser, R. 1997, A & AS, 125, 229
Thuan, T. X. et al. 1999, A & AS, 139, 1
Fig. 1. Left: FUV spectra generated by the Starburst99 code adopting an instantaneous burst SFH. The spectra were generated using the Geneva H I G H evolutionary models, showing the progression of the spectra with age in 1 Myr increments for the full range of metallicities. At 5 Myr the FUV spectra generated by Starburst99 assuming a continuous SFH are also shown (dotted line). Ionization potentials for the relevant elements are marked on the x-axis. Right: Subtraction of the FUV spectra when adopting the Geneva H I G H evolutionary tracks and the STD evolutionary tracks; H I G H STD is plotted. In both panels the wavelengths are plotted on a log scale.
Figure 2. Relative ionization fractions for emission lines produced by MapsIII, plotted as a function of relative distance from inner surface of the nebula. The emission features shown here are [NII] (dashed green line), [OII] (dashed red line), [OIII] (dashed-dotted red line), [SII] (dashed blue line), and [SIII] (dashed-dotted blue line). For these outputs a zero-age instantaneous burst SFH, a metallicity of $Z = 0.052$, an ionization parameter $q = 1 \times 10^7$, and an electron density $n_e = 100 \text{ cm}^{-3}$ is assumed.
Fig. 3.1: Evolution of the diagnostic emission line ratios with age, shown for all metallicities and ranging from 0 to 5 Myr assuming an instantaneous burst star formation history. Models generated with the Geneva HIGH (solid line) and Geneva STD (dashed line) evolutionary tracks are compared. An n$_0$ = 100 is assumed.
Fig. 4. $\log([\text{NII}] / \text{H}$ vs. $\log([\text{OIII}] / \text{H})$ diagnostics for the instantaneous burst SFH model grids evolving from 0.0 Myr to 5.0 Myr in increments of 1.0 Myr. The models are plotted with lines of constant metallicity vs. lines of constant ionization parameter. Grids generated with the Geneva HIGH evolutionary tracks are plotted with solid lines, while grids generated with the Geneva STD tracks are plotted with dashed lines. An electron density $n_e = 100$ is assumed. The grids are compared to our sample of 60,920 SDSS star-forming galaxies from Kewley et al. (2006) (points), 95 NFGS galaxies from Jansen et al. (2006b) (blue triangles), blue compact galaxies from Kong & Cheng (2002) (red circles), and 10 metal-poor galaxies from Brown et al. (2006) (large open circles).
Fig. 5. | [N II]/H vs. [O III]/H diagnostics for the continuous SFH model grids at an age of 5.0 Myr. The models are plotted with lines of constant metallicity vs. lines of constant ionization parameter. Grids generated with the Geneva HEG evolutionary tracks are plotted with solid lines, while grids generated with the Geneva STD tracks are plotted with dashed lines. An electron density $n_e = 100$ is assumed. The grids are compared to our sample of 60,920 SDSS star-forming galaxies from Kewley et al. (2006) (points), 95 NFGS galaxies from Janssen et al. (2006b) (blue triangles), blue compact galaxies from Kong & Cheng (2002) (red circles), and 10 metal-poor galaxies from Brown et al. (2006) (large open circles). Lines of constant metallicity and ionization parameter follow the legend shown in Figure 4.
Fig. 6: \(\text{NII}/[\text{OII}] \) vs. \(\text{OIII}/[\text{OII}] \) diagnostics for the instantaneous burst SFH model grids evolving from 0.0 Myr to 5.0 Myr in increments of 1.0 Myr. The models are plotted with lines of constant metallicity vs. lines of constant ionization parameter. Grids generated with the Geneva HIGH evolutionary tracks are plotted with solid lines, while grids generated with the Geneva STD tracks are plotted with dashed lines. An electron density \(n_e = 100 \) is assumed. The grids are compared to our sample of 60,920 SDSS star-forming galaxies from Kewley et al. (2006) (points), 95 NFGS galaxies from Jansen et al. (2006b) (blue triangles), blue compact galaxies from Kong \\& Cheng (2002) (red circles), and 10 metal-poor galaxies from Brown et al. (2006) (large open circles). Lines of constant metallicity and ionization parameter follow the legend shown in Figure 4.
Fig. 7. \([\text{N II}]/[\text{O II}]\) vs. \([\text{O III}]/[\text{O II}]\) diagnostics for the continuous SFH model grids at an age of 5.0 Myr. The models are plotted with lines of constant metallicity vs. lines of constant ionization parameter. Grids generated with the Geneva HIGH evolutionary tracks are plotted with solid lines, while grids generated with the Geneva STD tracks are plotted with dashed lines. An electron density \(n_e = 100\) is assumed. The grids are compared to our sample of 60,920 SDSS star-forming galaxies from Kewley et al. (2006) (points), 95 NFGS galaxies from Jansen et al. (2006b) (blue triangles), blue compact galaxies from Kong & Cheng (2002) (red circles), and 30 metal-poor galaxies from Brown et al. (2006) (large open circles). Lines of constant metallicity and ionization parameter follow the legend shown in Figure 4.
Fig. 8.1 [SII]/H vs. [OIII]/H diagnostics for the instantaneous burst SFH model grids evolving from 0.0 Myr to 5.0 Myr in increments of 1.0 Myr. The models are plotted with lines of constant metallicity vs. lines of constant ionization parameter. Grids generated with the Geneva HIGH evolutionary tracks are plotted with solid lines, while grids generated with the Geneva STD tracks are plotted with dashed lines. An electron density $n_e = 100$ is assumed. The grids are compared to our sample of 60,920 SDSS star-forming galaxies from Kewley et al. (2006) (points), 95 NFGS galaxies from Jansen et al. (2006b) (blue triangles), blue compact galaxies from Kong & Cheng (2002) (red circles), and 10 metal-poor galaxies from Brown et al. (2006) (large open circles). Lines of constant metallicity and ionization parameter follow the legend shown in Figure 4.
Fig. 9. | [SII]/H vs. [OIII]/H diagnostics for the continuous SFH model grids at an age of 5.0 Myr. The models are plotted with lines of constant metallicity vs. lines of constant ionization parameter. Grids generated with the Geneva HIGH evolutionary tracks are plotted with solid lines, while grids generated with the Geneva STD tracks are plotted with dashed lines. An electron density $n_e = 100$ is assumed. The grids are compared to our sample of 60,920 SDSS star-forming galaxies from Kewley et al. (2006) (points), 95 NFGS galaxies from Jansen et al. (2006b) (blue triangles), blue compact galaxies from Kong & Cheng (2002) (red circles), and 10 metal-poor galaxies from Brown et al. (2006) (large open circles). Lines of constant metallicity and ionization parameter follow the legend shown in Figure 4.
Fig. 10. | Left: Comparison of instantaneous burst model grids from Kepley et al. (2001; green dash-dotted lines), Dopita et al. (2006) (blue; dashed lines), and this work (red solid lines) for the [N II]/H vs. [O III]/H (top), [N II]/[O II] vs. [O III]/[O II] (middle), and [S II]/H vs. [O III]/H (bottom) diagnostic diagrams. The Kepley et al. (2001) diagnostics range from $q = 1 \times 10^7$ to $q = 3 \times 10^8$, and use the Starburst99 stellar population synthesis models and the Geneva evolutionary tracks. The Dopita et al. (2006) grids range from 0.0 to 4.0 Myr in increments of 1.0 Myr. The models are plotted with the SDSS galaxies (Kepley et al. 2006) and metal-poor galaxies (Brown et al. 2006). Right: Comparing the 8.0 Myr Starburst99/Geneva model grids from Kepley et al. (2001) to the 5.0 Myr continuous SFH models from this work (red solid lines). The models are plotted with the SDSS galaxies (Kepley et al. 2006) and metal-poor galaxies (Brown et al. 2006).
Fig. 11. Comparison of the FUV ionizing spectrum generating by Starburst99 when adopting the Geneva HEDH tracks (solid black line), the Geneva STD tracks (dashed red line), and the newest generation of the Geneva tracks which include the effects of rotation (dashed-dotted blue line). It is apparent that the rotating tracks generate a much harder ionizing spectrum, particularly in the high-energy regime. All of these tracks are at a metallicity of $Z = Z_\odot$. An age of 5.0 Myr, a continuous SFH, and $n_0 = 100$ are assumed.