NLO-\(QCD\) corrections to \(W\) + jet production

F. Campanario\(^1\), C. Englert\(^1\), M. Spannowsky\(^1\) and D. Zeppenfeld\(^1\)

\(^1\) Institute for Theoretical Physics, University of Karlsruhe, KIT, 76128 Karlsruhe, Germany
\(^2\) Departamento de Física Teórica and IFIC, Universitat de Valencia -CSIC, E-46100 Burjassot, Valencia, Spain

Abstract. - We calculate the \(W + X\)-production cross sections at next-to-leading order QCD for Tevatron and LHC collisions. We include leptonic decays of the \(W\) to light leptons, with all \(O\)-shell effects taken into account. The corrections are sizable and have significant impact on the differential distributions.

Introduction. - At hadron colliders such as the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron, electroweak boson production in association with jets represents an important signal process as well as backgrounds to future searches beyond the Standard Model (BSM). One example is the measurement of anomalous triboson couplings, arising from BSM physics, which can be obscured by higher-order QCD effects. For these searches, signifcant progress is expected to be achieved by a combination of QCD corrections to production cross sections and is therefore essential.

In this letter we examine \(W + \text{jet}\) production at next-to-leading order (NLO) QCD, including leptonic decays of the \(W\). We provide a detailed description of our approach for the calculations of all relevant corrections, including the fully leptonic case. Our results are based on the \textsc{Vbfnlo} framework [8]. Although full leptonic decays of the massive \(W\) are included, we will refer to the processes as \(W + \text{jet}\) production in the following.

Elements of the Calculation and Checks. - The leading order contribution, at \(O(\alpha_s^0)\), to the process \(p p \rightarrow W + \text{jet}\) includes subprocesses of the type \(g\gamma\) and \(gg\) and \(Q\bar{Q}\) initiated subprocesses which are related by crossing.

The 10 Feynman graphs for each subprocess can be classified into two categories: First, configurations where the photon is emitted from the \(W\) and the \(W\)'s decay lepton, and, second, graphs where the photon is emitted from the quark line. Performing the virtual correction at \(O(\alpha_s^0)\), these topologies give rise to self-energy, triangle, box, and pentagon diagrams. The loop corrections are treated using standard methods: Self-energy, triangle, box, and pentagon integrals are evaluated in terms of tensor coefficients \([9,10]\) in dimensional reduction, after having applied \(\overline{\text{MS}}\)-renormalization. We combine the virtual corrections to groups that include all loop diagrams derived from a Born level configuration, i.e., all self-energy, triangle, box and pentagon corrections to a quark line with three attached gauge bosons are combined to a single routine. This method leaves us with a universal set of virtual

Fig. 1: Representative Feynman diagrams contributing to the virtual corrections to the partonic subprocess \(ud \rightarrow W\) at \(O(\alpha_s^0)\). The crosses mark other points where the photon is attached to the quark line and the \(W\) boson.
building blocks, which are then assembled for the specific process under consideration. This strategy has already been applied to various phenomenological studies at NLO-QCD precision, e.g. [6,11].

The reduction of the loop diagrams has been calculated in two independent ways for verification reasons. The first approach uses in-house routines within the framework of FeynCalc [12] and FeynArts, while the second one relies on FeynArts, FormCalc, and LoopTools [13,14], with modifications, in particular to the treatment of divergencies, as described in [15]. We nd that both calculations agree within the Fortran precision for di erent points. Performing the NLO-computation in the chiral limit, the arising infrared (IR) singularities have been determined separately in independent approaches, and checked against existing results in the literature [16,17].

The IR singularities encountered in the real emission contributions are regularized using the Catani-Seymour gluon subleading subprocesses [21]. The numerical integration of the dipole contributions has been numerically checked against MadGraph [22]. The code is optimized such that intermediate dipole results are stored and reused in order to avoid redundant calculations. Remaining allowed collinear terms are integrated numerically. The leading-order matrix element, as well as the subtraction terms, is generated with MadGraph [22]. Due to the increase of subprocesses when going to the evaluation of the IR-subtracted real emission matrix element, optimization is imperative in order not to jeopardize CPU time.

Here, the matrix element is calculated using the spinor helicity formalism of [23], and internal dimuon numerical accuracy results, coming on to all subprocesses, are stored and reused, thus speeding up the numerical code. The real emission matrix elements, cf. Fig. 2, for sample graphs of the paronic subprocess ud ! g, have been checked numerically against code generated by MadGraph for every subprocess. Integrated results were checked against Sherpa [24].

Concerning the Monte-Carlo implementation of the virtual corrections, we have implemented the loop contributions using our Vbfnl0 routines, that involve the Pasearino-Veltman reduction scheme [9] to boxes, the Denner-Dittmaier reduction scheme [10] for pentagons, and the spinor helicity formalism of [11]. Throughout, the numerical integration is performed using a modified version of Vegas [25], which is part of the Vbfnl0 package, with di erent channels for the two- and three-body decay of the W boson. Finite width e ects of the W boson are taken into account using a modified version of the common mass scheme of [26]: The weak mixing angle is taken to be real, while using a Breit-Wigner propagator for the W boson. This scheme corresponds to the implementation in MadGraph.

For a more detailed discussion of the calculation and its numerical implementation, we refer the reader to a separate paper [27].

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
W & j [fb] & W & jj [fb] \\
\hline
m od. Vbfnl0 & 268.3 & 0.12 & 124.7 & 0.10 \\
Sherpa & 268.4 & 0.37 & 124.3 & 0.59 \\
MadEvent & 268.2 & 0.59 & 123.8 & 0.40 \\
\hline
\end{tabular}
\caption{Comparison of integrated W j and W jj tree-level cross sections at the LHC. The cross sections were calculated with our modified version of Vbfnl0, MadEvent v4.2.21, and Sherpa v1.1.3. The QCD-IR-safe photon-isolation is replaced by a conventional separation \(R_{ij} \), \(R_{ij} \), for all jets. We also require \(R_{ij} \), \(R_{ij} \), and \(R_{ij} \) at 0.7. All other parameters and cuts are chosen as described in the text.}
\end{table}
Fig. 3: Comparison of the scale dependence of the total cross section of $pp \rightarrow e^+ X$ at LO (dashed), NLO-QCD (solid), and NLO-QCD with the second jet vetoed (dot-dashed) for the cuts chosen as described in the text at the LHC.

Fig. 4: Comparison of the scale dependence of the total cross section of $pp \rightarrow e^+ X$ at LO (dashed), NLO-QCD (solid), and NLO-QCD with the second jet vetoed (dot-dashed) for the cuts chosen as described in the text at the LHC.

Fig. 5: Tevatron-comparison of the scale dependence of the total cross section of $pp \rightarrow e^+ j$ at LO (dashed) and NLO-QCD (solid) for the cuts chosen as described in the text.

A non-diagonal CKM matrix decreases our leading-order LHC result at the per mille level as gluon-induced processes dominate the cross section. The correction for the Tevatron results, which are mostly quark-induced, is about 3%. These corrections are well below the residual scale dependence at NLO-QCD. The bottom contributions are negligible and can be further suppressed by b-tagging. Jets are recombined via the k_{t} algorithm from massless partons of pseudorapidities $j \gamma_{j}$, with resolution parameter $D = 0.7$. The jets are required to lie in the rapidity range $y_{j} < 5$ with $p_{T} < 50$ GeV. The photon and the charged lepton are chosen to be rather hard and central, $p_{T} > 20$ GeV, $p_{T} > 50$ GeV, j_{γ}, while being separated in the azimuthal angle-pseudorapidity plane by $R_{j\gamma} = (\gamma + \gamma)^{1/2} = 0.2$. For the separation of the charged lepton from observable jets, we choose $R_{j\gamma} = 0.2$. A naive isolation criterion for the partons and the photon spoils IR-safety, yet isolation is necessary to avoid fragmentation contributions. We apply the method suggested in [30], denoting

$$X \gamma_{j} \partial_{R} \gamma_{j} \frac{1}{\sin \alpha} \frac{1}{\cos \alpha} \frac{1}{\cos \alpha}$$

where the index i runs over all partons, found in a cone around the photon of size R. For the cut parameter, that determines the QCD-IR-safe cone size around the photon, we choose $\alpha = 1$.

At leading order, we find a QCD scale dependence of approximately 11% for $W^{+} j$ production at the LHC. When varying $R = \frac{1}{\sqrt{2}}$ by a factor two around 100 GeV, cf. Figs. 4 and 6 for identical renormalization and factorization scales. This scale dependence is only reduced to about 7% when including NLO-QCD precision for $W^{+} j$. This is due to the renormalization scale dependence of the dijett contribution at NLO. Vetoing additional jets results in a stabilization of the cross section, as the veto projects on true $W^{+} j$ events. This agrees with the results on $W^{+} j$ production [5] and $W^{+} W^{-}$ production [1,31].

The difference of $W^{+} j$ compared to $W^{+} j$ is predominantly due to the different parton distribution functions of the dominant subprocesses. Qualitatively, the $W^{+} j$ channel generalizes to $W^{+} j$, as it is broadened by an overall increase of the cross section of about 54% (see also Tab. 4).

At the Tevatron, g we find a QCD scale dependence of 23%, which is reduced to about 8% at NLO-QCD. A jet veto is not necessary to stabilize the perturbative corrections as additional jet radiation is sufficiently suppressed by the hard cut on the jet transverse momentum, $p_{T}^{jet} = 50$ GeV.

For the scale choice $\mu = 100$ GeV the total NLO re-
Fig. 6: Differential distribution of the photon-lepton separation R_v at LO (dashed) and at NLO (solid). The lower panel shows the differential K-factor. The dotted line denotes the total K-factor of Table 2.

Fig. 7: Maximum jet-p_T distribution at leading order (dashed) and next-to-leading order QCD (solid). The dotted line denotes the total K-factor of Table 2.

Table 2: Next-to-leading order cross sections and K-factors for the processes $pp \to W^-\gamma j$ at the LHC for included renormalization and factorization scales, $\mu = \mu_F = 100\text{ GeV}$. The cuts are chosen as described in the text.

$$
\begin{array}{ccc}
\text{Process} & \text{LO [pb]} & \text{NLO = LO [pb]} \\
W^- j & 558.7 & 24 & 1413 \\
W^+ j & 676.9 & 32 & 1339 \\
\end{array}
$$

We would like to thank Stefan Dietmaier, Stefan Kallweit and Giuseppe Bozzi for helpful discussions, and Stefan Schumann for Sherpa-support. F.C. acknowledges
REFERENCES