TOPICAL REVIEW

Gravitational self force in extrememass-ratio inspirals

Leor Barack

School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom

Abstract. This review is concerned with the gravitational self-force acting on a mass particle in orbit around a large black hole. Renewed interest in this old problem is driven by the prospects of detecting gravitational waves from strongly gravitating binaries with extreme mass ratios. We begin here with a summary of recent advances in the theory of gravitational self-interaction in curved spacetime, and proceed to survey some of the ideas and computational strategies devised for implementing this theory in the case of a particle orbiting a Kerr black hole. We review in detail two of these methods: (i) the standard mode-sum method, in which the metric perturbation is regularized mode-by-mode in a multipole decomposition, and (ii) m-mode regularization, whereby individual azimuthal modes of the metric perturbation are regularized in $2+1$ dimensions. We discuss several practical issues that arise, including the choice of gauge, the numerical representation of the particle singularity, and how high-frequency contributions near the particle are dealt with in frequency-domain calculations. As an example of a full end-to-end implementation of the mode-sum method, we discuss the computation of the gravitational self-force for eccentric geodesic orbits in Schwarzschild, using a direct integration of the Lorenz-gauge perturbation equations in the time domain. With the computational framework now in place, researchers have recently turned to explore the physical consequences of the gravitational self-force: we will describe some preliminary results in this area. An appendix to this review presents, for the first time, a detailed derivation of the regularization parameters necessary for implementing the mode-sum method in Kerr spacetime.

PACS numbers: 04.30.Db, 04.30.-w, 04.25.Nx, 04.70.Bw
E-mail: leor@soton.ac.uk

1. Introduction

Context and motivation. Within Newtonian theory, the gravitational two-body problem, in its basic form, is readily solvable. An isolated system of two gravitationally-bound point masses admits two conserved integrals: the energy and angular momentum and the resulting motion is precisely periodic. The corresponding general-relativistic problem is radically and notoriously more difficult. In General Relativity (GR), the orbits in a bound binary are never periodic: Gravitational radiation continually removes energy and angular momentum from the system, and the radiation back-reaction gradually drives the two objects tighter together until they eventually merge. Furthermore, in GR one cannot usually work consistently with pointlike mass particles (as we discuss later), and the simplest and most universal two-body problem becomes that of a binary black hole system.
In general, the description of the nonlinear radiative dynamics of a black hole binary entails a full numerical relativistic (NR) treatment. There has been a much celebrated advance in NR research in the past few years [138, 45, 9], with NR codes now capable of tracking the complicated nonlinear evolution of a binary black hole space-time during the final stages of the merger. However, NR methods become less efficient when the two black holes are far apart, or when one of the components is much heavier than the other. Each of these two regimes features two greatly different length scales, which is not easily accommodated in a NR framework [76]. Fortunately, the occurrence of two separate length scales also restores a sense of "pointlike" (at least approximately), which allows for simpler, perturbative treatments. In the first regime at sufficiently large separations, the dynamics is best analyzed using post-Newtonian (PN) methods [36], wherein GR corrections to the Newtonian dynamics (accounting for radiation reaction, the objects' internal structure, etc.) are incorporated into the equations of motion order by order in the binary separation.

The second, so-called extreme mass-ratio regime, which will concern us in this review, is most naturally explored within the framework of black hole perturbation theory. Here the "zeroth-order" configuration is that of a test particle (the lighter black hole) moving along a geodesic of the fixed background space-time of the large black hole. This can then serve as a basis for a systematic expansion, wherein corrections due to the large mass of the small object (and due possibly also to its internal structure) are included order by order in the small mass ratio. At first order in the mass ratio, the gravitational field of the small object is a linear perturbation of the background black hole geometry. The back reaction from this perturbation gives rise to a gravitational self-force (SF) which gradually diverts the small object from its geodesic motion. In this picture, it is the SF that is responsible (in particular) for the radiative decay of the orbit. In principle, knowledge of the SF (along with the metric perturbation) forms a complete picture of the orbital dynamics at linear order in the small mass ratio. One therefore hopes that a calculation of the SF would facilitate a faithful, if only approximate, description of the orbital dynamics in binary systems with small mass ratios.

The determination of the SF in curved space-time is an old problem in mathematical relativity, made very relevant following recent developments in gravitational-wave research. Interest in this problem was renewed in the mid 1990s, when it was first proposed that the planned space-based gravitational-wave detector LISA (the Laser Interferometer Space Antenna [2]) could observe signals from the inspiral of compact objects (white dwarfs, neutron stars, or stellar-mass black holes) into massive black holes in galactic nuclei. It is now believed that LISA should be able to detect tens to thousands such events [70], out to cosmological distances (z < 1) [68], depending on the astrophysical rates (inspirals per galaxy per year), which are still highly uncertain. Dubbed EMRIs (Extreme Mass Ratio Inspirals), these potential sources became key targets for LISA due to their unique facility as precision probes of strong-field gravity. A typical EMRI will spend the last few years of inspiral in a very tight orbit around the massive hole, emitting some 10^7 - 10^8 gravitational-wave cycles, within the LISA frequency band. These complicated waveforms carry extremely accurate information about the physical parameters of the inspiral system, as well as a detailed map of the spacetime geometry around the
The potential scientific implications are broad and far-reaching, ranging from astrophysics to cosmology and to fundamental theory [14,16,1,7,13,148]. The odds are that even the strongest detected EMRI signals will be buried deeply inside LISA's instrumental noise. However, since an EMRI signal is detectable over a long time, it can be extracted with significant signal-to-noise ratio (of order 100 for the strongest sources) using matched filtering [14]. This, however, requires precise theoretical templates of EMRI waveforms across the relevant parameter space of inspirals; indeed, the detection statistics cited above assume that such templates were at hand by the time LISA flies. It is likely that other, non-template-based data analysis techniques could be used to detect some of the brightest EMRIs [72,8]. Nonetheless, it remains true that an accurate parameter extraction, crucial for exploiting the full scientific value of the EMRI signal, will rely on (or be restricted by) the availability of accurate and faithful theoretical templates of the inspiral waveform.

The theoretical challenge is derived from the astrophysical specifications of the LISA-relevant EMRIs. With its peak sensitivity at a few m Hz, LISA will observe inspirals into galactic (likely Kerr) black holes with masses in the range 5×10^5 to 5×10^7 M$_\odot$; the inspiraling objects (compact stars or stellar-mass black holes) may have masses in the range 0.5×10^4 to 10^8 M$_\odot$ well within the "extrememass ratio" domain of the two-body problem. Inspirals are not expected to have any preferred orientation with respect to the central hole's spin direction, and orbits may remain quite eccentric throughout the inspiral [14]. It is not likely that interaction with a possible accretion disk around the massive hole would play a dominant role in the orbital dynamics [33]. In a typical LISA-band EMRI a 10 M$_\odot$ - 10^7 M$_\odot$ system, gravitational radiation reaction drives the orbital decay over a timescale of months. More importantly, it affects the phasing of the inspiral orbit over mere hours. It is therefore clear that a useful model of the long-term orbital phase evolution in a LISA-relevant system ought to incorporate properly the effect of radiation reaction.

The above translates, at first approximation, to a very clean problem in black hole perturbation theory: A point mass is set in a generic (eccentric, inclined) strong-field orbit around a Kerr black hole of a much larger mass, and one wishes to calculate the gravitational waveforms emitted as radiation reaction drives the gradual inspiral up until the eventual plunge through the event horizon. While it remains important to quantify the effect of higher-order corrections to this picture (e.g., due to the spin of the inspiraling object), one expects that, thanks to the extreme mass ratio, the above simple setup should provide a good model for astrophysical inspirals. Indeed, from the perspective of GR theorists working in the strong-field regime, much of the appeal of the SF problem comes from its unusual dual nature as both an elementary theoretical problem in GR, and an exciting problem in contemporary astrophysics.

Scope and relation to other reviews. Our main aim here is to review the challenges and main developments in the program to calculate the gravitational SF in Kerr spacetime. Our discussion will be focused mostly on work concerned with the evaluation of the SF along a specific, non-evolving orbit (nominally taken to be a geodesic of the background spacetime); we will not consider here the important question of how orbits evolve under the effect of the SF. The strategic approach envisaged here is one in which the complete analysis of the orbital evolution is carried out in two separate, consequent steps. In the first preparatory step, one calculates the SF across the entire relevant phase space (i.e., obtain the value of the SF as a function of location and velocity,
perhaps through interpolation of numerical results). In the second step one then uses the SF information to calculate the inspiral orbits of particles with given initial conditions. Here we will be concerned only with the first, most crucial step.

In parallel to the work on SFs described in this review, there is already a substantial research effort aimed to formulate a reliable scheme for the orbital evolution, assuming the SF has been calculated \[137, 87\]. This work incorporates techniques from multiple-scale perturbation theory. A another parallel effort aims to obtain an approximate model of the orbital evolution and emitted waveform without resorting to the local SF \[92, 63, 64, 146, 73, 113\]. This work is largely based on a strategy proposed by Mino \[110, 111, 145, 112\], in which a time-average measure of the rate of change of the geodesic "constants of motion" is calculated from a certain "radiative" solution of the perturbation equations (to be described later in this review), which accounts for the long-term radiative aspects of the dynamics but neglects some of the conservative effects. This "inspiraliswithout SF" approach is reviewed by Mino in Ref. \[111\], and also by Tanaka in Ref. \[154\]. It is well possible that this method will prove sufficiently accurate for LISA applications. However, ultimately, its performance and accuracy could only be assessed against actual calculations of the full SF.

The fundamental formulation of the SF in curved spacetime is described in a comprehensive Living Review article by Poisson \[131\]. This is an excellent treatise which is both self-contained and pedagogical, and it makes an essential reading for anyone wishing to introduce oneself to this field. (The less endurant reader would find a slightly abridged version of this review in Ref. \[132\]; there is also a concise introduction in \[133\].) It would not be useful to review here at any great detail the basic SF theory already covered in \[131\]. Instead, we merely give a succinct summary of the essential formal results, and move on to describe, in the rest of our review, how the general formalism is implemented in actual calculations of the gravitational SF in Kerr. In this respect, our review starts where Poisson’s review ends. We will, however, briefly survey a few recent developments in SF theory not covered in Ref. \[131\] (last updated in 2004).

A good 2005 snapshot of the activity surrounding SF calculations is offered by a collection of review articles published in a special issue of Classical and Quantum Gravity \[104\]. Drasco’s review from 2006 \[62\] explores the utility of the various computation methods within the context of the LISA EMRI problem. The website of the 12th Capra Meeting on Radiation Reaction in Relativity (Bloomington IN, 2009) \[1\] is an excellent resource of information on current research in this field, with links to all talks given in the meeting. The website also includes links to the websites of previous meetings in the series (1998-2008). There are several good reviews of EMRI astrophysics and the science potential of EMRI detections, including ones by Hopman \[89\], Amaro-Seoane et al. \[3\], and Miller et al. \[109\]. Finally, an abridged version of some of the material in our current review is to appear in Ref. \[12\].

Structure. The overall structure of our presentation will follow the logical route of development in SF research: From basic theory (Sec. 2) through to practical calculation schemes (Secs. 3-6) and to numerical implementation in Schwarzschild (Secs. 5-6) and Kerr (Sec. 7), concluding with a discussion of some physical consequences (Sec. 8).

We begin in Sec. 2 with a brief introduction to the general theory of the gravitational SF in curved spacetime, highlighting from the outset the role of gauge dependence in this theory. We then summarize (rather than reproduce) the main
theoretical developments that over the past twelve years helped establish a robust formal framework for SF calculations. Section 3 is a brief survey of the main strategies that have been proposed for implementing this formal framework in actual calculations, particularly for orbits in Kerr (or Schwarzschild) spacetimes. This section also provides a quick-reference catalogue (Tables 56) of actual computations of the SF carried out so far. Section 4 is a self-contained introduction to the mode-sum method, one of the leading techniques for SF calculations. The basic idea is presented through an elementary example, followed by a formulation of the method as applied to generic orbits in Kerr. In an accompanying appendix we provide, for the first time, a full derivation of the regularization parameters necessary for implementing the mode-sum scheme in Kerr. (The values of these parameters where published in the past [23] without a detailed derivation.)

An essential preliminary step in almost all calculations of the SF involves the numerical integration of the relevant perturbation equations sourced by the point particle. In Sec. 5 we discuss the practicalities of such calculations, and review some of the numerical strategies that were proposed for dealing with the particle singularity in both the frequency and time domains. Section 6 then focuses on a particular implementation strategy, based on a direct time-domain integration of the Lorenz-gauge metric perturbation equations. This approach recently led to a first computation of the gravitational SF for eccentric orbits in Schwarzschild, and we show some results from this calculation. In Sec. 7 we discuss higher-dimensional alternatives to standard mode-sum, focusing on the recently proposed m-mode regularization, which may offer a more efficient treatment in the Kerr case. Section 8 reviews initial work aimed at understanding and quantifying the physical, gauge-invariant effects of the gravitational SF. Finally, in Sec. 9 we rect on recent advances and comment on future directions.

Notation. We follow here the notation conventions of Misner, Thorne and Wheeler [117]. Hence, the metric signature is \((+++),\) the connection coefficients and Riemann tensor are \(g^{-1} g_{\mu \nu} g^{\alpha \beta} \) and \(R_{\mu \nu \alpha \beta} = g_{\mu \alpha} R_{\nu \beta} - g_{\mu \beta} R_{\nu \alpha} + R_{\nu \beta \alpha \mu},\) the Ricci tensor and scalar are \(R = R^{\mu}_{\mu}\) and \(R = R^{\mu \nu}_{\mu \nu},\) and the Einstein equations read \(G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R = 8 \pi T.\) We use Greek letters for spacetime indices, and adopt standard geometrized units (with \(c = G = 1\)) throughout.

2. Essential theory

2.1. Gravitational forces

The concept of a gravitational force is, of course, fundamentally strange to GR: In a purely gravitational system one expects no acceleration and hence no \"forces\" in the ordinary sense. Since by the gravitational SF is an example of a force of a purely gravitational origin, we begin by explaining what is generally meant by \"gravitational forces\" in our context.

Consider a smooth region of spacetime with metric \(g\) (which may be, for example, the stationary vacuum exterior of a Kerr black hole), and a smooth weak gravitational perturbation \(h\) of that spacetime (which may represent, for example, an incident gravitational wave). Now consider a test particle of mass \(m\) which is moving freely in the perturbed spacetime. Neglecting SF effects, the particle's trajectory will be a geodesic of the perturbed spacetime, described, in a given coordinate system \(x,\)
by
\[\frac{d^2 x}{d \xi^2} + \gamma_{00} \frac{dx}{d \xi} \frac{dx}{d \xi} = 0; \] (1)
where \(\gamma_{00} \) is an affine parameter along the trajectory and \(\gamma_{00} \) are the connection coefficients associated with the perturbed metric \(g + h \).

In some occasions, however, it is practically useful to reinterpret the particle's motion in terms of a trajectory in the background spacetime \(g \). Under this interpretation, the trajectory (in \(g \)) is no longer geodesic; rather, the particle experiences an external gravitational force, which is exerted by the perturbation \(h \). This (notitious) force is defined through Newton's second law as
\[F_{\text{grav}} = \frac{d^2 x}{d \tau^2} + \frac{dx}{d \tau} \frac{dx}{d \tau}; \] (2)
where \(d = d^i \) (to be specified later). From its definition in Eq. (2), \(F_{\text{grav}} \) is orthogonal to the four-velocity \(u \). Hence, projecting \(F_{\text{grav}} \) orthogonally to \(u \) keeps it unchanged, and we may use this fact to dispose of the term \(u \) in Eq. (3):
\[F_{\text{grav}} = (u + u u) u u; \] (3)
Finally, expressing \(F_{\text{grav}} \) in terms of the linear perturbation \(h \), we use \(d = d^i \) (to be specified later) and introduce \(r = 1/2 g u u u u + g u u \). By virtue of Eq. (1) this gives
\[F_{\text{grav}} = \frac{1}{2} (g + u u) (r h + r h) u u; \] (4)
where \(r \) denotes covariant differentiation with respect to the background metric \(g \). The differential operator \(r \) determines the gravitational force exerted by any given external perturbation; it is given explicitly by
\[r = \frac{1}{2} g u u u u u u; \] (5)
Later we will often work with the trace-reversed metric perturbation,
\[h = h \frac{1}{2} g h : \] (6)
In terms of \(h \), Eq. (5) becomes
\[F_{\text{grav}} = r h; \] (7)
with
\[r = \frac{1}{4} (2 g u u u u u u + g u u u u u u + g u u u u u u); \] (8)
where \(\gamma_{00} \) is an affine parameter along the trajectory and \(\gamma_{00} \) are the connection coefficients associated with the perturbed metric \(g + h \).
For all, the above interpretation of the motion requires a suitable procedure for mapping the physical trajectory from the full spacetime $g + h$ onto the background spacetime g. In the above discussion we adopted the following procedure: First, we assume that $g + h$ and g were covered with two coordinate meshes that are "similar" in the sense that, at the limit $h \rightarrow 0$, any given physical event would attain the same coordinate values in both spacetimes. Then, we identify each event x in $g + h$ with an event having the same coordinate value x in g. This, in particular, results in a projection of the trajectory in $g + h$ onto one in g.

Of course, there is not just one way of specifying the coordinate systems in the two spacetimes, which leads to an ambiguity in the projected trajectory: Different coordinate choices would, in general, give rise to different projected trajectories in g, showing different accelerations and hence interpreted as being under the influence of different gravitational forces. This, of course, is nothing but an example of the usual gauge ambiguity intrinsic to perturbation theory in GR. The gravitational force, just like the metric perturbation itself, is gauge dependent.

It is straightforward to write down a gauge transformation law for F_{grav}. Consider a small gauge displacement

$$ x \rightarrow x + \chi \quad (10) $$

where the magnitude of χ is assumed to scale like that of the external perturbation h. Under this, the perturbation transformation is $h + \chi$, where

$$ h = r + \dot{r} \quad (11) $$

From Eq. (10), this will induce a change in the gravitational force, given by

$$ (\chi) F_{\text{grav}} = r (\dot{h}) \quad (12) $$

(Terms arising from the gauge transformation of r are quadratic in the magnitude of the perturbation and we neglect them here.) Substituting from Eq. (11) in Eq. (12) and using the commutation relation $r \dot{r} - \dot{r} r = 1$, one readily arrives at

$$ h = r + \dot{r} = R \quad (13) $$

where overdots denote covariant derivatives with respect to the affine parameter along the background trajectory. This is the general gauge transformation formula for external gravitational forces.

2.2. Gravitational self-force

To devise a theory of the gravitational self-force, one might be tempted to simply interpret it as an example of a gravitational force of the type discussed above, with the source of the metric perturbation now being the particle itself. This naive interpretation would be problematic, for several reasons. First, the physical perturbation due to the particle (a retarded solution of the linearized Einstein equations, h^{ret}) is singular at the location of the particle, and the statement that the particle follows a geodesic of

One might notice that Eq. (13) reproduces the geodesic deviation equation if one sets the left-hand side zero and reinterprets x as the displacement vector connecting two adjacent geodesics in g. Indeed, a vanishing $(\chi) F_{\text{grav}}$ implies that the two adjacent trajectories (the original projected trajectory and its gauge-transformed counterpart) have the same acceleration in g, in which case the displacement vector between them is known to satisfy the geodesic deviation equation.
\(g + h^{\text{rest}}\) is therefore physically meaningless. Obviously, trying to apply Eq. (5) or (8) with the external perturbation replaced with the self-perturbation \(h^{\text{rest}}\) would yield a singular, and hence meaningless result.

Second (and relatedly), since we are now considering the self-gravity of the particle (it is no longer a test particle), we must make a mathematical sense of its being "pointlike". This is not a trivial matter to address in curved spacetime. Mathematically, the usual delta-function representation of a point particle stress-energy is known to be inconsistent with the nonlinearity of the full Einstein equations. A familiar physical manifestation of this is that one cannot squeeze a non-zero amount of mass to a point without creating a black hole (of a finite size). The mathematical consistency of a delta-function source is restored in the linear theory, but it remains a challenging task to understand how the notion of a point particle might emerge (rather than be pre-assumed) from a suitable limiting procedure.

Third, the SF is conceptually different from the external forces discussed above, in that the latter are, in truth, fictitious forces resulting from our insistence to artificially split the physical spacetime into a background and a perturbation. The SF, in contrast, must be viewed as a genuine physical effect (even if a delicate one, as the SF too is gauge dependent) see below). There indeed exists an interpretation of the motion we will discuss it later wherein the particle moves freely on a geodesic of a certain smooth, perturbed spacetime, subject to no SF. However, in this description the smooth geometry is not the physical spacetime of the background + particle system (the metric of this geometry is not a retarded solution of the linearized Einstein equations), and so this effective spacetime cannot be said to represent "physical reality" any better than the SF itself.\text{...}

Thanks to work commencing around 1997 and continuing to these days, we now have a rather satisfactory theory of the gravitational SF in curved spacetime, which, in particular, addresses all of the above issues. Initial work was strongly inspired by the classical analyses of the analogous electromagnetic self-force problem in at (Dirac, 1938) and curved (DeWitt and Brethm, 1960) spacetimes. DeWitt and Brehm's work, especially, provided much of the mathematical framework needed for analyzing the gravitational problem too. In 1997 two independent groups published three independent derivations of the gravitational SF. Quinn and Wald used an axiomatic approach, in which the physical self-acceleration is deduced, essentially, by comparing the (divergent) self-field of the particle in question with that of a particle in a suitably constructed tangent space. Independently, Mino, Sasaki and Tanaka (MST) obtained the same result using a local energy-momentum conservation argument. A direct application of DeWitt and Brehm's method to the gravitational case. Both these methods presuppose a notion of a point mass particle, and neither seeks to make a consistent sense of this notion. However, MST's paper also reported a second, independent derivation of the SF, using an approach which, for the first time, offered a fully GR-consistent treatment of the problem.

This approach a new implementation of the old idea of matched asymptotic expansions relies on the assumption that there can be identified two separate length scales in the problem: one associated with the particle's mass, and another, much larger, associated with the typical radius of curvature of the geometry in which the particle is moving. In the strongly-emitting MREI problem, the second length scale is provided by the mass of the central black hole, \(M\). MST's construction further assumes that the particle is actually a Schwarzschild black hole of mass \(M\). The
two separate scales in the setup define a "near zone", \(r = M \), and a "far zone", \(r > M \) (where \(r \) is a suitable measure of distance from the small hole). In the near zone, the geometry is approximately that of the small Schwarzschild hole, with small tidal-type corrections from the background geometry. As we zoom away from the small object and enter the far zone, the effect of the small object's detailed structure becomes gradually less important, and at the far zone limit the geometry becomes that of the background spacetime, weakly perturbed by what is now a distant 'point particle'! It is indeed the far-zone limit through which a notion of point mass can be deduced in a consistent way. In situations where \(M = m \), one would have a 'bigger zone' where \(r = M \) and both "near zone" and "far zone" descriptions of the geometry are valid. M ST showed that matching the near zone and far zone metrics (expressed as asymptotic expansions in \(r=M \) and \(m=r \), respectively) constrains the motion of the particle (from a far-zone point of view) and thus yields an expression for the SF. This expression agreed with those obtained by Quinn and Wald and by using DeWitt and Brehm's method; it was later coined the M SaTaQ uW formula, an acronym based on the names of the contributing authors. A self-contained and pedagogical review of the M SaTaQ uW formula, including an elegant reproduction of previous derivations, can be found in Poisson's [131].

More recently, Grassi and Wald [77] (see also [78]) developed a new procedure for deriving the gravitational SF, which offers improved mathematical rigor as well as a generalization of the M SaTaQ uW formula. Rather than relying on two separate asymptotic expansions of the metrics as in M ST's original method, Grassi and Wald introduce a single one-parameter family of metrics, which, through different limiting procedures, can produce both near and far zone metrics in a natural way. This allows us to define more robustly the criteria for existence of the two zones, and enables a more elegant boundary-zone matching. The analysis proves that in the far-zone limit the particle is described precisely by the usual delta-function distribution, and that at the very limit \(\rho \to 0 \) this particle moves on a geodesic of the background. Furthermore, the analysis relaxes all assumptions about the nature of the small object: It no longer need to be a Schwarzschild black hole, but can assume any sufficiently small black hole or a blob of ordinary matter. This allows, in particular, for a spin-force term to appear in the resulting, generalized version of the M SaTaQ uW formula.

The main end product of the above theoretical developments is a strongly-established general formula for the SF in a class of background spacetimes including Kerr. It should be stressed that the SF formula stems in a deterministic way from nothing else than the Einstein equations with the usual conservation laws; it does not rely on any assumption about the nature of the small object: It no longer need to be a Schwarzschild black hole, but can assume any sufficiently small black hole or a blob of ordinary matter. This allows, in particular, for a spin-force term to appear in the resulting, generalized version of the M SaTaQ uW formula.

2.3. M SaTaQ uW a equation

We now state the M SaTaQ uW formula [141, 115, 131]; Eq. (16) below. (For simplicity, we ignore spin-force terms and focus on the self-interaction part of the formula.) This will serve as a starting point for the rest of this review.

Consider a timelike geodesic in a background spacetime with metric \(g \). For concreteness, let us think of as a test particle orbit outside a Kerr black hole, so g
is the Kerr metric. Let be the proper time along , and let \(x = z(t) \) describe in some smooth coordinate system and \(u = \frac{dz}{dt} \) be the four velocity of the test particle. Denote by \(h^{\text{ret}} \) the physical, retarded metric perturbation from a particle of mass whose worldline is . Assume \(h^{\text{ret}} \) is given in the Lorenz gauge:
\[
r h^{\text{ret}} = 0; \quad (14)
\]
where \(h^{\text{ret}} \), recall, is the trace-reversed version of \(h^{\text{ret}} \) [see Eq. (7)]. Remember that throughout our discussion indices are raised and lowered using the background metric \(g \), and covariant derivatives are taken with respect to that metric.

At any spacetime point \(x \), the retarded perturbation can be written as a sum of two pieces,
\[
h^{\text{ret}} = h^{\text{dir}} + h^{\text{tail}}; \quad (15)
\]
the former being the "direct" contribution coming from the intersection of the past light-cone of \(x \) with \(\Gamma \), and the latter being the "tail" contribution arising from the part of inside this light cone (see Fig. 1). The occurrence of a tail term is a well-known feature of the wave equation in 3+1D curved spacetime, and it can be interpreted physically as arising from the effect of waves being scattered on spacetime curvature ("failure of the Huygens principle"). Both \(h^{\text{ret}} \) and \(h^{\text{dir}} \) obviously diverge when evaluated on ; however, \(h^{\text{tail}} \) is continuous and differentiable everywhere, including on the worldline. Notably, though, the tail \(h^{\text{tail}} \) is not a smooth function on the worldline, and is not a vacuum solution of the linearized Einstein equations.

\[\text{Figure 1. An illustration of the setup described in the text. } z(t) \text{ is a point on the timelike worldline (thick solid line) and } x \text{ is a field point close to } z, \text{ shown with a portion of its past light cone. } \delta x \text{ is the spatial geodesic distance from } x \text{ to } z. \text{ The metric perturbation at } x \text{ consists of a direct and a tail contributions, illustrated by the thick dashed and dash-dot lines, respectively. (Graphics reproduced from Ref. [12]).}\]

The \(\text{M \& T a Q} \) formula states that the gravitational SF at a given point \(z \) along results simply from the back reaction of the tail \(h^{\text{tail}}(z) \):
\[
F_{\text{self}}(z) = r h^{\text{tail}}(z); \quad (16)
\]
Here \(r \) is the usual "force operator", given in equation (9), which, recall, is dependent upon the four-velocity \(u \) and the background metric \(g \) at point \(z \).

In the original \(\text{M \& T a Q} \) formulation, the SF is not expressed directly in terms of the gradient.
2.4. Detweiler-Whiting reformation

In a 2003 paper [56] (see also a preliminary discussion in [52]) Detweiler and Whiting (DW) proposed an alternative formulation, which offers an interesting reinterpretation of the perturbed motion. DW replaced the direct/tail decom position of the retarded perturbation [Eq. (15)] with a new decom position,

$$ h^{\text{ret}} = h^S + h^R $$

(17)

where the R - field h^R (R for Regular), unlike the tail field, is a certain smooth, vacuum solution of the perturbation equations, which, nonetheless, gives rise to the same physical SF as the tail field:

$$ F_{\text{self}}(z) = r^2 h^R(z); $$

(18)

The S - field h^S (S for Singular), which precisely mimics the singular behavior of the retarded field near the particle, exerts no SF and does not affect the motion of the particle. The precise formal prescription for constructing the R and S fields is described nicely in Poisson's review [131].

DW's discovery that the MasaTaQuSF can also be expressed as the back-reaction force from a smooth vacuum perturbation leads to an interesting re-interpretation of the gravitational SF effect: The particle effectively moves freely along a geodesic of a smooth perturbed spacetime with metric $g + h^R$. In this alternative picture, m ore in the spirit of GR's equivalence principle, the notion of a SF becomes artificial (and obsolete) in much the same way that the notion of an external gravitational force is artificial.

It should be understood, however, that the R - field does not represent the actual physical perturbation from the particle (the physical perturbation field is of course h^{ret}). The R - field has peculiar causal properties which make it problematic as a candidate for what we may call a 'physical field': The value of the R - field at an event x depends not only on events in the causal past of x but also on events outside the light-cone of x [131]. Rather than an entity of physical substance, the R - field should be viewed as an effective field that allows us to describe the dynamics in terms of geodesic motion.

The two descriptions of the perturbed motion, self-accelerated motion in g versus geodesic motion in $g + h^R$, are alternative (equivalent) interpretations of the same (genuine) physical effect. The two points of view are not contradictory but rather they are complementary in their perspective on the problem. Workers in the field often find it useful to invoke both descriptions alternately in order to get a fuller picture of the physics in question. Sago et al. [147] recently demonstrated the equivalence of the two approaches with an explicit calculation of a certain gauge-invariant physical SF effect in a particular example; we shall return to discuss this work in Sec. 2.5.

2.5. Singular field

Equations (15) and (18) prescribe the correct regularization of the gravitational SF and form the foundation basis for all modern SF calculations. In later sections we replace h^{tail}, but rather as an integral over the gradient of the relevant retarded Green's function along the portion of the worldline to the past of z [cf. Eq. (1.9.6) of Poisson [131]]. The commutation of the derivative and the worldline integral produces local terms at z, which, however, vanish upon contraction with r. This leads to the equivalent formulation shown here in Eq. (15).
will discuss practical methods for implementing these formulas. We will then need some more information on the properties of the direct (or singular) field, which we now give.

The fields h^d and h^s share the same leading-order singular structure near the particle's worldline, but they differ in their subdominant singular behavior. More precisely (referring again to Fig. 1), consider a particular point z on a nearby $o - e l d point x$. The form of both the direct and S fields is then given, in the Lorenz gauge, by [116, 23, 121]

$$h^s(x; z) = \frac{4}{(x; z)} \left(\frac{(x; z) \cdot u}{(x; z)} \right) + \frac{w^s(x; z)}{(x; z)} + c^s \frac{u}{(x; z)}$$ \hspace{1cm}(19)$$

where ∂ is the four-velocity vector parallelly-propagated from z to x, is the spatial geodesic distance from x to z (i.e., the proper length of the short normal geodesic section connecting x to z), w^s are smooth functions of x (and z) which vanish at $x = z$ at least quadratically in the coordinate differences $x - z$, and c^s are constants (dependent on z but not on x). The S and direct fields differ only in the explicit form of w and (possibly) in the value of c, but neither of these will be important for us in this review.

It is, however, important to emphasize that the singular form [13] is generally gauge dependent. The expression given here is specific to the Lorenz gauge, and is not guaranteed to keep its form if one makes other gauge choices for the perturbation. Indeed, it has been demonstrated [21] that some common gauge choices can "distort" the local rest-frame isotropy of the Lorenz-gauge singularity manifest at (leading order) in Eq. 19.

2.5. Gauge dependence

Earlier we emphasized some important differences between the concepts of a general (external) gravitational force and that of the SF. The two notions, however, share a basic common feature: They are both defined via a mapping of the physical trajectory from a "perturbed" spacetime to a "background" spacetime. In both cases, such a mapping procedure gives rise to a gauge ambiguity. A thorough analysis of the gauge dependence of the gravitational SF was presented in Ref. [21], and a gauge transformation law for the SF was derived. Consider again the inhomogeneous gauge transformation of Eq. (10), where now the gauge displacement vector is assumed to scale like the particle's mass. The change this induces on the physical SF was found [21] to be given by

$$F_{\text{self}} = \left(g + u u \right) + R u u :$$ \hspace{1cm}(20)$$

This has the same form as the gauge transformation law for the external gravitational force [recall Eq. (13)], which is not surprising given the similar geometrical origin of the gauge freedom in both cases.

We note, however, that the derivation of the transformation rule [21] in Ref. [21] (which pre-dates the DW analysis) could not, and did not, follow the procedure we implemented above in deriving Eq. (13), simply replacing the external perturbation h^e with the physical perturbation from the particle, h^e_{ext}. That is because h^e_{ext}, unlike the smooth external field h^e, is singular at the particle, and so expressions such as
(11) or (12) (with \(h^\text{ret} \)) would make no sense when evaluated along the particle's worldline. DW's later R-\(\Phi \)l interpretation suggests an alternative derivation of Eq. (20): Since the R-\(\Phi \)l can be viewed, effectively, as a smooth external perturbation (even if one with peculiar causal properties), and since the SF is the force exerted by this perturbation, the derivation leading to Eq. (13) can be repeated in full with \(h^\text{ret} \), and Eq. (20) follows immediately. In effect, the R-\(\Phi \)l interpretation allows us here to treat the SF on an equal footing with the gravitational force from an external perturbation.

The gauge dependence of the SF by no means implies that there is something "unphysical" about it; the SF is as physical as the metric perturbation itself, which is also gauge dependent. The gauge dependence does mean, however, that one needs to exercise some care in decoding the physical content of the SF. One cannot expect to be able to describe the physical effect of the SF based on the value of the SF alone (to put this to extreme: one can always make a gauge choice that nullifies the SF anywhere along the orbit!). Instead, a meaningful description of the physical effect must involve both the SF and the gauge information associated with it (in the form of the metric perturbation, for example).

Another crucial point to have in mind is that the MSaTaQ uW formula (16) is guaranteed to hold true only if \(h^\text{ret} \) satisfies the Lorenz-gauge condition (14). Strictly speaking, the SF in a given non-Lorenz gauge only makes sense if, for relating that gauge to the Lorenz gauge, the expression on the right-hand side of Eq. (20) is well defined. This is not at all an obvious condition; some simple counter-examples are analyzed in [21]. In gauges for which the right-hand side of (20) does not have a well defined (i.e., finite and direction independent) particle limit, one might still devise a useful notion of the SF by averaging over angular directions, or by taking a directional limit in a consistent fashion. Such possibilities are discussed in Refs. [21,77].

2.7. Equations of motion

Given the SF, the particle's equation of motion becomes

\[
\mathbf{u} \mathbf{r} \mathbf{u} = F_{\text{self}}; \tag{21}
\]

where on the left-hand side we have the usual four-acceleration (times \(\mathbf{e} \)) along the background trajectory. This equation, along with the MSaTaQ uW equation (16), describe the dynamics of the particle given the metric perturbation (and assuming one has a way of extracting the tail piece out of the full perturbation). To close the system of equations we need to know how the metric perturbation is determined from the particle's trajectory. This, of course, is provided by the linearized Einstein equation, which takes the Lorenz-gauge form

\[
h^\text{ret} + 2 \mathbf{R} h^\text{ret} = \frac{Z}{16} \left(g^{1=2} \right) \text{det} \left[\mathbf{z} \left(\mathbf{x} \right) \right] \mathbf{u} \mathbf{u} \mathbf{d}; \tag{22}
\]

where \(g \) is the determinant of \(g \) and \(\mathbf{z} \left(\mathbf{x} \right) \), recall, describes the particle's worldline. The source on the right-hand side is the usual distributional representation of the point particle's energy-momentum. The \(\Phi \)l equation (22) is to be supplemented by the gauge condition (14) and by suitable boundary conditions.

The set of equations (16), (21), (22) and (13) (together with a method to obtain \(h^{\text{ret}} \) out of \(h^\text{ret} \)) should in principle determine the dynamics of the orbit at linear order.
in perturbation theory. However, as pointed out by Garalla and Wald recently [77], the \(\text{eq.} \) equation (22) is only consistent with the Lorenz gauge condition (14) if the particle is moving strictly along a geodesic, which would then be inconsistent with the equation of motion (21). To resolve this inconsistency while allowing for orbital evolution, Garalla and Wald suggested a "Lorenz-gauge relaxation" approach, wherein one relaxes the gauge condition (14) and considers solutions of the set (16, 21, 22). One then expects that, in situations where the orbit is very nearly geodesic (as is usually the case with LISA-relevant astrophysical inspirals), such solutions would give a faithful, albeit approximate description of the actual orbit. This approach is yet to be implemented and tested in actual calculations of the orbital evolution.

The proposal to use self-consistent solutions of the set (16, 21, 22) for modeling the slow orbital evolution at linear order in perturbation theory was put forward by Garalla and Wald in [77]. A different mathematical framework, based on techniques from multi-scale perturbation theory, was developed by Hinderer and Flanagan in [87]. Pound and Poisson [136, 137] performed first actual calculations of the orbital evolution under the full SF effect, using multi-scale analysis, within a weak-field, PN framework. Thus far there are no calculations of the full orbital evolution in strong-field scenarios.

In the rest of this review we will not consider any further the question of orbital evolution, but rather focus on the calculation of the SF [via Eqs. (14) or (16)] along a pre-determined, non-evolving orbit. We consider this a preliminary step, whose output (e.g., the value of the SF at sufficiently many points across the relevant phase space) can later be incorporated into whichever evolution scheme one chooses to apply.

3. Overview of implementation frameworks and calculations to date

Starting in the late 1990s, work began to translate MiSaTaQuW a's SF formalism into practical working schemes and to implement it in actual calculations. While the "holy grail" of this program has from the outset been, and still remains, the calculation of the gravitational SF for generic orbits around Kerr black holes, much of the initial effort has focused on the simpler toy problem of the scalar-field SF, and on simpler classes of orbits (radial, circular) in Schwarzschild spacetime. The last few years, however, saw first actual calculations of the gravitational (and electromagnetic) SFs for generic orbits in Schwarzschild and initial work on Kerr is now underway. In this section we give a broad overview of the methods that have been suggested for implementing MiSaTaQuW a's SF formalism, and we survey the actual calculations performed so far.

Our starting point are the formal expressions (16) and (18) for the gravitational SF. To facilitate the following discussion, we first use Eqs. (16) and (17) to recast these expressions in the more practical form

\[
F_{\text{ext}}(z) = \lim_{x \to z} h_{\text{ext}}(x) r_x \hat{h}^{\text{ext}}(x) \hat{r}_x \; r^{\text{ext}}(x) \; \hat{r}^{\text{ext}}(x),
\]

referring once again to Fig. 1 for notation. This describes a "regularization" procedure, which one can perform using either \(\hat{h} \) or \(\hat{h}^{\text{ext}} \) both producing the same overall value for the SF. The limit procedure is necessary here because the individual \(\hat{h} \) and \(\hat{h}^{\text{ext}} \) are each singular at \(x = z \), and so are their derivatives. Since the operator \(r \) is only defined along the particle's worldline
as it involves the four-velocity | recall Eq. (8), in Eq. (23) we needed to introduce an extension of this operator o the worldline| denoted \(r_x \). For all \(x \) in the neighborhood of a given worldline point \(z \), the operator \(r_x \) is given by Eq. (9), where \(u \) and \(g \) take the same values they have at \(z \), and \(r \) is the standard covariant derivative at point \(x \). Here, and throughout this review, we use this \"ixed contravariant components\" extension of \(r \) exclusively, although other natural extensions are possible [23]. Of course, the nal value of the SF in Eq. (23), after the limit \(x \to z \) is taken, is not sensitive to the choice of extension. Notice that the definition of \(r_x \) is, of course, coordinate dependent, and it becomes well-posed only in reference to a speci c coordinate system. Also note that the operator \(r_x \) is de ned with respect to a given point \(z \).

The most basic technical challenge one faces in preparing to implement the MiSaTaQuW formula is the so-called subtraction problem: How does one go about extracting the tail (or R) piece from the full retarded perturbation in practice? Equation (23) suggests applying the subtraction \(h^{\text{ret}} \to h^{\text{as-s}} \), using approximate analytic expressions for the direct/S pieces, such as the one in Eq. (19). However, this involves the removal of one divergent quantity from another, which is not easily tractable in actual numerical calculations. Several strategies have been proposed to address this problem, and in the main part of this review we shall describe a few of them in some detail. Here we proceed with a brief overview of the main avenues of approach to this problem.

Quasi-local/matched expansions calculations. [4, 7, 8, 5, 126, 127] This approach tackles the calculation of the tail contribution directly, by analytically evaluating the Hadamard expansion of the relevant Greens function. Such calculations capture the \"near\" part of the tail, which, one might hope, represents the dominant contribution in problems of interest. Quasi-local calculations can be supplemented by a numerical computation of the \"far\" part of the tail, a strategy referred to as \"ixed matched expansions\" (not to be confused with matched asymptotic expansions). The applicability of this idea was demonstrated very recently [18] with a full calculation in Nariai spacetime (a simple toy spacetime featuring many of the characteristics of Schwarzschild).

Weak-eld analysis. [59, 129, 133, 135, 136] The tail formula can be evaluated analytically for certain weak-eld con gurations, within a Newtonian or a post-Newtonian (PN) framework. Such work has provided important insight into the nature and properties of the SF. PN techniques have also been implemented in combination with the mode-sum method discussed below [118, 120, 121, 55, 86].

Radiation-gauge regularization. [95] This approach proposes a reformulation of the MiSaTaQuW a regularization, in which one reconstructs the R-part of the metric perturbation in a radiation gauge (rather than the Lorenz gauge) from a suitably regularized Newman-Penrose curvature scalar \(\Theta \) or \(\Psi \). The main advantage of this method is that it reduces the numerical component of the calculation to a solution of a single scalar-like (Teukolsky’s) equation. However, some of the technical complexity is relegated to the metric reconstruction step. This technique was implemented so far only for a particle held static in Schwarzschild, but more interesting cases are currently being studied [95, 97]. See the discussion in Sec. 5.1 for more details.
Mode-sum method. An approach whereby one evaluates the tail contribution m ode by m ode in a multipole expansion. The subtraction \textquoteleft ret dir\textquoteright (or \textquoteleft ret S\textquoteright) in Eq. (23) is performed m ode by m ode, avoiding the need to deal with divergent quantities. The method exploits the separability of the \textit{e}kk equations in Kerr into multipole harm onics. The mode-sum method has provided the framework for the bulk of work on SF calculations over the last decade. We will discuss it in detail in Sec. 4.

Punctured methods. A set of recently-proposed methods custom-built for time-domain numerical simulations in 2+1 or 3+1 dimensions. Common to these methods is the idea to utilize as a variable for the numerical time-evolution a \textit{punctured} \textit{e}kl, constructed from the full (retarded) \textit{e}kl by removing a suitable singular piece, given analytically. The piece removed approximates the correct S-\textit{e}kl sufficiently well that the resulting \textit{residual} \textit{e}kl is guaranteed to yield the correct M \textit{SaTaQ} i\textit{U} a SF. In the 2+1D version of this approach the regularization is done m ode by m ode in the azimuthal (m-m ode) expansion of the full \textit{e}kl. This procedure offers significant simplification; we shall review it in detail in Sec. 7.

3.1. SF calculations to date

As we have mentioned already, the program to calculate the SF for black hole orbits has been progressing gradually, through the study of a set of simple model problems. Some of the necessary computational techniques were first tested within the simpler framework of a scalar-\textit{e}kl toy model before being applied to the electromagnetic (EM) and gravitational problems. Authors have considered special classes of orbits (static, radial, circular) before attempting more generic cases, and much of the work so far has focused on Schwarzschild orbits. The state of the art in the \textit{e}kl is numerical codes to compute the scalar, EM and gravitational SFs along any given (geodesic) orbit outside a Schwarzschild black hole. It is reasonable to expect that attention will now be increasingly drawn to the Kerr problem.

The information in Tables I-3 is meant to provide a quick reference to work done so far. It covers actual evaluations of the local SF that are based on the M \textit{SaTaQ} i\textit{U} a formulation (or the analogous scalar-\textit{e}kl and EM formulations of Refs. [143] and [58, 83, 144], respectively), either directly or through one of the aforementioned implementations methods. We have included weak-\textit{e}kl and PN implementations, but have not included work based on the radiative \textit{e}kl approach. Some of the techniques referred to under \textit{strategy} will be discussed in the following sections.

4. Mode-sum method

Let us write the subtraction formula using the more compact notation

$$F_{\text{self}}(z) = \lim_{x \to z} [F_{\text{ret}}(x) - F_{\text{S}}(x)];$$

(24)

where we have introduced the \textit{e}kl's \textit{\check{f}}

$$F_{\text{ret}}(x) = r_x \cdot h_{\text{ret}}(x); \quad F_{\text{S}}(x) = r_x \cdot h_{\text{S}}(x);$$

(25)

For concreteness and simplicity we adopt here the S-\textit{e}kl subtraction, noting that the entire discussion in this section would not be altered upon replacing S! direct and
Scalar-Field Self Force

<table>
<thead>
<tr>
<th>Case</th>
<th>Author(s)</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtonian potential</td>
<td>Plüning & Poisson</td>
<td>direct, analytic</td>
</tr>
<tr>
<td>spherical mass shell: static particle</td>
<td>Burko et al. [43]</td>
<td>mode sum, analytic</td>
</tr>
<tr>
<td>Isotropic cosmology: static particle</td>
<td>Burko et al. [44]</td>
<td>direct, analytic</td>
</tr>
<tr>
<td>Isotropic cosmology: slow motion</td>
<td>Haas & Poisson [82]</td>
<td>direct, analytic</td>
</tr>
<tr>
<td>Nariai spacetime: static particle</td>
<td>Casals et al. [48]</td>
<td>matched expansions</td>
</tr>
<tr>
<td>Schwarzschild: static particle</td>
<td>Burko [39]</td>
<td>mode sum, analytic</td>
</tr>
<tr>
<td>Schwarzschild: radial geodesics</td>
<td>W. Mann [163]</td>
<td>direct, analytic</td>
</tr>
<tr>
<td>Schwarzschild: circular geodesics</td>
<td>Nakano et al. [42]</td>
<td>post-Newtonian, analytic</td>
</tr>
<tr>
<td>Schwarzschild: eccentric geodesics</td>
<td>Haas [80]</td>
<td>mode sum, analytic</td>
</tr>
<tr>
<td>Kerr(Newman): static particle</td>
<td>Burko & Liu [42]</td>
<td>mode sum, analytic</td>
</tr>
<tr>
<td>Kerr: circular-equatorial geodesics</td>
<td>W. Arbeyton & Barack [162]</td>
<td>mode sum, analytic</td>
</tr>
</tbody>
</table>

Table 1. Calculations of the scalar-field SF as a toy model for the gravitational problem. In this table, as well as in Tables 2 and 3, "direct" implies explicit evaluation of the tail contribution to the SF. "Mode sum" and "puncture" refer to the two implementation schemes described, respectively, in Sec. 4 and 7 of this review. The method of "matched expansions" (different from "matched asymptotic expansions") is described briefly in Secs. 8.

The fields F_{ret} and F_{s} inherit the extension ambiguity of r_\times, but here we shall always use the (coordinate dependent) "xen" extension described above. Both F_{ret} and F_{s}, of course, diverge at the particle, but their difference is a smooth (analytic) function of x_\times even at the particle.

In the mode-sum method we formally decompose each vectorial component of both F_{ret} and F_{s} into spherical harmonics. These harmonics are defined in the Kerr/Schwarzschild background based on the Boyer-Lindquist/Schwarzschild coordinates $(r;r;\theta)$ in the standard way, i.e., through a projection onto an z. The only exception is that statements referring to the smoothness of the R - ekli would need to be formulated more carefully to reflect the irregularity in the higher derivatives of the tail ekli. This irregularity, however, would have little practical impact on the discussion in this section.
Electromagnetic self force

<table>
<thead>
<tr>
<th>Case</th>
<th>Author(s)</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtonian potential</td>
<td>Penning & Poisson</td>
<td>direct, analytic</td>
</tr>
<tr>
<td>Isotropic cosmology:</td>
<td>Haas & Poisson</td>
<td>direct, analytic</td>
</tr>
<tr>
<td>slow motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwarzschild:</td>
<td>Burko [39]</td>
<td>mode sum, analytic</td>
</tr>
<tr>
<td>static particle</td>
<td>Keidl et al. [96]</td>
<td>radiation-gauge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>regularization, analytic</td>
</tr>
<tr>
<td>Schwarzschild:</td>
<td>Haas [81]</td>
<td>mode sum, numerical</td>
</tr>
<tr>
<td>eccentric geodesics</td>
<td></td>
<td>(1+1D evolution)</td>
</tr>
</tbody>
</table>

Table 2. Recent calculations of the Electromagnetic self-force.

Gravitational self force

<table>
<thead>
<tr>
<th>Case</th>
<th>Author(s)</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtonian potential</td>
<td>Penning & Poisson</td>
<td>direct, analytic</td>
</tr>
<tr>
<td>Schwarzschild:</td>
<td>Barack & Lousto</td>
<td>mode sum, 1+1D evolution</td>
</tr>
<tr>
<td>radial geodesics</td>
<td></td>
<td>in Regge (W heeler gauge)</td>
</tr>
<tr>
<td>Schwarzschild:</td>
<td>Keidl et al. [96]</td>
<td>radiation-gauge</td>
</tr>
<tr>
<td>static particle</td>
<td></td>
<td>regularization, analytic</td>
</tr>
<tr>
<td>Schwarzschild:</td>
<td>Barack & Sago</td>
<td>mode sum, 1+1D evolution</td>
</tr>
<tr>
<td>circular geodesics</td>
<td></td>
<td>in Lorentz gauge</td>
</tr>
<tr>
<td></td>
<td>Detweiler [54]</td>
<td>m ode sum , frequency-d omain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in Regge (W heeler gauge)</td>
</tr>
<tr>
<td>Schwarzschild:</td>
<td>Barack & Sago</td>
<td>mode sum, 1+1D evolution</td>
</tr>
<tr>
<td>eccentric geodesics</td>
<td></td>
<td>in Lorentz gauge</td>
</tr>
</tbody>
</table>

Table 3. Calculations of the Gravitational self-force.

An orthogonal basis of angular functions is defined on surfaces of constant t and r. Let us denote by $F_{\text{ret}}^{(l)}(x)$ and $F_{\text{S}}^{(l)}(x)$ the l-mode contributions to F_{ret} and F_{S}, respectively (summed over m). A key observation is that each of these l-mode fields is finite even at the particle. This suggests a natural regularization procedure, which, essentially, amounts to performing the subtraction $F_{\text{ret}} - F_{\text{S}}$ mode by mode. The idea is best developed through an elementary example, as follows.

4.1. An elementary example

Consider a pointlike particle of mass m at rest in space. The location of the particle is $x = x_p$ in a given Cartesian system. In this simple static configuration the perturbed Einstein equations (22) read

$$r^2 h_{\text{ret}}^{(l)} = 16 \quad (x - x_p);$$ \hspace{1cm} (26)
where r^2 is the 3D Laplacian, and with all other components of h^{ret} vanishing.

The static perturbation h^{ret} automatically satisfies the Lorenz-gauge condition (14).

Of course, in this simple case we can immediately write down the exact physical (Coulomb-like) static solution, $h^{\text{ret}}_{\text{static}} = 4 - x \cdot x$, and we also trivially have $F_{\text{self}} = 0$. However, for the sake of our discussion, let us proceed by considering the multipole expansion of the perturbation.

To this end, introduce polar coordinates (r; θ'), such that our particle is located at $x_p = (r_0 \neq 0; \theta_0')$, and expand the physical solution h^{ret} in spherical harmonics on the spheres $r = \text{const.}$, in the form

$$h^{\text{ret}}_{\text{m},\ell,m}(r) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} h^{\text{ret}}_{\ell,m}(r) Y_{\ell,m}(\theta; \phi);$$

where an asterisk denotes complex conjugation and a comma denotes partial differentiation. The unique physical ℓ,m-mode solution, continuous everywhere and regular at both $r = 0$ and $r \neq 0$, reads

$$h^{\text{ret}}_{\ell,m}(r) = \frac{16}{(2\ell+1)\ell_0} Y_{\ell,m}(\theta_0'; \phi_0') (r; \phi')$$

where P_{ℓ} is the Legendre polynomial and is the angle subtended by the two radii-vectors to x and x_p (see Fig.2).

We now construct the force field F^{ret} as it is defined in Eq. (25). We find $F^{\text{ret}}_{\text{self}} = 0$, and the spatial components are $F^{\text{ret}}_{\text{spatial}} = r^{\text{in}} h^{\text{ret}}_{\ell,m} = (4\ell+2)h^{\text{ret}}_{\ell,m}$. Focus now on the radial component. The lth mode of $F^{\text{ret}}_{\ell,m}$ is given simply as $F^{\text{ret}}_{\ell,m} = (4\ell+2)h^{\text{ret}}_{\ell,m}$. Using Eq. (30) and evaluating $F^{\text{ret}}_{\ell,m}$ at the particle (taking $r = 0$ followed by $r \neq r_0$), we obtain

$$F^{\text{ret}}_{\ell,m}(x_p) = \frac{L^2}{L_0^2} \frac{2}{2\ell_0} \sum_{l=0}^{L} \frac{1}{2} \cdot \frac{2}{2\ell_0};$$

where $L = 1 + \frac{1}{2}$.

Here the subscripts indicate the two (different) values obtained by taking the particle limit from "outside" ($r \neq r_0$) and "inside" ($r \leq r_0$).

Let us note the following features manifest in the above simple analysis:

The individual ℓ,m modes of the metric perturbation h^{ret}, are each continuous at the particle’s location, although their derivatives are discontinuous there.

The individual ℓ,m modes $F_{\ell,m}$, have nine one-sided values at the particle.

x Here the label 'ret' is less appropriate, but we shall retain it to adhere to our general notation. As in the general case, h^{ret} represents the unique physical perturbation; here the unique regular static solution of Eq. (25).
Figure 2. An illustration of the simple setup described in the text: A particle of mass in at space is at rest at \(x = (r_0; \theta_0; \phi_0) \). The gravitational field of the particle is decomposed into spherical harmonics, each contributing a different amount to the full radial force acting on the particle: either \(F^1_{\text{ret}} \) or \(F^1_{\text{S}} \), depending on whether the force is calculated from \(r ! r' \) or \(r ! r \). \(x = (r; \theta; \phi) \) is an arbitrary field point used in the construction described in the text.

At large \(l \), each of the one-sided values of \(F^1_{\text{ret}} \) at the particle is dominated by a term \(/l \). (The mode sum obviously diverges at the particle, re-entering the divergence of the full force \(F_{\text{ret}} \) there.)

It turns out (as we shall see later) that all above features are quite generic, and they carry over intact to the much more general problem of a particle moving in Kerr spacetime. Specifically, we find that, at any point along the particle’s trajectory, the (one-sided values of the) \(l \) modes \(F^1_{\text{ret}} \) always admit the large-\(l \) form

\[
F^1_{\text{ret}} = L A + B + C = L + O(L^{-2});
\]

(32)

In our elementary problem the power series in \(l=L \) truncates at the \(L^0 \) term, but in general the series can be in finite. The \(l \)-independent coefficients \(A \), \(B \) and \(C \), whose values depend on the background geometry as well as the particle’s location and four-velocity, are characteristic of the local structure of the particle singularity at large \(l \). These coefficients, called Regularization Parameters, play a crucial role in the mode-sum regularization procedure, as we describe next.

4.2. The mode-sum formula

Consider a mass particle moving on a geodesic trajectory in Kerr, and suppose we are interested in the value of the SF at a point \(z \) along the trajectory, with Boyer-Lindquist coordinates \((t_0; r_0; \phi_0)\). Starting with Eq. (24), let us formally expand \(F_{\text{ret}}(x) \) and \(F_{\text{S}}(x) \) in spherical harmonics on the surfaces \(t = \text{const.} \). Here we ignore the vectorial nature of \(F_{\text{ret}} \) and \(F_{\text{S}} \) and, for athermal simplicity, treat each of their Boyer-Lindquist components as a scalar function (see [33] for a more sophisticated, covariant treatment). Denoting the respective \(l \) mode contributions (summed over \(m \)) by \(F^1_{\text{ret}}(x) \) and \(F^1_{\text{S}}(x) \), we write

\[
\chi^1_{\text{ret}}(z) = \lim_{x \rightarrow z} \int_l \int_0 \chi^1_{\text{ret}}(x) \chi^1_{\text{S}}(x) ;
\]

(33)
With (gravitational case) provides a practical way of calculating the SF, once the regularization parameters A, B, C and D are known. It is practical because (i) it involves no subtraction of divergent quantities, and (ii) it builds naturally on the fact that in black hole perturbation theory one usually calculates the metric perturbation mode by mode in a multipole decomposition.

The values of the regularization parameters are obtained analytically via a local analysis of the singular (or direct) field near the particle. Early calculations of these parameters (scalar-field case) and (gravitational case) provided a practical way of calculating the SF, once the regularization parameters A, B, C and D are known. It is practical because (i) it involves no subtraction of divergent quantities, and (ii) it builds naturally on the fact that in black hole perturbation theory one usually calculates the metric perturbation mode by mode in a multipole decomposition.

The values of the regularization parameters are obtained analytically via a local analysis of the singular (or direct) field near the particle. Early calculations of these parameters (scalar-field case) and (gravitational case) provided a practical way of calculating the SF, once the regularization parameters A, B, C and D are known. It is practical because (i) it involves no subtraction of divergent quantities, and (ii) it builds naturally on the fact that in black hole perturbation theory one usually calculates the metric perturbation mode by mode in a multipole decomposition.

The values of the regularization parameters are obtained analytically via a local analysis of the singular (or direct) field near the particle. Early calculations of these parameters (scalar-field case) and (gravitational case) provided a practical way of calculating the SF, once the regularization parameters A, B, C and D are known. It is practical because (i) it involves no subtraction of divergent quantities, and (ii) it builds naturally on the fact that in black hole perturbation theory one usually calculates the metric perturbation mode by mode in a multipole decomposition.

The values of the regularization parameters are obtained analytically via a local analysis of the singular (or direct) field near the particle. Early calculations of these parameters (scalar-field case) and (gravitational case) provided a practical way of calculating the SF, once the regularization parameters A, B, C and D are known. It is practical because (i) it involves no subtraction of divergent quantities, and (ii) it builds naturally on the fact that in black hole perturbation theory one usually calculates the metric perturbation mode by mode in a multipole decomposition.

The values of the regularization parameters are obtained analytically via a local analysis of the singular (or direct) field near the particle. Early calculations of these parameters (scalar-field case) and (gravitational case) provided a practical way of calculating the SF, once the regularization parameters A, B, C and D are known. It is practical because (i) it involves no subtraction of divergent quantities, and (ii) it builds naturally on the fact that in black hole perturbation theory one usually calculates the metric perturbation mode by mode in a multipole decomposition.
valid for generic (geodesic) orbits | rst in Schwarzschild [24,22,23], then in Kerr [24].
Later in provenents (in the scalar case) are due to Ref. [57], where higher-order terms in
the \(l = L \) expansion were derived analytically in order to accelerate the convergence
of the mode sum; and Ref. [53], where the regularization parameters were defined
as scalar quantities using a covariant-form projection of the singular field onto a null
tetrad based on the worldline.

With the regularization parameters given in analytic form, the calculation of the
SF within the mode-sum scheme follows this procedure:

(i) For a given geodesic orbit, calculate sufficiently many multipole modes of the
physical, retarded metric perturbation in the Lorenz gauge. (Here \(\text{multipole modes} \) may refer to
tensor harmonics, Fourier-tensor harmonics, or spheroidal harmonics, depending on the
consideration and on the perturbation framework used for tackling the field equations.)
How this might be (and is being) done in practice | usually using numerical methods | will
be discussed in Sec. 5.

(ii) Construct the \(l \)-modes \(F^1_{ret} \) at the particle. An example of how this is done in
practice will be provided in Sec. 6.

(iii) Use the modes \(F^1_{ret}(z) \) as input for the mode-sum formula (36).

The mode-sum procedure has the very useful ability to automatically test itself:
If either the values of the regularization parameters \(A \), \(B \) and \(C \), or the values of
the \(l \)-modes \(F^1_{ret} \) (usually computed numerically) are wrongly calculated, the \(l \)-mode
sum in Eq. (36) will very likely fail to converge. Conversely, if one finds that the
calculated \(l \)-term in the sum has the expected \(1 = L \) fall-off at large \(L \), that provides
an excellent validation test for the entire calculation. So far, the analytic values of
the parameters \(A \), \(B \) and \(C \) have been successfully \(\backslash \text{tested} \) (in the above sense)
against numerical calculations for generic orbits in Schwarzschild, and also (in the
scalar case) for circular equatorial orbits in Kerr.

In what follows we state the values of the regularization parameters in the
gravitational case, for generic geodesics in Kerr, as derived in Ref. [24]. In the
Appendix we provide a full derivation of these parameters (not included in Ref. [24]).

In passing, we remark that the mode-sum formula (in the gravitational case) is
formulated in the Lorenz gauge, just like the M\$\text{TaQ}^u\text{W} formula on which it relies.
The values of the regularization parameters the form of the large-\(L \) expansion in Eq.
(36); or even the very definition of the SF | all of these are gauge dependent. It
has been shown, however, that the regularization parameters remain invariant under
gauge transformations (from the Lorenz gauge) that are sufficiently regular [23].

4.3. Regularization parameters for generic orbits in Kerr

We state here the values of the regularization parameters for the gravitational SF at an
arbitrary point \(z \) along an arbitrary geodesic in Kerr spacetime. We assume the point
\(z \) has Boyer-Lindquist coordinates \((t_0; \rho_0; \varphi_0)\). The regularization parameters \(C \)
and \(D \) are always zero:

\[
C = D = 0;
\]
The Boyer-Lindquist components of the regularization parameter at \(z \) are given by

\[
A^r = \frac{2}{V} \frac{\sin^2 \theta}{\partial_\theta - g \partial_r} \left(1 - \frac{1}{V} \frac{\partial_t^2}{\partial_\theta^2} \right); \\
A^t = (\mathbf{u}_t = u_t) A^r; \quad A = A' = 0;
\]

where

\[
V = 1 + u^2 - g + u_\theta^2 - g_{\theta\theta};
\]

Here \(u \) is the particle's four-velocity and \(g \) is the background Kerr metric| both at point \(z \).

The value of the parameter \(B \) is more complicated. It can be expressed in a compact form as

\[
B = \frac{2}{3} (2 \, \gamma - 1) P_{abcd} I^{abcd};
\]

where hereafter roman indices \((a;b;c;d) \) run over the two Boyer-Lindquist angular coordinates \(\gamma \). The coefficients \(P_{abcd} \) are given by

\[
P_{abcd} = \frac{1}{2} P_{d} (3 P_{abc} + 2 P_{ab} P_c) \quad P_{-}(2 P_{ab} + P_{ab} P_{cd})
\]
\[
+ (3 P_{a} P_{bc} - P_{c} P_{ab}) C_{cd};
\]

where

\[
P = \sin \theta \cos \theta; \quad P_{-} = \sin \theta + \sin \theta \sin \theta;
\]

and

\[
C_{,\alpha} = \frac{1}{2} \sin \theta \cos \theta; \quad C_{,\gamma} = C_{,\gamma} = \frac{1}{2} \cot \theta;
\]

with all other coefficients \(C \) vanishing, and with being the background connection coefficients at \(z \). The quantities \(I^{abcd} \) are

\[
I^{abcd} = (\sin \theta)^N \frac{Z}{2} G(\theta)^{5/2} (\sin \theta)^N (\cos \theta)^N d
\]

where

\[
G(\theta) = P \cos^2 \theta + 2P \sin \theta \cos \theta + P \sin^2 \theta = \sin \theta + \sin \theta \sin^2 \theta;
\]

and \(N \) \((abcd) \) is the number of times the index \(\gamma \) occurs in the combination \((a;b;c;d) \), namely

\[
N = a + b + c + d;
\]

We may write \(I^{abcd} \) explicitly in terms of standard complete elliptic integrals. Introducing the short-hand notation

\[
\sin^2 \theta P = P; \quad 2 \sin \theta P = P;
\]

we have

\[
I^{abcd} = \left(\frac{\sin \theta}{\sin \theta} \right)^N \frac{h}{d} Q I_{h}^{(N)} i_e (w) + I_{h}^{(N)} i_e (w); \quad i = 1
\]

where

\[
Q = + 2 \left(\frac{2 + 2}{2} \right)^{1/2};
\]

\[
d = 3P, = \frac{1}{2} \left(\frac{2 + 2}{2} \right)^{1/2} (4 + 4 \left(2^3 + 2 \right)^{1/2} Q = 2); \quad i = 1
\]
$K(w) \int_0^2 (1 - w \sin^2 x)^{1/2} dx$ and $E(w) \int_0^2 (1 - w \sin^2 x)^{1/2} dx$ are complete elliptic integrals of the 1st and 2nd kinds, respectively, and the argument is

$$w = \frac{2(2 + 2)^{1/2}}{2 + (2 + 2)^{1/2}}. \quad (52)$$

The ten coefficients $I_{K}^{(n)}; I_{E}^{(n)}$ in Eq. (49) are given by

\[
\begin{align*}
I_{K}^{(0)} & = 4 \left[12 \ 3 + 2(8 \ 3) + 4 \ 2 + 2(2 \ 8) \right]; \\
I_{E}^{(0)} & = 16 \left[8 \ 3 + 2(4 \ 7) + 2(2 \ 4) + 2(2 + 4) \right]; \quad (53) \\
I_{K}^{(1)} & = 8 \ 9 \ 2 \ 2 \ (2 \ 4) + 2; \\
I_{E}^{(1)} & = 4 \left[12 \ 3 \ 2 \ (2 \ 52) + (32 \ 12) + 2(3 \ 2 + 4) \right]; \quad (54) \\
I_{K}^{(2)} & = 4 \ 8 \ 3 \ 2 \ (2 \ 8) + 2(3 \ 2 \ 8); \\
I_{E}^{(2)} & = 8[4 \ 4 + 3 \ (2 + 12) \ 2(2 \ 4) + 2(2 \ 4) + 2(3 \ 2 \ 4)]; \quad (55) \\
I_{K}^{(3)} & = 8 \ 3 \ 7 \ 2 \ (3 \ 2 \ 8) + 2; \\
I_{E}^{(3)} & = 4 \left[8 \ 4 \ 4 \ 3 + 2(15 \ 2 \ 44) + 4 \ (5 \ 2 \ 8) + 2(3 \ 2 \ 4) \right]; \quad (56) \\
I_{K}^{(4)} & = 4 \left[4 \ 5 + 4 \ 4 + 2(7 \ 2 \ 8) + 12 \ 2 \ (2 \ 8) \right]; \\
I_{E}^{(4)} & = 16[4 \ 5 + 4 \ 4 + 2(7 \ 2 \ 4) + 2(11 \ 2 \ 4) + (2 + 1) \ 2(2 + 4)]. \quad (57)
\end{align*}
\]

The sharp-eyed reader may observe that the expression for P_{abcd} in Eq. 42 differs somewhat from that given in Ref. 24. The reason for this discrepancy is that in Ref. [24] we have made a different choice of extension for r_{x} [one in which the metric functions g in Eq. (9) take their actual value at x, and u is parallelly-propagated from the worldline to x along a norm algeodesic]. This affects the value of the param e_{B} only. We have opted here to give the parameter values corresponding to the extended extension because that extension is more easily implemented in actual numerical calculations. To obtain the value of B in the extension of Ref. [24], all one needs to do is replace the expression in Eq. (42) with

$$P_{abcd} [PP] = \frac{1}{2} [3P_{a}P_{b}P_{c} + (2P_{a} + P_{b})P_{c}] + (3P_{a}P_{b} + P_{a}P_{b} + P_{a}P_{b})K_{cd}; \quad (58)$$

where PP' denotes the extension of Ref. [24] (which involves a Parallel Propagation of the four-velocity). Interestingly, the regularization parameters for the scalar- field SF are precisely the same as the gravitational- field ones, with the parameter B calculated using $P_{abcd} [PP]$ (and with the obvious replacement of the mass with the scalar charge) [24].
5. Numerical implementation strategies

There are two broad (somewhat related) issues that need to be addressed in preparing to implement the mode-sum formula in practice (these issues arise, in some form, whether one uses the mode-sum scheme or any of the other implementation methods based on the M\textit{SaTQ}W a formalism). The first practical issue has often been referred to as the gauge problem: The mode-sum method (as the M\textit{SaTQ}W a formalism underpinning it) is formulated in terms of the metric perturbation in the Lorenz gauge, while standard methods in black hole perturbation theory are formulated in other gauges. The second practical issue concerns the numerical treatment of the point-particle singularity; the problem takes a different form in the frequency domain and in the time domain, and we shall discuss these two frameworks separately below. We start, however, with a discussion of the gauge problem and the methods developed to address it.

5.1. Overcoming the gauge problem

The calculation of the gravitational SF requires direct information about the local metric perturbation near (and at) the particle. More specifically, one needs to be able to construct the metric perturbation, along with its derivatives, in the Lorenz gauge, at the particle’s location. The mode-sum approach allows us to do so without encountering in nities by considering individual multipoles of the perturbation, but the problem remains how to obtain these multipoles in the desired Lorenz gauge. Unfortunately, standard formulations of black hole perturbations employ other gauges, favored for their algebraic simplicity. Such gauges are simple because they respect faithfully the global symmetries of the underlying black hole spacetime, unlike the Lorenz gauge, which is suitable for describing the locally-isotropic particle singularity, but complies less well with the global symmetry of the background.

A common gauge choice for perturbation studies in Schwarzschild is the one introduced many years ago by Regge and Wheeler [142], and further developed by Zerilli [164] and Moncrief [118]. In this gauge, certain projections of the metric perturbation onto a tensor-harmonic basis are taken to vanish, which results in a significant simplification of the perturbation equations. Another such useful "algebraic" gauge is the radiation gauge introduced by Chrzanowski [49], in which one sets to zero the projection of the perturbation along a principle null direction of the background black hole geometry. Perturbations of the Kerr geometry have been studied almost exclusively using the powerful formalism by Teukolsky [159], in which the perturbation is formulated in terms of the Newman-Penrose gauge-invariant scalars, rather than the metric. A reconstruction procedure for the metric perturbation out of the Teukolsky variables (in vacuum) was prescribed by Chrzanowski [49] (with later supplements by Wald [160] and Ori [123]), but only in the radiation gauge. It is not known how to similarly reconstruct the metric in the Lorenz gauge.

Several strategies have been proposed for dealing with this gauge-related difficulty. Some involve a deviation from the original M\textit{SaTQ}W a notion of SF, while others seek to tackle the calculation of the Lorenz-gauge perturbation directly. Here is a survey of the main strategies.

Self force in a "hybrid" gauge. Equation (20) in Sec. 2 describes the gauge transformation of the SF. Let us refer here to a certain gauge as "regular" if the
transformation from the Lorenz gauge yields a well-defined SF in that gauge (this requires that the expression in square brackets in Eq. (20) admits a definite and finite particle limit). It has been shown [21] that the mode-sum formula maintains its form (56), with the same regularization parameters, for any such regular gauges. Namely, for the SF in a specific regular gauge \(\text{reg} \) we have the mode-sum formula

\[
F_{\text{self}}[\text{reg}] = \sum_{l=0}^{\infty} F_{\text{ret}}^l[\text{reg}] \text{LA B } \quad ;
\]

(59)

where the force modes \(F_{\text{ret}}^l[\text{reg}] \) are these constructed from the retarded metric perturbation in the \(\text{reg} \) gauge (we have already set \(C = D = 0 \) here).

Now recall the radiative inspiral problem which motivates us here: Although the momentary SF is gauge-dependent, the long-term radiative evolution of the orbit (as expressed, for example, through the drift of the constants of motion) has gauge-invariant characteristics that should be accessible from the SF in whatever regular gauge. And so, insofar as the physical inspiral problem is concerned, one might have hoped to circumvent the gauge problem by simply evaluating the SF in any gauge which is both regular and practical, using Eq. (59). Unfortunately, while the Lorenz gauge itself is \(\text{regular but not practical} \), both the Regge-Wheeler gauge and the radiation gauge are generally \(\text{practical but not regular} \), as demonstrated in Ref. [21].

However, a practical solution now suggests itself: Devise a gauge which is regular in the above sense, and yet practical in that it relates to one of the \(\text{practical} \) gauges, say, the radiation gauge, through a simple, explicit gauge transformation (unlike the Lorenz gauge itself). Heuristically, one may picture such a \(\text{hybrid} \) gauge (also referred to as \(\text{intermediate} \) gauge [24]) as one in which the metric perturbation retains its isotropic Lorenz-like form near the particle, while away from the particle it deforms so as to resemble the radiation-gauge perturbation. The SF in such a hybrid gauge would have the mode-sum formula

\[
F_{\text{self}}[\text{hyb}] = \sum_{l=0}^{\infty} F^l[\text{rad}] \text{LA B } D ;
\]

(60)

where \(F^l[\text{rad}] \) are the modes of the full force in the radiation gauge, and the \(\text{counter term} \) \(D \) is the difference \(F^l[\text{rad}] - F^l[\text{hyb}] \), summed over \(l \) and evaluated at the particle. With a suitable choice of the hybrid gauge, the term \(D \) can be calculated analytically, and Eq. (60) then prescribes a practical way of constructing the SF in a useful, regular gauge, out of the numerically calculated modes of the perturbation in the radiation gauge.

Different variants of this idea were studied by several authors [114,21,144,24,121], but it has not been implemented in full so far.

Generalized SF and gauge invariants. Another idea (set out in Ref. [21] and further developed in Ref. [27]) involves the generalization of the SF notion through the introduction of a suitable averaging over angular directions. In some gauges which are not strictly regular in the aforementioned sense, the SF could still be defined in a directional sense. Such is the case in which the expression in square brackets in Eq. (20) has a finite yet direction-dependent particle limit (upon transforming from the Lorenz gauge), and the resulting \(\text{directional} \) SF is bounded for any chosen
direction. (This seems to be the situation in the Regge-Wheeler gauge, but not in the radiation gauge). In the latter, the metric perturbation from a point particle develops a one-dimensional string-like singularity [21]. In such cases, a suitable averaging over angular directions introduces a well-defined notion of an “average” SF, which generalized the original M_{Sat} SF to a SF (it represents a generalization since, obviously, the average SF coincides with the standard M_{Sat} SF for all regular gauges, including Lorenz’s). The notion of an average SF could be a useful one if it can be used in a simple way to construct gauge-invariant quantities which describe the radiative motion. This is yet to be demonstrated.

A related method invokes the directional SF itself as an agent for constructing the desired gauge invariants. In this approach, one defines (for example) a “Regge-Wheeler” SF by taking a particular directional limit consistently throughout the calculation, and then using the value of this SF to construct the gauge invariants. This approach has been applied successfully, in combination with the mode-sum method, by Detweiler and others [53, 54].

Radiation-gauge regularization. Friedman and collaborators [96, 95, 67] proposed the following construction: Starting with the Lorenz-gauge field, construct the associated gauge-invariant Newman-Penrose scalar \mathcal{S}, and decompose it into spin-weighted spherical harmonics. Then obtain the harmonics of the retarded field by solving the Teukolsky equation with suitable boundary conditions, and (for each harmonic) define the R part through $0_{\text{ret}} \sim 0_{\text{ret}}$. If 0_{ret} is known precisely, then 0_{ret} is a vacuum solution of the Teukolsky equation. To this solution, then, applyChrzanowski’s reconstruction procedure to obtain a smooth radiation-gauge metric perturbation h_{rad}, and use that to construct a “radiation gauge” SF (via, e.g., the mode-sum method). The relation between this definition of the radiation-gauge SF and the one obtained by applying the gauge transformation formula (20) to the standard Lorenz-gauge M_{Sat} SF is yet to be investigated.

In reality, the \mathcal{S} field is usually known only approximately, resulting in that 0_{ret} retains some non-smoothness. How to apply Chrzanowski’s reconstruction to non-smooth potentials is a matter of appreciable technical challenge. Also, the above procedure cannot account for the contribution to the SF from the two non-radiative modes, $l = 0,1$, which then need to be treated separately, using other methods. Nonetheless, the technique offers a natural way of circumventing the gauge problem, and has much potential promise.

Direct Lorenz-gauge implementation. In 2005, Barack and Lousto [39] succeeded in solving the full set of Lorenz-gauge perturbation equations in Schwarzschild, using numerical evolution in $1+1D$. (An alternative formulation was later developed and implemented by Bemfica [31].) This development opened the door for a direct implementation of the mode-sum formula in the Lorenz gauge. It later facilitated the first calculations of the gravitational SF for bound orbits in Schwarzschild [29, 143, 26].

In Sec. 6 we shall review this approach in some detail. Here we just point to a few of its advantages: (i) This direct approach obviously circumvents the gauge problem. The entire calculation is done within the Lorenz gauge, and the mode-sum formula can be implemented directly, in its original form. (ii) The Lorenz-gauge perturbation equations take a fully hyperbolic form, making them particularly suitable for numerical implementation in the time-domain. Conveniently, the supplemen
gauge conditions (which take the form of elliptic "constraint" equations) can be made to hold automatically, as we explain in Sec. 6. (iii) In this approach one solves directly for the metric perturbation components, without having to resort to complicated reconstruction procedures. This is an important advantage because metric reconstruction involves determination of the \(e_{ij} \) variables, which inevitably results in loss of numerical accuracy. (iv) Working with the Lorenz-gauge perturbation components as \(e_{ij} \) variables is also advantageous in that these behave more regularly near point particles than do Teukolsky's or Moncrief's variables. This has a simple manifestation, for example, within the 1+1D treatment in Schwarzschild: The individual multipole modes of the Lorenz-gauge perturbation are always continuous at the particle, just like in the simple example of Sec. 4.1; on the other hand, their multipole modes of Teukolsky's or Moncrief's variables are discontinuous at the particle, and so are, in general, the modes of the metric perturbation in the Regge-Wheeler gauge. Obviously, the continuity of the Lorenz-gauge modes makes them easier to deal with as numerical variables.

5.2. Numerical representation of the point particle

Common to all numerical implementation methods is the basic preliminary task of solving the \(e_{ij} \) equations (in whatever formulation) for the full (retarded) perturbation from a point particle in a specified orbit. This immediately brings about the practical issue of the numerical representation of the particle singularity. The particulars of the challenge depend on the methodological framework: In time-domain methods one faces the problem of dealing with the irregularity of the \(e_{ij} \) variables near the worldline; in frequency-domain (spectral) treatments, such irregularity manifests itself in a problematic high-frequency behavior. We now survey some of the relevant methods.

5.2.1. Particle representation in the time domain

Extended-body representations. In the context of fully nonlinear Numerical Relativity, the problem of a binary black hole with a small mass ratio remains a difficult challenge, because of the large span of length scales intrinsic to this problem. (Current NR technology can handle mass ratios as small as 1:10 \([86]\) still nothing near the 1:10\(^4\) (10\(^9\) ratios needed for LISA EMRI applications.) Bishop et al. \([34]\) attempted a NR treatment in which the particle is modeled by a quasi-rigid widely-extended body whose "center" follows a geodesic. Comparisons with perturbation results did not show sufficient accuracy, and the method requires further development.

An extended-body approach has also been implemented in perturbative studies. Khanna et al. \([101,97,41]\) solved the Teukolsky equation in the time domain (i.e., in 2+1D, for each azimuthal mode) with a source 'particle' represented by a narrow Gaussian distribution. This crude technique was much improved recently by Sundararajan et al. \([152,153]\) using a "nive lin pulse representation", whereby the source is modeled by a series of spikes whose relative magnitude is carefully controlled so as to assure that the source has integral properties similar to that of a delta function. Such methods were designed to reproduce wave-zone solutions with great accuracy (indeed, that is what they are designed to do), but they are likely to remain less useful for computing the accurate local perturbation near the particle as required in SF calculations.
Extended-body representations suffer from the inevitable trade-off between smoothness and localization: One can only smooth the solution by making it less localized, and one can better localize it only by making it less smooth. In what follows we concentrate on methods in which the source particle is precisely localized on the orbit: The energy-momentum term of the particle is represented by a delta-function source term [as in Eq. (22)], and the delta distribution is treated analytically within the numerical scheme, in an exact manner.

Delta-function representation in 1+1D. In full 3+1D spacetime, the full (retarded) metric perturbation obviously diverges on the particle (at any given time). The divergence is asymptotically Coulomb-like in the Lorenz gauge (and can take a different form in other gauges). In spherically-symmetric spacetimes one can decompose the perturbation into tensor harmonics and solve a separated version of the Eil equations in 1+1D (time-radius) for each harmonic separately. In the particle problem this becomes beneficial not only thanks to the obvious dimensionality reduction, but also because it mitigates the problems introduced by the particle's singularity: The angular integration involved in constructing the individual l modes effectively "ears" the Coulomb-like singularity across the surface of a 2-sphere, and the resulting $l=0$ modes are non-zero even at the location of the particle. Furthermore, in the case of the metric perturbation in the Lorenz gauge, the individual l modes are also continuous at the particle [cf. Eq. (30) in Sec. 4]. The corresponding l modes of the Teukolsky or Moncrief gauge-invariant variables are generally not continuous at the particle, and generally neither are the l modes of the metric perturbation in non-Lorenz gauges.

The boundedness of the l modes is, of course, a crucial feature of the l mode regularization scheme, as we have already discussed. That same feature also greatly simplified the 1+1D numerical treatment of the particle. Lousto and Price [103] formulated a general method for incorporating a delta-function source in a finite-difference treatment of the Eil equations in 1+1D. In this method, the finite-difference approximation at a numerical grid cell (in t-r space traversed by the particle's worldline) is obtained, essentially, by integrating the Eil equation "by hand" over the grid cell at the required accuracy. The original (1D) delta function present in the source term thereby integrates out to contribute a finite term at each time step. The original Lousto-Price scheme (formulated with a 1st-order global numerical convergence) was later improved by Martel and Poisson [108] (2nd-order convergence) and Lousto [103] (4th-order convergence). This simple but powerful idea is at the core of many of the 1+1D finite-difference implementations presented in the last few years [107, 88, 23], including the work discussed in Sec. 6 below.

Despite such advances, 1+1D particles remain numerically expensive to handle, because the non-smooth association with them introduces a large scale variance in the solutions: The l-mode Eil gradients grow sharply near the particle, and, moreover, become increasingly more difficult to resolve with larger l (recall the l-mode gradient is $1/l$ at large l). The mode-sum formula, recall, converges rather slowly (like $1/l$), and so requires one to compute a considerably large number of modes (typically 20 with even a moderate accuracy goal). This proves to stretch the limit of what can be achieved today using finite-difference on a fixed mesh.

Several methods have been proposed to address this problem in the current context. Sopuerta and collaborators [159, 149, 48, 47] explored the use of nine-element discretization. This technique is particularly powerful in dealing with multi-
scale problems, and, being quasi-spectral, it bene ts from an exponential numerical convergence. So far it was applied successfully for generic orbits in Schwarzschild, and higher-dimensionality implementations (for Kerr studies) are currently being considered. A related quasi-spectral scheme was recently suggested by Field et al. [65]. Finally, Thorneburg [157] very recently developed an adaptive mesh-re ne ement algorithm for Lousto-Price’s nine differences scheme (with a global 4th-order convergence). This was successfully in plied for a scalar charge in a circular orbit in Schwarzschild, and generalizations are being considered.

Puncture methods. In Kerr spacetime, one no longer bene ts from a 1+1D separability. The Lorenz-gauge perturbation equations are only separable into azimuthal m-modes, each a function of t;r, in a 2+1D space. The m-modes are not nite on the worldline, but rather they diverge there logarithmically (see the discussion in Sec. II C of Ref. [17]). Since the 2+1D numerical solutions are truly divergent, a direct nite-difference treatment becomes problematic. However, since the singular behavior of the perturbation can be approximated analytically, a simple remedy to this problem suggests itself.

The idea, which has recently been studied independently by several groups [17,158,105,159], is to utilize a new perturbation variable for the numerical time-evolution, which we shall call here the residual eld. This eld is constructed from the nite (retarded) perturbation by subtracting a suitable function, the “puncture” eld, given analytically, which approximates the singular part of the perturbation well enough that the residual eld is (at least) bounded and differentiable at the particle. The perturbation equations are then recast with the residual eld as their independent variable, and with a new source term (depending on the puncture eld and its derivatives) which now extends the worldline but contains no delta function. The equations are then solved for the residual eld in the time domain, using (e.g.) standard nite diferentiation.

Several variants of this method have been studied and tested with nite-el d codes in 1+1D [158] and 2+1D [17,105], and also proposed for use in full 3+1D [95]. The various schemes differ primarily in the way they handle the puncture function far from the particle: Barack and Goulbourne [17] introduce a puncture with a strictly compact support around the particle; Detweiler and Vega [158] truncate it with a smooth attenuation function, and in Lousto and Nakano [105] the puncture is not truncated at all. We will discuss the puncture method in more detail in Sec. 7.

To obtain the necessary input for the SF mode-sum formula, the 2+1D (or 3+1D) numerical solutions need to be decomposed into m-modes, in what then becomes a somewhat awkward procedure (we decompose the eld into separate m-modes just to add these modes all up again after regularization). Fortunately, there is a more direct alternative: Barack et al. [28] showed how the SF can be constructed directly, in a simple way, from the 2+1D m-modes of the residual eld (assuming only that these m-modes are differentiable at the particle, which is achieved by designing a suitable puncture). This direct nite-mode regularization” scheme, too, will be described in Sec. 7. It is hoped that this technique could provide a natural framework for calculations in Kerr. It is yet to be applied in practice.
5.2.2. Particle representation in the frequency domain: the high-frequency problem and its resolution

The \(l m \) modes required as input for the SF mode-sum formula can also be obtained using a spectral treatment of the \(\text{el} \) equations. This has the obvious advantage that one then only deals with ordinary differential equations, although constructing the \(l m \) modes involves the additional step of summing over sufficiently many frequency modes. (See \[22\] for a recent analysis of the relative computational efficiencies of frequency vs. time domain treatment.) As with the time-domain methods discussed above, the representation of the particle in the frequency domain too brings about technical complications, but these now take a different form.

To illustrate the problem, consider the toy model of a scalar charge in Schwarzschild, allowing the particle to move on some bound (eccentric) geodesic of the background, with radial location given as a function of time by \(r = r_p(t) \). Decompose the scalar \(\text{el} \) in spherical harmonic functions, and denote the multipolar \(m \) modes by \(\text{el}(t;r) \). The time-domain modes in \(r \) are continuous along \(r = r_p(t) \) for each \(l m \). However, the derivatives \(\frac{\partial}{\partial x} \text{el}(r) \) will generally suffer a \(l m \) discontinuity across \(r = r_p(t) \) (recall our elementary example in Sec.4.1), which restricts the presence of a source "shell" representing the \(l m \) mode of the scalar charge. In particular, if the orbit is eccentric, the derivatives of \(\text{el}(r) \) will generally be discontinuous functions of \(r \) at a fixed value of \(r \) along the orbit.

Now imagine trying to reconstruct \(\text{el}(t;r) \) for some \(r \) along the orbit) as a sum over its Fourier components:

\[
\text{el}(t;r) = \sum_{l,m} R_{lm} \text{e}^{-i \omega t}.
\]

Since, for an eccentric orbit, \(\text{el}(t;r) \) is only a \(C^0 \) function of \(t \) at the particle's worldline, it follows from standard Fourier theory \[24\] that the Fourier sum in Eq. \[61\] will only converge there like \(1=1 \). The actual situation is even worse, because for SF calculations we need not only \(\text{el}(r) \) but also its derivatives. Since (e.g.) \(\frac{\partial}{\partial x} \text{el}(r) \) is a discontinuous function of \(r \), we will inevitably face here the well known "Gibbs phenomenon": the Fourier sum will fail to converge to the correct value at \(r = r_p(t) \). Of course, the problem at issue in the Fourier sum is simply a consequence of our attempt to reconstruct a discontinuous function as a sum over smooth harmonic functions.

From a practical point of view this would mean that (i) at the coincidence limit \(r = r_p(t) \), the sum for \(\text{el}(r) \) would fail to yield the correct one-sided values of \(\text{el}(r) \); however many \(\text{el}(r) \) modes are included in the sum; and (ii) if we reconstruct \(\text{el}(r) \) at a point \(r = r_0 \) off the worldline, then the Fourier series should indeed formally converge; however, the number of \(\text{el}(r) \) modes required for achieving a prescribed precision would grow unboundedly as \(r_0 \) approaches \(r_p(t) \), making it extremely difficult to evaluate \(\text{el}(r) \) at the coincidence limit.

This technical difficulty is rather generic, and will show also in calculations of the local gravitational \(\text{el} \). The situation is no different in the Kerr case, because there too the mode-sum formula requires as input the spherical harmonic modes of the perturbation \(\text{el} \), and for each such \(\text{el} \) mode the source is represented by a distribution on a thin shell, which renders the \(\text{el} \) derivatives discontinuous across that shell. The problem becomes even more severe when considering gravitational perturbations via the Teukolsky formalism: Here, the \(l m \) modes of the perturbation \(\text{el} \) (now the Newman-Penrose curvature scalar) are not even continuous at the particle's orbit!
consequence of the fact that the source term for Teukoly's equation involves (second) derivatives of the energy-momentum tensor. Again, a naive attempt to construct these multipoles as a sum over their m modes will be hampered by the Gibbs phenon.

A simple way around the problem was proposed recently in Ref. [29]. It was shown how the desired values of the eld and its derivatives at the particle can be constructed from a sum over properly weighted homogeneous (source-free) radial functions $R_m \left(r \right)$, instead of the actual inhomogeneous solutions of the frequency-domain field equation. The Fourier sum of such homogeneous radial functions, which are smooth everywhere, converges exponentially fast. The Fourier sum of the derivatives, which are also smooth, is likewise exponentially convergent. The validity of the method (and the exponential convergence) was demonstrated in Ref. [29] with an explicit numerical calculation in the scalar-field monopole case ($l = 0$). It was later implemented in a frequency-domain calculation of the monopole and dipole modes of the Lorenz gauge eld perturbation for eccentric orbits in Schwarzschild [30,143,26].

The same method should be applicable for any of the other problems mentioned above, including the calculation of EM and gravitational perturbations using Teukoly's equation.

The method of Ref. [29] (dubbed method of extended homogeneous solutions) completely circumvents the problem of slow convergence (or the lack thereof) in frequency-domain calculations involving point sources. It makes the frequency-domain approach an attractive method-of-choice for some SF calculations. The method is now being implemented in first calculations of the scalar-field SF for Kerr orbits [152].

6. A n Example: gravitational self-force in Schwarzschild via 1+1D evolution in Lorenz gauge

As an example of a fully worked-out calculation of the SF, we review here the work by Barack and Sago on eccentric geodesic in Schwarzschild [25,143]. This work represents a direct implementation of the mode-sum formula in its original form [35]. The decomposed Lorenz-gauge eld perturbation equations are integrated directly using numerical evolution in 1+1D. The numerical algorithm employs a straightforward 4th-order-convergent finite-difference scheme (a variant of the Loustol-Pirani method) on a fixed staggered coordinate mesh based on characteristic coordinates. Below we briefly describe the perturbation formalism, discuss the numerical implementation in some more detail, and display some results.

6.1. Lorenz-gauge perturbation formalism

The linearized Einstein equations in the Lorenz gauge are given in Eq. [22]. On the right-hand side of these equations is a distributional representation of the energy-momentum of a point particle of mass m, which is moving on a timelike geodesic $z(t)$ of the background spacetime. Mathematically, the linear set [22] is a diagonal hyperbolic system, which admits a well-posed initial-value formulation on a spacelike Cauchy hypersurface (see, e.g., Theorem 10.1.2 of [161]). Furthermore, if the Lorenz gauge conditions of Eq. [14] are satisfied on the initial Cauchy surface, then they are guaranteed to hold everywhere, assuming that the eld equations are satisfied everywhere and that the energy-momentum satisfies $T = 0$, as in the case of a geodesic particle. We remark that the gauge conditions [14] do not fully specify the gauge: There is a residual gauge freedom within the family of Lorenz gauges,
h - h + r + r , with any r satisfying r r = 0. It is easy to verify that both Eqs. (14) and (22) remain an invariant under such gauge transformations.

Here we specialize to eccentric geodesics around a Schwarzschild black hole, and employ a Schwarzschild coordinate system (t; r; ; ′) in which the orbit is equatorial (z = -2). Such orbits constitute a two-parameter family; we may characterize each orbit by the radial turning points r max and r min, or alternatively by the semi-latus rectum r = 2(r max - r min) = (r max + r min) and eccentricity e = (r max - r min) / (r max + r min).

Barack and Lousto [19] decomposed the metric perturbation into tensor harmonics, in the form

\[h^{(i)lm} = \sum_{l \leq m} \frac{X}{r} h^{(i)lm} (r; t) Y^{(i)lm} (\; ; ;) ; \] (62)

and similarly for the source T . The harmonics Y^{(i)lm} (\; ; ;) (whose components are constructed from spherical harmonics and their first and second derivatives) form a complete orthogonal basis for 2nd-rank covariant tensors on a 2-sphere (see appendix A of [19]). The timelike-radial functions h^{(i)lm} (i = 1; ; ; ; 10) form our basic set of perturbation fields, and serve as variables for the numerical evolution. The tensor-harmonic decom position decouples Eq. (22) with respect to lm , although not with respect to i: For each lm , the variables h^{(i)lm} satisfy a coupled set of hyperbolic (in a 1+1D sense) scalar-like equations, which may be written in the form

\[h^{(i)lm} + M^{(i)lm} = S^{(i)lm} (i = 1; ; ; ; 10) ; \] (63)

Here \((2) \) is the 1+1D scalar-elliptic wave operator \(\Box_v + V (r) \), where \(v \) and \(u \) are the standard Eddington-Finkelstein null coordinates, and \(V (r) = \frac{1}{2} (1 - 2M/r) 2M = r^2 + l(l + 1) = r^2 \) is an effective potential. The \(\Box \) coupling \(\) term \(s M^{(i)lm} \) involve rst derivatives of the h^{(j)lm} s at most (no second derivatives), so that, conveniently, the set \((63) \) decouples at its principal part. The decoupled source terms S^{(i)lm} are each \(\Box_v f (\; ; ;) \) (no derivatives of function) and, as a result, the physical solutions h^{(j)lm} are continuous even at the particle. Explicit expressions for the coupling terms and the source terms s in Eq. (63) can be found in Ref. [19].

In addition to the evolution equations (63), the functions h^{(i)lm} also satisfy four 1st-order elliptic equations, which arise from the separation of the gauge conditions (14) into \(l \leq m \) modes. In the continuum initial-value problem, the solutions h^{(i)lm} satisfy these \(\Box \) constraints automatically if only they satisfy them on the initial Cauchy surface. This is more difficult to guarantee in a numerical mesh schemes treatment, where (i) it is often impossible to prescribe exact initial data that satisfy the constraints, and (ii) discretization errors may amplify constraint violations during the numerical evolution. Inspired by a remedy proposed for a similar problem in the context of nonlinear Numerical Relativity [79], Ref. [19] proposed the inclusion of \(\Box \) divergence elimination" terms s_i / \(h^\text{ret} \), in the original set (22), so designed to guarantee that any violations of the Lorenz gauge conditions are efficiently damped during the evolution. These damping terms s_i modify only the explicit form of the \(M \) terms in Eq. (63), as shown in [15].

To simplify the appearance of Eq. (63), we have used here a normalization of h^{(i)lm} which is slightly different from that of [19].
6.2. Numerical Implementation

The code developed by Barack and Sago [25, 143] solves the coupled set (63) (with constraint dissipation terms incorporated in the M terms) via time evolution. The numerical domain, covering a portion of the external Schwarzschild geometry, is depicted in Fig. 3. The numerical grid is based on Eddington-Finkelstein null coordinates $v;u$, and initial data (the values of the 10 fields $h^{(1)lm}$ for each $l;m$) are specified on two characteristic initial surfaces $v = \text{const}$ and $u = \text{const}$. Equations (63) are then discretized on this grid using a nine-difference algorithm which is globally 4th-order convergent. The numerical integrator solves for the various $h^{(1)lm}$'s along consecutive $u = \text{const}$ rays. A particularly convenient feature of this setup is that no boundary conditions need be specified (the characteristic grid has no causal boundaries). Moreover, one need not be at all concerned with the determination of faithful initial conditions: it is sufficient to set $h^{(1)lm} = 0$ on the initial surfaces and simply let the resulting spurious radiation (which emanate from the intersection of the particle's worldline with the initial surface) dissipate away over the evolution time. The early part of the evolution, which is typically dominated by such spurious radiation, is simply discarded.

![Figure 3. The numerical 1+1D domain in the Barack-Sago code [25, 143]: A staggered mesh based on characteristic (Eddington-Finkelstein) coordinates $v;u$. t and r are, respectively, the Schwarzschild time and tortoise radial coordinates. The evolution proceeds from characteristic initial data on two null surfaces. Illustrated are a few sample geodesic orbits (radial plunge, circular, eccentric). (Graphics reproduced from Ref. [12].)](image_url)

The conservative modes $l = 0$ and $l = 1$ (respectively the monopole and dipole) require a separate treatment, as they do not evolve stably using the above numerical scheme. (A naive attempt to evolve these modes leads to numerical instabilities which, so far, could not be cured.) Fortunately, the set (63) simplifies considerably for these modes, and solutions can be obtained in a semi-analytic manner based on physical considerations. Detweiler and Poisson [53] worked out the $l = 0;1$ Lorenz-gauge solutions for circular orbits, and their work is generalized to eccentric orbits in Ref. [30], relying on the aforementioned method of extended homogeneous solutions. The calculation of [30] yields the values of the fields $h^{(1)lm}$ and their derivatives for $l = 0;1$.
To construct the l modes F_{ret}^{-1}, one first substitutes the expansion (32) in the expression for the retarded force F_{ret} (left-hand side expression in Eq. (25)), and then expands the result in spherical harmonics. The outcome is a formula for F_{ret}^{-1} given in terms of the various fields $h^{(l)lm}$ and their derivatives (evaluated at the particle and summed over m). The number of l modes $h^{(l)lm}$ contributing to each l mode F_{ret}^{-1} depends on the worldline extension chosen for r. In (25,143) we used a convenient extension in which (referring to Eq. (9) and Fig.1) the metric g takes its value at the eik point x while the components u (in Schwarzschild coordinates) take the fixed value they have at z. In this extension we find that the only contributing l modes, for given l, are $l = 1, 3, 5, 7, 9, 11, 13$. Explicit construction formulas for F_{ret}^{-1} can be found in (25,143). One then uses the numerical values of the fields $h^{(l)lm}$ and their derivatives, as calculated along the orbit using the above code, to construct F_{ret}^{-1} for sufficiently many l modes. The mode-sum formula (38) then gives the SF. Figure 4 shows the final result for an eccentric geodesic with $p = 7M$ and $e = 0.2$.

![Figure 4](image-url)

Figure 4. The gravitational SF (in units of $(GM)^2$) along a Schwarzschild geodesic with semi-latus rectum $p = 7M$ and eccentricity $e = 0.2$. The upper and lower lines show F_{ret}^{-1} and F_{self}^{-1}, respectively. Integer values on the horizontal axis correspond to periapses ($r = r_{\text{min}}$); note the slight retardation manifest in the magnitude of the radial component. The data for these plots were obtained using a direct integration of the metric perturbation equations in the Lorenz gauge, in conjunction with the mode-sum method, as described in Sec. 4. (Graphics reproduced from Ref. 12.)

The calculation we have just described represents a milestone in the SF program: We now finally have a code able of tackling the generic EMRI-relevant SF problem in Schwarzschild. (Indeed, to address the fully generic physical problem would require a full generalization to the Kerr case!) Using this code, and similar codes developed independently by others [54], we can now begin to explore the physical consequences of the gravitational SF, particularly those effects associated with its conservative piece. Work done so far includes (i) study of gauge invariant SF effects on circular orbits [54]; (ii) comparison of SF calculations and results from PN theory in the weak field regime [54,147]; (iii) comparison of SF results from different calculation schemes and using different gauges [147]; and (iv) a calculation of the shift in the location and frequency...
of the Innermost Stable Circular Orbit (ISCO) due to the conservative piece of the SF \[26\]. Work is in progress to calculate SF-related precession effects for eccentric orbits. In Sec.\[5\] we will describe some of the recent work to explore the physical consequences of the gravitational SF.

7. Towards self-force calculations in Kerr: the puncture method and m-mode regularization

The time-domain Lorentz-gauge treatment of Sec.\[6\] relies crucially on the separability of the field equations into (tensorial) spherical harmonics, which is no longer possible in Kerr. In the Kerr problem one can at best separate the metric perturbation equations into azimuthal m-modes, using the substitution[3]

\[
\hat{X} = \frac{1}{m} \sum_{m=1}^{\infty} h^m(t;r; r') e^{imr'};
\]

Then one faces solving the coupled set for the 2+1D variables \(h^m\). Insofar as vacuum perturbations are considered, this computational task is nowadays well within reach of even modest desktop computers. Indeed, over the past decade, 2+1D numerical evolution has been a method of choice in many studies of Kerr perturbations \[98,99,123,101,97,152,17,105\]. The main challenge, rather, has to do with the inclusion of a \(r\)-function source in the 2+1D numerical domain. This is problematic because the 2+1D variables \(h^m\) suffer a singularity at the location of the particle. The puncture method, which we have mentioned briefly in Sec.\[5.2.1\], overcomes this technical difficulty. In this section we review this method (as implemented by Barack and Golbourn \[17\]) in some more detail. We also describe a new, ad hoc, regularization method, the m-mode regularization scheme, which enables a straightforward construction of the SF directly from the 2+1D numerical solutions, without resorting to a multipole decom position.

7.1. Punctured method in 2+1D

In Sec.\[2\] we have split the (trace-reversed) metric perturbation as \(h^{\text{ret}} = h^S + h^R\), with the gravitational SF then obtained from the smooth field \(h^R\) as prescribed in Eq.\[18\]. Here we introduce a new splitting (defined below),

\[
h^{\text{ret}} = h^S + h^R = h^{\text{punc}} + h^{\text{res}};
\]

so that

\[
h^R = h^{\text{res}} + (h^{\text{punc}} h^S);
\]

We denote the m modes of these various quantities, defined as in Eq.\[63\], by \(h^R,m\), \(h^{\text{res}}, m\), etc. The new splitting is defined (in a non-unique way) by introducing a puncture field \(h^{\text{punc}}\), given analytically, which approximates \(h^S\) near the particle well enough that the m modes of the resulting residual field \(h^{\text{res}}\) are continuous and

\[A\] A full separation of variables in Kerr is possible within Teukolsky’s formalism, which, alas, brings about the metric reconstruction and gauge-related difficulties discussed in previous chapters. A full separation of the m metric perturbation equations themselves, in Kerr, has not been formulated yet, to the best of our knowledge.
differentiable on the particle's worldline (and elsewhere). A particular such puncture is prescribed below [Eq. (73)]. The form of the puncture function away from the particle can be chosen as convenient e.g., in such a way that it can be decomposed into m-modes explicitly, in analytic form.

The Lorenz-gauge perturbation equations (22) are now written in the form

\[r^2 \left(r h_{\text{res}}^2 + 2R \right) h_{\text{res}} = S_{\text{res}}; \]

(67)

with

\[S_{\text{res}} = 16 \, T \, r^2 h_{\text{punc}}^2 + 2R \, h_{\text{punc}}; \]

(68)

where \(16 \, T \) is the original (distributional) source term appearing on the right-hand side of Eq. (22). The support of the source \(S_{\text{res}} \) now extends beyond the particle's worldline, but it contains no function on the worldline itself. The equations are separated into m-modes, with the m-mode source given by

\[S_{\text{res}}(t; \tau; \mathbb{r}) = \frac{1}{2} \int_Z \, S_{\text{res}}(t; \tau; \mathbb{r}'; \mathbb{r}'' \, \mathbb{d}'; \mathbb{d}''). \]

(69)

If the puncture is sufficiently simple, the source \(S_{\text{res}} \) can be evaluated in closed form (as in [77]). The m-mode field equations for the variables \(h_{\text{res}}^{\text{m}}(t; \tau; \mathbb{r}) \), which are everywhere continuous and differentiable, can now be integrated numerically using straightforward finite differencing on a 2+1D grid.

To ease the imposition of boundary conditions for \(h_{\text{res}}^{\text{m}} \), it is convenient to suppress the support of the puncture \(h_{\text{punc}} \) away from the particle, so that the physical boundary conditions for \(h_{\text{res}}^{\text{m}} \) become practically identical to that of the full retarded field \(h \). In [77] this is achieved in a simple way by introducing an auxiliary worldtube around the particle's worldline (in the 2+1D space): Inside this worldtube one solves the punctured m-mode equations for \(h_{\text{res}}^{\text{m}} \), while outside the worldtube one uses the original, retarded-eld m-modes \(h_{\text{res}}^{\text{m}} \) as evolution variables; the value of the evolution variables is adjusted on the boundary of the worldtube using

\[h_{\text{res}}^{\text{m}} = h_{\text{res}}^{\text{m}} + h_{\text{punc}}^{\text{m}}. \]

Two very similar variants of the puncture scheme have been developed and implemented independently by two groups [77, 105] both for the toy model of a scalar charge on a circular orbit around a Schwarzschild black hole (restricting from a spherical harmonic decompositions instead working in 2+1D). The method is yet to be applied in Kerr and for gravitational perturbations.

7.2. m-mode regularization

The 2+1D numerical solutions obtained using the puncture method can be used to construct the input m-modes \(F^{\text{1}} \) for the mode-sum formula (38), but this would require the additional step of a decom position in spherical harmonics. It appears, however, that there is a simple way to construct the SF directly from the residual m-modes \(h_{\text{res}}^{\text{m}} \), without resorting to a multipole decom position. Such a “m-mode regularization” procedure was prescribed recently in Ref. [28] for the scalar, EM and gravitational SFs. We describe it here as applied to the gravitational SF.

This can be shown by integrating \(S_{\text{res}} \) over a small 3-ball containing the particle (at a given time), and then inspecting the limit as the radius of the ball tends to zero [10].
In analogy with Eq. (24), let us denote the "force" eld

\[F_{\text{res}}(x) = x \cdot h_{\text{res}}; \quad F_{\text{punc}}(x) = x \cdot h_{\text{punc}}; \]

(70)

Then, recalling Eqs. (13) and (66), we may write the SF at a point \(z \) along the orbit as

\[F_{\text{self}}(z) = \lim_{x \to z} F_{\text{res}}(x) + F_{\text{punc}}(x) \quad F_{g}(x) : \]

(71)

Recall that the expression in square brackets \(= x \cdot h_{R} \) is a smooth (analytic) function of \(x \), and so the limit \(x \to z \) is well defined. We proceed by prescribing a suitable puncture function \(h_{\text{punc}} \).

As in previous sections, let us parameterize the particle's (bound, timelike) geodesic orbit by proper time \(\tau \), and let \(z(\tau) \) describe the orbit in Boyer-Lindquist coordinates. For an arbitrary spacetime point \(x = (t; r; \vartheta; \varphi) \) outside the black hole, let \(x \) be the spatial hypersurface \(t = \text{const} \) containing \(x \), let \((t) \) be the value at which \(x \) intersects the particle's worldline, and denote \(z(\tau) = z(t) \) and \(u = u(z) \).

This procedure assigns to any point \(x \) outside the black hole a unique point \(z \) on the worldline, with four-velocity \(u \). We denote the coordinate distance between a given point \(x \) and the point \(z \) associated with \(x \) by \(x \cdot z(t) \), with Boyer-Lindquist components \(x = (0; r; \vartheta; \varphi) \).

Consider now the boson form of the \(S \) eld \(h^{S}(x, z) \), given in Eq. (19), with \(x \) being an arbitrary point near the worldline, and \(z \) being the worldline point \(z \) associated with \(x \). Recall that \(h^{S}(x, z) \) is the normal geodesic distance from \(x \) to the worldline, and \(\partial \cdot \partial \) is the four-velocity parallelly propagated from \(z \) to \(x \). The two quantities \(\partial \cdot \partial \) and \(\partial \cdot \partial \) are well defined and smooth functions of \(x \) if \(x \) is sufficiently close to the worldline [hence also close to \(z(t) \)]. For \(x \to z \) (hence \(x \to 0 \)) we have the asymptotic expansions

\[\partial \cdot \partial = S_{0} + S_{1} + O(x^{2}), \quad \partial \cdot \partial = u + u + O(x^{2}); \]

(72)

where \(S_{0} \) and \(S_{1} \) are, respectively, quadratic and cubic in \(x \), and \(u \) is linear in \(x \).

Explicitly, these expansion coefficients read

\[S_{0} = P \cdot x \cdot x \]

(73)

\[S_{1} = P \cdot x \cdot x \cdot x \]

(74)

\[u = u \cdot x \]

(75)

where \(P \equiv g + u \cdot u, g \cdot g(z) \) and \(u \cdot u \cdot u \cdot u \cdot u \cdot u \) (for a derivation of \(S_{1} \), see, for example, Appendix A of [22]). We now wish to regard Eqs. (73) (75) as definitions of the quantities \(S_{0}, S_{1} \) and \(u \), taken to be valid globally, for any \(x \) outside the black hole. Of course, we keep in mind that the asymptotic expansions (24) are only valid sufficiently close to the worldline. We then define our puncture function, for any \(x \), as follows:

\[h_{\text{punc}}(x) = \frac{4}{(S_{0} + S_{1})^{1/2}} (u + u + u + u + u) \]

(76)

The support of this function can be attenuated far from the particle in order to control its global properties, but such modifications will not affect our discussion here.

It is not difficult to show [28] that, near the particle, the difference between the puncture (75) and the actual \(S \) eld given in Eq. (19) (with \(z \) taken to be \(z \)) has the form

\[h_{\text{punc}}(x) - h^{S}(x) = \sum_{i=0}^{3} P^{(i)}(x) + \text{const} + O(x) \]

(77)
where S_0 is a smooth function of the coordinate differences x, of homogeneously odd order (x^3). [The function $P^{(4)}$ depends on the function w^3 appearing in Eq. (83), but here we will not need to know the explicit form of this function.] It follows that the difference between the corresponding \textit{force} field has the local form

$$F_{\text{punc}}(x) - F_{\text{res}}(x) = 5 P_{(5)}(x) + O(x);$$

(78)

where $P_{(5)}$ is yet another smooth function, this time of homogeneously odd order (x^5). Notice that F_{punc} is bounded but generally discontinuous (direction-dependent) at $x = z$. From Eq. (76), it then follows that F_{res} too is bounded but discontinuous at $x = z$ (since the limit of the entire expression in square brackets in (81) is known to be finite and direction-independent).

We now arrive at the crucial step of our discussion. In Eq. (76), for a given point z along the particle's worldline, we express the (analytic) function in square brackets as a sum over m-modes, in the form

$$F_{\text{self}}(z) = \lim_{x \to z} \sum_{m=1}^{\infty} F_{\text{res}}(x) + F_{\text{punc}}(x) + F_{\text{self}}^m(x);$$

(79)

where

$$F_{\text{res}}^m(x) = \frac{1}{2} \int F_{\text{res}}(x; \tau; r_0; z) e^{im \tau} d\tau;$$

(80)

and similarly for F_{punc}^m and F_{self}^m. Since the m-mode sum is formally a Fourier expansion, and since the Fourier expansion of an analytic function converges uniformly by, we may replace the order of limit and summation in Eq. (79):

$$F_{\text{self}}(z) = \lim_{x \to z} \sum_{m=1}^{\infty} F_{\text{res}}^m(x) + F_{\text{punc}}^m(x) + F_{\text{self}}^m(x);$$

(81)

From Eq. (78), omitting the term $O(x)$ as they cannot possibly affect the actual value of the SF in Eq. (76), we have

$$\lim_{x \to z} F_{\text{punc}}^m(x) = \lim_{x \to z} \frac{1}{2} \int F_{\text{res}}(x; \tau; r_0; z) e^{im \tau} d\tau;$$

(82)

where the integrand is evaluated at $\tau = r_0$ and where we have used the fact that $x = z$ implies also $x = z$. Crucially, one finds [28] that the last integral vanishes at the limit if $x = z$, for any m, regardless of the explicit form of $P_{(5)}$. Hence, Eq. (81) reduces to

$$F_{\text{self}}(z) = \lim_{x \to z} \sum_{m=1}^{\infty} F_{\text{res}}^m(z);$$

(83)

Here the substitution $x = z$ is allowed since the limit $x = z$ is known to be well defined (and, in particular, direction-independent). Phrased differently, the modes F_{res}^m corresponding to our puncture [28] are continuous at the particle, as desired.

It might perhaps seem suspicious that, in the above analysis, the sum over m-modes $F_{\text{punc}}^m F_{\text{res}}^m$ (which are all zero at $x = z$) fails to recover the original function $F_{\text{punc}} F_{\text{res}}$ (which is discontinuous at $x = z$ and hence nonexistent there). This, however, should not come as a surprise. Recall that the formal Fourier sum at a
step discontinuity (where the function itself is indeterminate) is in fact convergent: it yields the two-side average value of the function at the discontinuity. Technically, this peculiarity of the form all Fourier expansion is due simply to the non-interchangeability of the sum and \(\lim z \) at the point of discontinuity.

Relatively, we should emphasize that the full (4D) residual eld, \(F_{\text{res}} \), does not yield the correct SF upon taking the \(\lim z \): this eld does not even have a well defined \(\lim z \), as we argued in the discussion below Eq. (75). However, the sum over the form all Fourier modes of \(F_{\text{res}} \), which indeed fails to reproduce \(F_{\text{res}} \) at the particle, does turn out to give the correct SF, as we have established in the discussion leading to Eq. (83).

It is possible to design an improved, higher-order-accurate puncture \(h_{\text{func}} \), so that the SF is indeed simply given by \(F_{\text{res}}(z) \). Such an approach is necessary for 3+1D implementations of the puncture scheme, and is beneficial also in a 2+1D frame work as it enhances the differentiability of the residual variable and in proves the convergence of the m-m mode sum in Eq. (83). However, such a proven wrong entails an explicit calculation of higher-order terms in the \(S \) eld (including the term \(w^{\lambda} \) and possibly higher-order terms in Eq. [15]). A higher-order puncture, suitable for 3+1D in planar extension, was devised recently by Vega and collaborators [154,159].

Our result (83) can be written explicitly in terms of the m-m modes of the residual eld \(h_{\text{res}}^{m} \), and easily so if we use the fixed o-worldline extension of \(r \) (the choice of extension may affect the value of the individual m modes, but not the eventual value of the SF). We then have

\[
F_{\text{self}} = \sum_{m=1}^{\infty} r_{m} h_{\text{res}}^{m} e^{im};
\]

where, of course, the right-hand side is evaluated at the particle. This formula prescribes a straightforward method for constructing the SF in a 2+1D frame work. In the puncture scheme we effectively "regularize" the eld equations themselves (not their solutions, as in the standard m-mode regularization method), by writing them in the form (67) with a sufficiently accurate puncture function | like the one we give in (70) | once the m-m modes of the residual perturbation have been calculated, the SF is constructed directly from these modes, via Eq. (84), with no need for further regularization. This \(m \)-m mode regularization scheme is, yet to be applied in actual calculations of the SF, offers a simple and efficient frame work for such calculations in Kerr spacetime.

8. Physical effects of the self force

With the development of the first gravitational SF codes in the past few years, it became possible to start exploring quantitatively the physical consequences of the SF. While the ultimate goal of the SF program remains the description of the long-term orbital evolution, knowledge of the SF along geodesic orbits already gives access to some interesting physics associated with the \(O(\epsilon) \) dynamics. Among the questions that one can address: How does the finite mass of the particle affect the rates of precession? How does it modify the location and frequency of the ISCO? Are there other, less familiar conservative SF effects that could manifest themselves in a characteristic way in the emitted gravitational waveforms?
Can transient resonances between the radial and polar motion (for eccentric and inclined orbits in Kerr) have important observational implications? Identifying and quantifying concrete SF effects that are gauge invariant and have a clear physical interpretation is also vital if one intends to cross-validate SF calculations carried out in different gauges and in making a connection with results from PN theory. Quantitative information about concrete SF effects [such as the O(1) correction to the strong-ellipses precession rate as a function of the geodesic parameters] can be incorporated "by hand" into approximate (PN) models of EMRI orbital evolution. In this way, the study of SF effects for geodesic orbits can inform the proven em of EMRI models even before a reliable and workable scheme for the long-term evolution is at hand.

In this penultimate section we describe some of the recent initial investigations into the physical consequences of the gravitational SF. 8.1. Conservative and dissipative pieces of the SF In discussing the physical consequences of the SF it is very useful to distinguish between "conservative" and "dissipative" effects. These are normally defined as effects arising correspondingly, from the "time symmetric" and "time antisymmetric" pieces of the SF. To formulate this more precisely, let us re-write Eq. (24) as

\[F_{\text{self}}(z) = \lim_{x \to z} [F_{\text{ret}}(x) \cdot F_{\mathbb{S}}(x)]; \] (85)

where the label 'ret' is to remind us that the physical SF is derived from the physical, retarded metric perturbation [recall \(F_{\text{ret}} = r_x \cdot h_{\text{ret}} \)]. Then introduce the force

\[F_{\text{self}}(adv)(z) = \lim_{x \to z} [F_{\text{adv}}(x) \cdot F_{\mathbb{S}}(x)]; \] (86)

where \(F_{\text{adv}} = r_x \cdot h_{\text{adv}} \) (namely, \(F_{\text{self}}(adv) \) is obtained from \(F_{\text{self}}(ret) \) by replacing the retarded perturbation with the advanced one). The conservative and dissipative pieces of the SF are then defined through

\[F_{\text{cons}} = \frac{1}{2} F_{\text{self}}(ret) + F_{\text{self}}(adv); \quad F_{\text{dim}} = \frac{1}{2} F_{\text{self}}(ret) - F_{\text{self}}(adv); \] (87)

The physical SF is the sum of the two pieces: \(F_{\text{self}} = F_{\text{self}}(ret) = F_{\text{cons}} + F_{\text{dim}} \).

The dissipative force, \(F_{\text{dim}} \) is responsible (in particular) for the long-term secular drift in the value of the intrinsic \"constants\" of motion: the energy \(E \), azimuthal angular momentum \(L_z \) and Carter constant \(Q_c \) associated with the geodesic motion in Kerr. \(F_{\text{cons}} \), on the other hand, has no such long-term influence on the evolution of these orbital parameters. Here \"long-term\" refers to a period of time much longer than the longest orbital period. It should be noted, however, that both \(F_{\text{dim}} \) and \(F_{\text{cons}} \) act on the same values of the intrinsic parameters \(E, L_z, Q_c \) (in a gauge-dependent way); in the case of \(F_{\text{cons}} \) this effect \"averages out\" over many orbital periods, whereas for \(F_{\text{dim}} \) it accumulates. It should also be noted (what is usually less well recognized) that \(F_{\text{cons}} \) too, gives rise to secular, long-term effects; those associated with the evolution of the phase-type orbital elements. Recall bound geodesics in Kerr are 3-periodic, with three characteristic frequencies corresponding to the azimuthal, radial, and longitudinal motion.
How does one go about separating the full SF into its conservative and dissipative pieces in practice? In a frequency-domain analysis this poses no difficulty. In addition to calculating the physical SF $F_{\text{self}(\text{ret})}$, one also calculates the advanced metric perturbation modes by suitably inverting the boundary conditions in the relevant ordinary differential equations, and use these modes to construct the quantity $F_{\text{self}(\text{adv})}$ (e.g., using the mode-sum formula [87], replacing F_{ret}^1 by F_{adv}^1). The conservative and dissipative pieces are then obtained using Eq. (87). This procedure was implemented, for example, in the analysis of Ref. [60]. The situation is slightly different in a time-domain analysis, as one does not need to control the boundary conditions during the time evolution (cf. Sec. 6). Haas [24] proposed to obtain the necessary advanced SF data by reversing the time-direction of the evolution: For a given orbit, one solves the relevant time-domain field equations once evolving forward in time as usual to obtain $F_{\text{self}(\text{ret})}$, and then again evolving backward in time (starting with initial Cauchy data specified in the future) to obtain $F_{\text{self}(\text{adv})}$.

There is a more computationally economical method for constructing $F_{\text{cons} \oplus \text{disc}}$ in the time-domain, at least in the case of orbits that are either equatorial or circular. This method, first proposed and implemented in Ref. [26], makes use of the symmetries of Kerr geodesics, first noted in the current context by Minô [110]. It can be shown (see, e.g., Sec. II.G of [87]) that, at any given point in Kerr space-time, the following relation holds:

$$F_{\text{self}(\text{adv})}(u; \mu; \nu; \nu) = (\gamma) F_{\text{self}(\text{ret})}(u; \mu; \nu; \nu);$$

where

$$\gamma = (1; 1; 1; 1)$$

in Boyer-Lindquist coordinates (no summation over γ on the right-hand side). Here we are treating the SF as a function of the four-velocity at the given spacetime point. Now we consider a bound geodesic orbit in Kerr, which is either circular (and possibly inclined) or equatorial (and possibly eccentric). We parametrize this geodesic by the proper time τ, and, if the orbit is eccentric, take $\gamma = 0$ at one of the radial "turning points" (i.e., where $dr/d\tau = 0$) without loss of generality. Now examine the retarded and advanced SFs $F_{\text{self}(\text{ret} \oplus \text{adv})}(\gamma)$ along this geodesic. It is clear from symmetry that

$$F_{\text{self}(\text{ret} \oplus \text{adv})}(u; \mu; \nu; \nu; \gamma) = F_{\text{self}(\text{ret} \oplus \text{adv})}(u; \mu; \nu; \nu; \gamma);$$

From Eq. (88) it then follows that

$$F_{\text{self}(\text{ret} \oplus \text{adv})}(\gamma) = (\gamma) F_{\text{self}(\text{adv} \oplus \text{ret})}(\gamma);$$

and Eq. (89) gives

$$F_{\text{cons}}(\gamma) = \frac{1}{2} F_{\text{self}(\text{ret})}(\gamma) + (\gamma) F_{\text{self}(\text{ret})}(\gamma);$$

$$F_{\text{disc}}(\gamma) = \frac{1}{2} F_{\text{self}(\text{ret})}(\gamma) + (\gamma) F_{\text{self}(\text{ret})}(\gamma);$$

Since in time-domain analysis the physical (retarded) SF is computed along an entire radial period (at least), Eqs. (90) and (91) can be used to obtain the conservative and dissipative components of this force anywhere along the orbit without resorting to a calculation of the advanced perturbation.

The above trick can, of course, be implemented for any geodesic orbit in Schwarzschild (as in this case the orbit can always be taken as equatorial). However,
it cannot be applied for orbits in K_{err} that are both eccentric and inclined, because for such orbits the symmetry relation \[\textbf{90} \] does not hold in general. Note that, for circular orbits, Eqs. \[\textbf{92} \] and \[\textbf{93} \] immediately yield $F_{\text{cons}}^r = F_{\text{cons}}' = 0$ as well as $F_{\text{diss}}^r = F_{\text{diss}}' = 0$, so in this case the r and ' components of the SF are purely dissipative, while the r and ' components are purely conservative.

Finally, it is useful to have at hand separate mode-sum formulas for the conservative and dissipative pieces. To obtain such formulas, first write a mode-sum expression for $F_{\text{self(adv)}}$ by replacing $F_{\text{ret}}^\perp, F_{\text{adv}}^\perp$ in Eq. \[\textbf{95} \]. Here F_{adv}^\perp are derived from the modes of the advanced metric perturbation in just the same way as F_{ret}^\perp are derived from the modes of the retarded perturbation. (The same regularization parameters apply to both retarded and advanced forces, because the corresponding metric perturbations share the same singular piece.) Then substitute the mode-sum expressions for $F_{\text{self(ret)}}$ and $F_{\text{self(adv)}}$ in Eq. \[\textbf{57} \]. This gives

\[
\begin{align*}
F_{\text{cons}} & = F_{\text{cons}}^r + \sum_{m \neq 0} \mathbf{C}^{(m)} = 0, \\
F_{\text{diss}} & = F_{\text{diss}}^r + \sum_{m \neq 0} \mathbf{C}^{(m)} = 0,
\end{align*}
\]

where we have used $C = D = 0$ and introduced $F_{\text{cons}}^r (F_{\text{ret}}^\perp + F_{\text{adv}}^\perp)$=2 and $F_{\text{diss}}^r (F_{\text{ret}}^\perp - F_{\text{adv}}^\perp)$=2. Notice that the dissipative component of the SF requires no regularization. In fact, one can show that the mode sum in Eq. \[\textbf{92} \] converges exponentially fast. For that reason, the computation of the dissipative piece of the SF via the mode-sum method is technically much less challenging than that of the conservative piece.

8.2. Dissipation of energy and angular momentum

Perhaps the most familiar aspect of the self-interaction physics in the binary context is the long-term radiative decay of the orbit. In the language of the SF, we say that the work done on the particle by the dissipative component of the SF converts orbital energy (and angular momentum) into gravitational-wave energy (and angular momentum). The relation between the SF and dissipation is immediately evident from the equation of motion \[\textbf{21} \], whose (Boyer-Lindquist) r and ' components read, respectively,

\[
\frac{du_r}{dt} = F_{\text{self}}; \quad \frac{du'}{dt} = F_{\text{self}}'.
\]

In the absence of SF (that is, in the test-particle limit), Eqs. \[\textbf{23} \] tell us that u_r and u' are constants of motion, and we interpret these as the orbital energy, E \[\textbf{27} \], and azimuthal angular momentum, L_z \[\textbf{27} \] \[\textbf{27} \]. Equations \[\textbf{23} \] also tell us how E and L_z change under the effect of the SF. This effect is not entirely dissipative: The SF includes periodic components which do not lead to a net long-term change in the values of E and L_z. The non-periodic component of F_r and F' does lead to a secular drift in the values of E and L_z, interpreted as dissipation.

This non-periodic component is entirely contained in the dissipative piece of F_r and F', as expected. This is immediately clear from Eq. \[\textbf{92} \] in the case of equatorial
or circular orbits in Kerr (and for all orbits in Schwarzschild): The anti-symmetry of $F^\text{cons}(\cdot)$ and $F^{\text{cons}}(\cdot)$ with respect to means that these pieces of the SF vanish upon integration over one complete (radial or longitudinal) period, and thus produce no net change in the values of E and L_z over that period (this, of course, assumes that the orbit is very nearly geodesic over one period). The same applies generally for all orbits in Kerr, if the orbital integration is taken over sufficiently many periods (formally, in infinitely many). These statements are encapsulated in the relations

$$
F_i = u^i = F_i^{\text{di�}} = u^i; \quad H_i = \frac{d}{dt} F_i^{\text{di�}} = u^i; \quad H_i = u^i = \frac{d}{dt} F_i^{\text{diѕ}} = u^i; \quad (97)
$$

where an overdot represents d/dt (hence the factor $1 = u^i = d/dt$ on the right-hand side), and i indicates an average over sufficiently long time. One always finds $F_i^{\text{diѕ}} > 0$ and $F_i^{\text{diѕ}} < 0$ (see, e.g., [122]), so that $H_i < 0$ and $H_i < 0$, and orbital energy and angular momentum are lost over time as one expects. The time-average quantities in Eq. (97) are expected to be independent of the gauge even though the on entry values of $F_i^{\text{diѕ}}$ and $F_i^{\text{diѕ}}$ are themselves gauge dependent.

Implicit in the above discussion is the assumption that the orbit is indeed available for the necessary time-averaging, i.e., that E and L_z evolve very slowly over the required averaging time otherwise the averaging procedure would be meaningless. Such "adiabaticity" requirement (formulated more accurately, e.g., in [91]) is believed to hold well in LISA-relevant EMRs throughout the inspiral and until very close to the innermost stable orbit (e.g., [91]) for a more quantitative discussion of this point.

The loss of orbital energy and angular momentum is precisely balanced by the loss of the corresponding quantities in the gravitational waves radiated to in nity and down into the black hole. Using Eq. (97) we can express this balance in terms of the local SF:

$$
\begin{align*}
1 H_i^{\text{diѕ}} &= H_i^{\text{G.W.}} + H_i^{\text{G.W.}} \\
1 F_i^{\text{diѕ}} &= H_i^{\text{G.W.}} + H_i^{\text{G.W.}}
\end{align*} \quad (98)
$$

The quantities on the right-hand side are the time-averaged asymptotic values of the SF. The time evolution of the black hole is such that the in nity values are positive. This convention also allows the sign of the horizon to be determined. For certain orbits in Kerr, negative horizon values are expected to occur in a superradiation behavior, whereby energy and angular momentum are exchanged transferred from the ergosphere of the K err hole to the orbit [158, 152, 75]. The formal proof of the balance equations (98) involves the application of the Gauss theorem in the 3-volume bounded between a 2-sphere at r = 1 and another one just outside the horizon; see, e.g., [158] (in the special case of circular orbits in Schwarzschild).

The asymptotic values $H_i^{\text{G.W.}}$ and $H_i^{\text{G.W.}}$ are calculated across a large 2-sphere (e.g., [158, 153, 91, 75]) and are recently within...
a time-domain framework [19,25]. There is also a standard prescription for calculating the horizon fluxes \(h_{GW}^i \) and \(h_{GW}^Z \); it is due to Teukolsky and Press [152] (based on the horizon perturbation formalism of Hawking and Hartle [84]) and is formulated in the frequency domain in terms of curvature scalars. A time-domain formulation of the horizon fluxes was more recently developed by Poisson [134].

The balance equations (98), with (97), allow us to infer the leading-order long-term evolution of \(E \) and \(L_z \) without resorting to an explicit calculation of the local SF (assuming adiabaticity). To get a full description of the time-averaged orbital decay one must, in general, also be able to calculate the evolution of the Carter constant \(\mathcal{Q}_c \). It is not difficult to write down a relation analogous to (97) which expresses \(h_{\mathcal{Q}_c} \) directly in terms of the local SF [122], but there is no known analogue to (98), relating \(h_{\mathcal{Q}_c} \) to the asymptotic flux of radiation. However, thanks to a breakthrough idea by Mino [110,111] and follow up work by Sago and collaborators [146,73], there is now known a practical formulation for \(h_{\mathcal{Q}_c} \) which does not require knowledge of the SF (it does require knowledge of the local advanced and retarded modes of the metric perturbation).

In conclusion, information on the time-averaged evolution of all three intrinsic constants of motion, \(E, L_z \) and \(\mathcal{Q}_c \), is directly accessible from the dissipative piece of the SF, but there are alternative methods (likely more computationally efficient) for accessing this information without resorting to the SF and to Eq. (98). However, from the perspective of the SF program development, the balance equations (98) are still a very useful tool for validating SF codes. Two independent tests are possible: First, since a SF code always involves a calculation of the metric perturbation itself, one can use this perturbation to construct the asymptotic fluxes of energy and angular momentum, and then use Eqs. (98) to test the self-consistency of the code. Second, one can test the computed values of the dissipative SF against asymptotic flux data available in the literature (e.g., 107, 75). Such a two-fold test is an important, reassuring check on the validity of a SF code. Explicit calculations demonstrating the balance relations (98) have been carried out so far for circular [25] and eccentric [148] orbits in Schwarzschild.

8.3. Conservative effects on circular orbits in Schwarzschild

DeWitt was first to explore quantitatively the conservative effects of the SF in the simple example of circular geodesics outside a Schwarzschild black hole [52]. He pointed out two gauge-invariant quantities that carry non-trivial information about the conservative SF dynamics in this setting: the orbital frequency (with respect to time),

\[u_r' = u_r^* \tag{99} \]

and the contravariant component of the four-velocity, denoted

\[U = u^i \tag{100} \]

Here \(u^i \) is the perturbed four-velocity along the circular geodesic orbit, including SF corrections. We have \(u^r' = 0 \) along the orbit, and we also take \(u^r = 0 \). The said gauge invariance of \(u^i \) and \(U \) is restricted to transformations for which the gauge displacement vector respects the helical symmetry of the perturbed spacetime system, i.e., it satisfies

\[(\nabla_l + \nabla_t) u^i = 0 \tag{101} \]
through $O(\cdot)$, at least along the particle’s worldline. It is easy to see that all contravariant components u are invariant through $O(\cdot)$ under such transformations [147]. The two non-trivial components u^0 and u^r give two independent gauge invariants, which we can recombine to form Detweiler’s gauge-invariant variables U and ϕ.

While the physical significance of the frequency is clear, that of U is slightly less obvious. Detweiler [53] discusses two physical interpretations of U. First, it is a measure of the gravitational red-shift experienced by photons emitted by the orbiting particle and observed at a distance. Second, U is intimately related to the helical Killing vector of the perturbed spacetime [with its gauge invariance being simply the statement that this Killing vector is invariant under gauge transformations satisfying Eq. (29)]. Unfortunately, as we explain below, the conservative SF corrections to U are not expected to have any short-term observable imprint on the gravitational waveform emitted from the circular orbits.

Explicit expressions for r and U, including SF terms, are easily obtained from the component of the equation of motion [24], setting $u^r = 0$ and $du^r/d = 0$. One ends [147]

$$
0 \frac{1}{2} \frac{r_0(r_0 - 3M)}{2M} F_r; \quad (102)
$$

$$
U = U_0 \frac{1}{2} \frac{r_0}{F_r}; \quad (103)
$$

through $O(\cdot)$, where r_0 is the orbital radius (Schwarzschild r coordinate), and $U_0 = (\frac{r_0^3}{M})^{1/2}$ are the geodesic (unperturbed) values of r and U, respectively. Recall that the radial component of the SF, F_r, is purely conservative in the case of a circular orbit; hence the SF terms in Eqs. (102) and (103) represent conservative corrections to r and U. Of course, the two quantities would also evolve dissipatively (this effect is described by the τ and ν components of the equation of motion), but here we ignore the dissipative piece of the SF in order to study the effect of its conservative piece in isolation. Equations (102) and (103) tell us that the effect of the conservative SF is to shift the values of r and U as compared with their non-perturbed geodesic values (for a given orbital radius r_0).

The conservative SF shift in r, which is calculated numerically, as a function of r_0 in Ref. [24], along with the conservative shift in the orbital energy E (which is gauge dependent).

It should be understood that, despite the formal gauge invariance of ϕ, the relation (r_0) is, in fact, gauge dependent, because the radius r_0 itself is gauge dependent (the calculation in [25] was carried out in the Lorenz gauge). To illustrate this point, suppose that we carry out two independent calculations of the SF in two different gauges, and we wish to test our results by comparing the values of ϕ using Eq. (102). The problem we would face is that a given value of r_0 would, in general, correspond to two physically distinct orbits, due to the gauge ambiguity at $O(\cdot)$; there is no way of relating the coordinate values of the two physical radii in the two gauges without further information about the gauge (in the form of the local metric perturbation, for example). The conservative SF shift in U, $U(r_0)$, is similarly gauge dependent, and thus it too cannot be utilized usefully as a gauge-invariant measure of the SF effect.

One might hope to get around this problem by expressing one of our gauge invariants in terms of the other. To this end, it is convenient to introduce the gauge
invariant radius,

\[M = 2^{1/3} R \]

(104)

and then express \(U \) in terms of \(R \). However, one then simply finds

\[U(R) = (1 - \frac{3M}{R})^{1/2} + O(2); \]

(105)

which contains no explicit information about the SF. This is an obvious result: An \(O(1) \) term on the right-hand side of Eq. (104) could only involve \(R \) and \(F_r \), and since \(R \) is gauge invariant while \(F_r \) is not, the occurrence of such a term would necessarily violate the gauge invariance of \(U \). We therefore have to maintain our conclusion that \(U \) and \((R) \), each on its own or even both combined, do not contain gauge-invariant information about the SF effect, unless, in addition, we have access to local gauge information. For that reason, also, we cannot expect to be able to identify the effect of the conservative SF in a detected gravitational wave from a circular EMRI merely by measuring the monopole values of \(U \) and/or \(U \) (even if there was a way of extracting \(U \) from the waveform, which is unlikely).

Fortunately, information about the local metric perturbation, not available to the gravitational-wave astronomer, is available to the SF theorist running a SF code. This allows the theorist to utilize \(U \) usefully in quantifying the gauge-invariant content of the conservative SF, as first shown by Detweiler [53, 54] and further demonstrated in [147]. In the following we outline the method of Ref. [147].

Consider again a circular orbit of radius \(r_0 \) (in Schwarzschild), but now interpret this, a la Detweiler and Whitling, as a geodesic of the effective perturbed spacetime with metric \(g + h^R \), where \(h^R \) is the \(R \)-part of the physical perturbation associated with the particle. Let \(u \) be proper time along this geodesic. To a given physical event along the orbit there thus correspond two proper time values, \(u \) and \(u \), associated with the two interpretations. (The two values will differ, in general, even if we calibrate and \(u \) to agree with one another at some initial moment.) It is easily shown [147] that, through \(O(1) \),

\[\frac{d}{du} = 1 + H; \quad \text{with} \quad H = \frac{1}{2} h^R uu; \]

(106)

where the perturbation is, of course, evaluated at the worldline point in question. The four-velocity in \(H \) can be defined interchangeably with respect to either \(u \) or \(u \) as \(h^R \) is already \(O(1) \), so the difference would only a \(O(2) \) which are anyway neglected in our discussion. Next, we define the gauge invariants \(U \) and \(U \) in terms of the four-velocity \(u \):

\[u' = u'^4 = u'^5 = 1; \quad U = U(1 + H); \]

(107)

where we have used Eq. (108). Finally, express \(U \) in terms of the gauge invariant radius \(R' = R \), and construct the \(O(1) \) difference \(U(R') - U(R) = (1 - \frac{3M}{R})^{1/2} \). The final result is [147]

\[U(R) = (1 - \frac{3M}{R})^{1/2}; \]

(108)

It is less clear how the conservative piece of the SF might affect the long-term evolution of the circular orbit under the full SF (dissipation included), and what influence it may have on the emitted gravitational waveform. These questions await investigation.

Note our notation here for \(u \) and \(u \) is reversed compared to that of Ref. [147].
Evidently, the metric perturbation combination H is gauge-invariant, as can be verified with an explicit calculation.

Equation (103) provides a nontrivial gauge-invariant relation which explicitly involves the R-part of the local metric perturbation (although it does not involve directly the SF). Two theorists working in two different gauges should be able to agree on the value of $\mathcal{U}(R)$, and such an agreement would constitute a nontrivial test of the calculation of h^R and, to an extent, of the SF too.

Two such tests, based on Eq. (103), were carried out so far. In Ref. [147] the results of Barack (Sago’s Lorenz-gauge SF code [25]) were compared with those of Detweiler’s Regge-Wheeler SF code [54]. The two codes were shown to agree on the values of $\mathcal{U}(R)$ to within the computational error (of merely 10^{-5} in fractional term). In Ref. [54], Detweiler worked out a 2PN expression for $\mathcal{U}(R)$ and compared it with the numerical SF data showing an astonishing agreement down to radii as small as $R = 8M$. Later, a 3PN expression derived by Le Tiec and collaborators [100] showed an even closer agreement. The 3PN expression approximates the “exact” SF value of \mathcal{U} to within mere 1% at $R = 12M$ and 5% at $R = 7M$.

8.4. ISCO shift

To identify conservative SF effects with truly “observable” consequences (by which we mean ones that can be measured in the gravitational waveform at least in principle), we must move away from the simplicity of circular orbits. We need not move very far, though. There is a simple effect with a clear physical significance, which is manifest already in the dynamics of orbits with initially small eccentricity: the conservative SF-induced shift in the value of the orbital frequency at the ISCO. This frequency shift, which is gauge invariant (under transformations satisfying Eq. (101)), was calculated recently in Ref. [26], and we shall describe this analysis briefly below.

Strictly speaking, the ISCO is defined in a precise way only at the test particle limit. When dissipation is ignored the transition from inspiral to plunge is no longer precisely localizable. Ori and Thorne showed [124] (for circular orbits in Kerr, a result later generalized to other orbits by O’Shaughnessy [125] and Sundararajan [131]) that the “width” of the radiative transition region (measured, e.g., in terms of the frequency bandwidth of the emitted gravitational wave) scales as a low power of the mass ratio: $\propto (M/m)^{1/3}$. The same scaling was discovered independently by Buonanno and Damour for a binary of nonrotating black holes with an arbitrary mass ratio [38]. Ori and Thorne’s analysis ignores the conservative effect of the SF, but the latter is expected to modify the location of the ISCO only by an amount $\propto (M/m)$, which for very small mass ratios we expect to be negligible compared with the width of the radiative transition. Still, there is a strong motivation to study the conservative effect of the SF on the ISCO. First, we would like to confirm the above expectation and quantify it better. Second, the conservative $O(\epsilon)$ shift of the ISCO frequency (dissipation ignored) is a precisely specifiable gauge-invariant quantity, and as such it can serve as a convenient “anchor” point for comparison between different calculation schemes. In particular, one can envisage it being used as a strong-field benchmark for calibration of PN calculations. Indeed, the value of the conservative ISCO frequency shift, for mass ratios not necessarily small, has been utilized extensively in the past by PN theorists in assessing the performance of various PN schemes (see, e.g., [51,35,57]). The calculation in Ref. [26] now provides this value.
To outline the calculation, we first remind how the occurrence of an ISCO is explained from the point of view of an effective radial potential. Ignoring the SF for the moment, the radial component of the equation of motion for a timelike geodesic in Schwarzschild takes the familiar form

$$r = \frac{\partial V_e}{\partial r} \frac{\partial L_\perp}{\partial r} F_e; \quad (109)$$

where $V_e = (1 - 2M/r)(1 + L_\perp^2/r^2)$ is an effective potential for the radial motion, and throughout our current discussion an overdot will denote d/dt (not $d/d\tau$ as in Subsec. 8.2). The quantity $F_e (r; L)$ can be interpreted as an effective radial force acting on the geodesic test particle. A stable circular orbit is associated with the (single) minimum of V_e (for given L), which occurs only for $L > \frac{3M}{2}$.

The radius of the circular orbit, $r = \frac{L}{M}$ ($L > \frac{3M}{2}$), decreases monotonically with decreasing L, and at the limiting value of $L = \frac{3M}{2}$ we have $r_0 = 6M$, the innermost stable circular orbit.

To better understand the dynamical significance of the ISCO, it is instructive to examine the behavior of a circular orbit under a small all-eccentricity perturbation. Writing $r(\tau) = r_0 + \epsilon r(\tau)$ and considering the linear variation of Eq. (109) with respect to the small eccentricity ϵ, one readily obtains

$$r(\tau) = \frac{\epsilon}{\epsilon^2} \bar{r}(\tau); \quad (110)$$

with

$$\bar{r} = \frac{M (r_0 - 6M)}{r_0 (r_0 - 3M)}; \quad (111)$$

Thus the radius of the perturbed orbit is a linear oscillator with frequency $\bar{\omega}$ [the subscript 0 indicates geodesic (no-SF) value]. For $r_0 > 6M$ we have $\bar{\omega} > 0$, and the circular orbit is dynamically stable under small all-eccentricity perturbations; the condition $\bar{\omega} = 0$ identifies the ISCO at $r_0 = 6M$ [5]. To avoid confusion, it should be understood that the radial frequency $\bar{\omega}$ is a characteristic of the circular orbit (not the perturbed orbit), which, however, does not manifest itself in the dynamics of the circular orbit itself. Mathematically, $\bar{\omega}$ is associated with the curvature of the effective potential at its minimum; physically, it describes the radial frequency of an eccentric orbit as the eccentricity tends to zero. In our current discussion, we simply use the value of $\bar{\omega}$ as a convenient handle on the location of the ISCO.

Now consider the effect of the SF, ignoring its dissipative piece. Equation (109) becomes

$$r = F_e (r; L_\perp) + F_{\text{cons}}; \quad (112)$$

The quantity $L_\perp (= \dot{u}$, by its definition) is no longer constant along the orbit; its (conservative) time-variation is determined by the r component of the equation of motion, reading

$$L_r = F_{\text{cons}}; \quad (113)$$

To examine how the SF affects the radial frequency of slightly eccentric orbits, we need to consider the linear variation of Eqs. (112) and (113) with respect to ϵ. Through $O(\epsilon)$, the relevant SF components along the orbit assume the general form

$$F_{\text{cons}}^r = F_0^r + \epsilon F_1^r \cos \omega \tau; \quad (114)$$

The fact that Eq. (114) gives $\omega^2 > 0$ also in the range $r_0 < 3M$ is irrelevant here, since there are no timelike circular orbits in that range.
(this is shown in Ref. [26] based on Eq. [24]), where the coefficients \(F_0^r, F_0^s \) and \(F_1^r \) depend only on \(r_0 \). In these expressions we can use the unperturbed radial frequency \(\nu_0 \) instead of the perturbed frequency since the F-coe cient cals are already \(O(\epsilon^2) \), and it is only the leading-order SF effect which concerns us here. The linear variation procedure once again yields an equation of the form (110) where now the radial frequency, perturbed by the conservative SF, is found to be

\[\nu^2 = \nu_0^2 + \frac{1}{2} F_0^r + F_0^s + F_1^r; \]

(115)

with \(3\nu_0^2 (r_0 - 4M) = 3\nu_0^2 + 2r_0^4 [M (r_0 - 3M)]^{-2} \), This formula describes the \(O(\epsilon) \) conservative shift in the radial frequency of its geodesic value. Note it requires knowledge of the SF through \(O(\epsilon) \).

The perturbed ISCO radius, \(r_0 = 6M + r_{\text{isco}} \), is now obtained from the condition \(\nu_0 (r_0) = 0 \). Recalling Eqs. (111), this gives

\[r_{\text{isco}} = \frac{1}{4} (r_0 - 3M) (3M - 2r_0^4 [M (r_0 - 3M)]^{-2}) r_0 = 6M \]

(116)

where the substitution \(r_0 = 6M \) is allowed since this only introduces an error of \(O(\epsilon) \) on the right-hand side. This equation describes the \(O(\epsilon) \) shift in the location of the ISCO due to the effect of the conservative SF. This shift is well de ned by the Schwarzschild geodesic gauge. However, the value of the azimuthal orbital frequency at the (shifted) location of the ISCO is gauge invariant. To obtain the shift in \(\nu_0 \) we simply substitute \(r_0 = 6M + r_{\text{isco}} \) in Eq. (102), writing \(r_{\text{isco}} = \nu_{\text{isco}} + r_{\text{isco}} \) where \(r_{\text{isco}} = 0(6M) = (6M^2 - M)^{1/2} \). We nd, through \(O(\epsilon) \),

\[\nu_{\text{isco}} = \frac{1}{2} \nu_{\text{isco}} = \frac{1}{2} \nu_{\text{isco}} = M \left(\frac{27}{2} - M \right) \frac{1}{4} F_0^r (6M); \]

(117)

In Ref. [26] the SF cals \(F_0^r, F_0^s \) and \(F_1^r \) are extracted numerically using the Lorenz-gauge SF code reviewed here in Sec. 6. With these numerical results Eqs. (116) and (117) give the nal values

\[r_{\text{isco}} = 3.269; \quad \nu_{\text{isco}} = 0.0870 \; M; \]

(118)

We remind the reader that the value of \(\nu_{\text{isco}} \) is speci c to the Lorenz gauge, but that for \(r_{\text{isco}} \) is invariant under all gauge transformations related to the Lorenz gauge through a transformation satisfying Eq. (101).

It is interesting to compare the conservative shift \(r_{\text{isco}} \) with the frequency bandwidth of the dissipative transition across the ISCO, calculated by Ori and Thorne in [124]. Denoting the latter (in the Schwarzschild case) by \(r_{\text{ISCO}} = 3\nu_0^2 (r_0 - 4M) \), giving, for example, \(35830, 9000 \) and \(2261 \) for mass ratios \(M = 10^6, 10^5 \) and \(10^4 \), respectively. This con rms our expectation that the conservative shift in the ISCO is practically negligible from the observational point of view. The main practical value of the results in Eq. (118) remains that they provide an accurate strong-eld benchmark to inform the development of approximate methods.
9. Reflections and prospects

We have attempted here to capture a snapshot of the activity surrounding the development of reliable, efficient and accurate computational methods for the gravitational SF in black hole spacetimes. The problem still attracts considerable attention (more than half the items on our bibliographic list date 2005), with a multitude of different approaches being studied by different groups. This multitude offers the opportunity for cross-validation of techniques and results, a particularly important prospect given the intricate nature of the numerics involved and the fact that SF calculations explore a new territory in black hole physics, yet uncharted neither by PN theory nor by Numerical Relativity.

Indeed, the field has by now matured sufficiently that such cross-validation exercises are becoming possible. As we described in Sec. 8, the last year has seen first quantitative comparisons between results from different calculations carried out in different gauges and using different numerical methods. We are now able to use SF codes to explore, for the first time, the conservative post-geodesic dynamics of strong-eid orbits around a Schwarzschild black hole [53, 54, 147, 26]. We can compute physical gauge-invariant SF ects and test them directly against results from PN theory in the weak-eid regime [55, 54, 147, 103]. Indeed, we can now start to use strong-eid SF results in order to calibrate PN methods and assess their performance [26]. The exciting prospects for synergistic interaction between SF and PN theories are beginning to materialize, with much scope for important developments in the coming years.

As of now, the state of the art in SF calculations is a code that can calculate the gravitational SF along any bound geodesic of the Schwarzschild geometry (currently at substantial computational cost, which future developments in the numerical technology may help reduce). This code, as many others mentioned in our review, is an implementation of the mode-sum regularization method (Sec. 4), which has proven a useful framework for calculations in Schwarzschild.

The Kerr problem, on the other hand, has hardly been tackled so far, and it represents the next significant challenge. Although the standard mode-sum method is in principle applicable to the gravitational SF in Kerr spacetime, the details of its numerical implementation in this case are yet to be worked out. It is possible that higher-dimensional techniques (like the m mode scheme discussed in Sec. 7) could provide an attractive alternative to standard mode-sum in the Kerr case.

In the short term, activity is likely to focus on the following tasks: (i) continue to improve the computational efficiency of SF calculations using advanced numerical techniques (mesh re-nement, spectral methods, etc.); (ii) tackle the Kerr problem; (iii) use SF codes to study post-geodesic physical ects (such as the mass-loss connection to the orbital precession rate), and in particular assess the relative importance of conservative SF ects in the EMRI problem; (iv) explore what can be learned from a comparison between SF and PN results.

Within the wider context of the LISA EMRI problem, the computation of the SF on an entirely geodesic particle is only one essential ingredient. There is still much more to understand before a faithful model of an astrophysical inspiral can be developed. Most crucially, a reliable and workable method must be devised for calculating the long-term evolution of the inspiral orbit. Work to address this problem has started recently [126, 127, 133, 144] but much further development is required.
Acknowledgements

Much of the material included in Sec. 4 and in the Appendix is based on work with Amos Ori, and I am grateful to him for his mentorship during the initial years of my work in the field, and for his continual advice and input in the years thereafter. I have been greatly influenced by continuing collaborations with Carlos Lousto (Sec. 8), Nori Sago (Secs. 4, 12), Liber Busko, and Steve Detweiler. Much of my understanding of the subject has formed through discussions with participants of the annual Caprino meetings, for which I am grateful. I am particularly indebted to Eric Poisson for any useful discussions, and for his encouragement over the years. Finally, I acknowledge the generous support from STFC through grant number PP/E001025/1.

Appendix: Derivation of the regularization parameters

We describe here the derivation of the regularization parameters for the gravitational SF in Kerr. The values of these parameters (stated in Sec. 4, Eqs. 38, 39, and 41) were first published in Ref. [24], but the detailed derivation has not appeared in print so far. We reproduce it here using the original method of Ref. [24].

Let the arbitrary timelike geodesic be the worldline of a particle with mass in a Kerr geometry with mass M and arbitrary spin a. We wish to calculate the regularization parameter values for the gravitational SF acting on the particle at an arbitrary point z along with Boyer-Lindquist coordinates $(t_0; z_0; \theta_0')$. Without loss of generality we shall take $\theta_0' = 0$.

We remind that the parameters A, B, and C are the leading-order coefficients in the formal expansion of the modes $F^{-1}_{\text{rot}}(z)$ at large l (recall Eq. 32). We also remind that the difference $F^{-1}_{\text{rot}}(z) - F^{-1}_\text{AdS}(z)$ is expected to die off at large l faster than any power of $l=1$ (recall the discussion surrounding Eq. 33). Therefore, the values of A, B, and C can also be conveniently deduced from the large-l asymptotics of the A, B, and C modes:

$$F^{-1}_\text{AdS}(z) = A_0 + B + C = L + O(L^{-2})$$

Once A, B, and C are known, the parameter D is given as the residual quantity [Eq. (37)]

$$D = \frac{1}{L} F^{-1}_\text{AdS}(z) - L - B - C$$

Our starting point will be the local expression for the $S_{\text{AdS}} h^z$, given in Eq. [19]. Referring back to Fig. 4, we denote the Boyer-Lindquist coordinate difference between point x (an arbitrary point in the immediate vicinity of z) and point z by $x - z$. In Eq. [19], the quantities $2(x;z)$ and $\bar{u}(x;z)$ are smooth functions of x, and we may expand them in the form

$$2 = S_0 + S_1 + O(x^2); \quad \bar{u} = u + u + O(x^2);$$

where S_0 and S_1 are, respectively, quadratic and cubic in x, and u is linear in x. Explicitly, these expansion terms read

$$S_0 = (g + u + u)x \times x = P \times x;$$

$$S_1 = P \times x \times x = P \times x;$$

$$u = u \times x;$$
where the background metric and connections are evaluated at z, and the coefficients P and P' are those defined in Eq. (43) (for a derivation of S_1 see, for example, Appendix A of [22]).

We now substitute the above expansions (A.3) in Eq. (39), and subsequently construct the field $F_\text{s}(x) = r_x h^2(x)$, where, recall, the operator r_x is the one defined immediately below Eq. (33). The resulting expression for $F_\text{s}(x)$ can be written down as a sum of terms sorted according to how they scale with x:

$$2F_\text{s}(x) = \frac{P(1)(x)}{3} + \frac{P(4)(x)}{5} + \frac{P(7)(x)}{0} + O(x): \quad \text{(A.7)}$$

Here S_0^{-2}, and $P_{(n)}$ denotes a certain multilinear function of the coordinate differences x, of homogeneous order n in x. Note that the first term on the right-hand side scales (after correction) as x^2, the second as x^1, and the third as x^0. The $O(x)$ remainder disappears at the limit $x! = z$ and cannot affect the value of the final SF; it is therefore safe to ignore it. The explicit form of $P(7)$ will not be needed in our analysis. The two other coefficients read

$$P_{(1)} = 2u u r_x S_0 = P x \quad \text{(A.8)}$$

and

$$P_{(4)} = u u 3S_1 r_x S_0 2S_0 r_x S_1 2(u u + u u u)S_0 r_x S_0$$
$$= \frac{1}{2} P (P + 3P) P (2P + P) P x x x x:\quad \text{(A.9)}$$

The second equality in each of (A.3) and (A.9) was evaluated with the help of the following identities, which are easily confirmed:

$$uu r_x = \frac{1}{4} P r; \quad PP = P; \quad \text{(A.10)}$$
$$r S_0 = 2P x; \quad r S_1 = (2P + P) x x; \quad \text{(A.11)}$$
$$u u + u u u r_x S_0 = uu P x = \frac{1}{2} P P x x; \quad \text{(A.12)}$$

where P is given in Eq. (43).

To obtain the regularization parameters, we need to consider the decom position of $F_\text{s}(x)$ in spherical harmonics (and then take $x! = z$). Notwithstanding the sphericity of the Kerr background, the spherical harmonics $Y_{l m}(r'; \theta')$ are defined as usual on surfaces of constant r and t, where $(r; \theta; \phi')$ are Boyer-Lindquist coordinates. To make this mode decomposition easier, we introduce new coordinates: In general (i.e., for general a), the multipole decompositions will involve all azimuthal numbers $j = 1$ for each l. However, if we choose a new set of angular coordinates, $(\theta'! (\phi'; \phi'0)$, such that in the new coordinates z is positioned at the pole (i.e., $\theta'0 = 0$), then the only contribution to each mode in the new system would come from the axially-symmetric metric $m = 0$ mode alone. Yet, due to the invariance of the Legendre functions under rotations on the 2-sphere, the overall $l m$-ode contribution (summed over m) would be the same in both systems. A transformation $(\theta', \phi')! (\theta^0, \phi^0)$ is given explicitly by

$$\cos^{0} = \cos' \sin \sin^{0} + \cos \cos^{0};$$
$$\tan^{0} = \frac{\sin' \sin}{\cos' \sin \cos \sin^{0}}; \quad \text{(A.13)}$$
L. Barack

where \(\theta_0 \) indicates the azimuthal direction of the particle's velocity in the new polar system (i.e., in the new system the velocity is momentarily tangent to the longitude line \(\theta_0 = \text{const} = \theta_0 \) on the 2-sphere). The angle \(\theta_0 \) depends on \(u \) and \(u' \), but the explicit relation will not be needed here.

Since the new angular coordinates are not well behavior at \(z \), we also introduce Cartesian-like local coordinates based around \(z \):

\[
x = (\theta) \cos(\theta_0 \theta_0); \quad y = (\theta) \sin(\theta_0 \theta_0);
\]

where we require \(= 0^+ O(\theta) \) near \(z \). Note that at \(z \) we have \(x = y = 0 \) as well as \(u^2 = 0 \). For later convenience, we make here the concrete choice

\[
\theta = 2 \sin(\theta_0 / 2);
\]

giving

\[
\cos \theta = 1 - \frac{1}{2} (x^2 + y^2);
\]

The angle \(\theta_0 \) depends on \(u \) and \(u' \), but the explicit relation will not be needed here.

In the following we will need the transformation \((\theta') = (x, y) \) only in the immediate neighborhood of \(z \). To sufficient order, we find

\[
x' = x + (l=2) \cot \theta y^2 + O(x^3);
\]

\[
y' = (\sin \theta_0) \frac{1}{2} (y \cot \theta xy) + O(x^3);
\]

where, recall, \(= 0 \) and \(' = ' \) are the Boyer-Lindquist coordinate differences, and \(O(x^3) \) represents terms at least cubic in \(x \) and \(y \). We denote

\[
X = (X^0; X^1; X^2; X^3) \quad (t; r; x; y = \sin \theta);
\]

noting \(X = 0 \) at the particle. The direct transformation from \(X \) to the Boyer-Lindquist coordinate differences \(x \) can be written in sufficient order in the compact form

\[
x = X + C X X X X ;
\]

where the constant coefficients \(C \) are those defined in Eq. (44).

Our next step is to express the S-ell force \(F_S(x) \) in terms of the \(X \) coordinates (note, however, that we do not consider here the \(X \) components of \(F_S(x) \), but rather the Boyer-Lindquist components; the \(X \) coordinates are merely introduced to assist with the Legendre integration below). We substitute Eq. (4.14) in Eq. (4.7) and then re-expand in the coordinate differences \(X \). The result takes the form

\[
2 F_S(x) = F_A + F_B + F_C + O(x);
\]

where

\[
F_A = \frac{P X}{\partial X};
\]

\[
F_B = \frac{P X X X X X}{\partial X};
\]

\[
F_C = \frac{P X X X X X X}{\partial X};
\]

Here

\[
2 \frac{P X X X}{\partial X} \]

\[
A.21
\]

\[
A.22
\]

\[
A.23
\]

\[
A.24
\]
are constant coefficients whose explicit values will not be needed, and
\[
P = \frac{1}{2} P \left(3P^2 + 2P\right) P \left(2P^2 + P\right)
\]
\[
+ (3P P P P) C
\]
(A.25)

(In the last expression, the first line is simply the coefficient of $P_A^{(1)}$ from Eq. (A.3), and the second line arises from expanding the term $\frac{1}{2} P^3$ in Eq. (A.7) in powers of X. Note in Eq. (A.20) that the terms F_A, F_B and F_C scale as X^2, X^0 and X^0, respectively. The terms included in $O(x)$ vanish at $x=0$, and are therefore irrelevant for calculating the regularization parameters; we can hence safely ignore what follows.

To obtain the regularization parameters, via Eqs. (A.4) and (A.2), we now need to consider the spherical-harmonic modes $F_{s-1} F_s$. These are constructed, by definition, through
\[
F_{s-1} = \lim_{r \to 0} \frac{L}{2} \left[\frac{Z_1}{Z_2} \cdot \text{d} \cos^0 \text{d} P (\cos^2) F_s (r^0 r^0 r^0 z) \right];
\]
(A.26)

where $P (\cos^2)$ is the Legendre polynomial, recall, $L = l + l = 2$. Here we have already taken the limit to $t = 0, \gamma = 0$ and $\gamma' = 0$, thereby choosing to approach the particle along the radial direction, recalling that we expect two different one-side values (hence the label γ). Let us write
\[
2F_{s-1} = F_A^{-1} + F_B^{-1} + F_C^{-1};
\]
(A.27)

where the three terms on the right-hand side represent the respective contributions to F_{s-1} from the three terms F_A, F_B, F_C in Eq. (A.20). As explained in Ref. [22], the second and third terms (scaling near the particle as x^1 and x^0, respectively) are sufficiently regular to allow interchanging the order of the limit and integration in Eq. (A.28). For the same reason, the radial limit is well defined and the two-side ambiguity does not occur. As we discuss below, such an ambiguity does appear when considering F_{s-1} hence the label γ. In what follows we consider each of the three contributions to F_{s-1} in turn.

We start with F_C^{-1}. This term is obtained by replacing F_A in Eq. (A.26) with F_C from Eq. (A.23), and we are allowed to pull the limit $r \to 0$ over the integrals. The outcome has the form
\[
F_C^{-1} = \frac{L}{2} \left[\frac{Z_1}{Z_2} \cdot \text{d} \cos^0 \text{d} P (\cos^2)^2 (x; y) P (x; y) \right];
\]
(A.28)

where $P (x; y)$ is a certain polynomial of homogeneous order 7 in the two "angular" coordinates $(x; y) = (X^2; X^2 \sin^0)$, and
\[
\alpha_{\gamma_0} \cdot \gamma_0 (r \to 0; t \to 0) = \left(g_{\alpha x} (z) + e_{\alpha x} \right) (X^2) + \left(g_{\gamma y} (z) \right)^2 + \left(g_{\gamma y} (z) \right)^2 \gamma_{1=2}^2;
\]
(A.29)

In the last equality we used Eq. (A.24) with $P = g + u u$, recalling $u = 0$ along with $g_{\gamma y} (z) = 0$. We observe that $\gamma_{\alpha x}$ is an even function of both x and y, and, recalling Eq. (A.15), so is \cos^0. However, each of the terms in $P (x; y)$ (such...
as \(x^2y^2, x^4y^3, \) etc.) is odd in either \(x \) or \(y \). It then immediately follows from symmetry that the integral in Eq. (A.28) vanishes:

\[
F_C^1 = 0;
\quad (A.30)
\]

Next consider \(F_B^1 \). First, taking the limit \(r! 0 \) and \(t! 0 \), we have from Eq. (A.22)

\[
F_B^1(r; t! 0) = x_0^5 \pi_{abcd} x^a x^b x^c x^d;
\quad (A.31)
\]

where roman indices run over the angular coordinates \((X^2; X^3)\) only. Then, using \((X^2) = (x; y = \sin \theta) = (\cos \phi; \sin \phi = \sin \theta) \quad \omega^2, \quad \text{we write} \quad X^a = w^a \quad \text{and} \quad \omega^2 = 2 \pi_{abcd} w^a w^b.\) This allows us to write the Legendre integral for \(F_B^1 \) in a factorized form:

\[
F_B^1 = \frac{L}{2} \int_0^1 d \cos \phi P_L(\cos \phi) \int_0^2 d \omega^2 \pi_{abcd} w^a w^b w^c w^d = (A.32)
\]

Here the \(\int_0^1 \) integral is elementary: The entire term in the first set of square brackets reads simply \((2)! (2)! \) \((\text{for any}) \) \(l \). The term in the second set of square brackets is \(\pi_{abcd} \), where \(\pi_{abcd} \) are the \((1, \text{independent})\) integrals given in Eq. (A.19). These integrals, recall, are not elementary, but they can be expressed explicitly in terms of complete elliptic integrals, as in Eq. (A.24). In conclusion, we find

\[
F_B^1 = (2)! \pi_{abcd} ;
\quad (A.33)
\]

Importantly, the term \(F_B^1 \) contributes to each \(l \)-mode \(F_S^1 \) a constant amount, independent of \(l \).

We have one more contribution to \(F_S^1 \) to consider: that of \(F_A^1 \). Recalling Eq. (A.34), we have

\[
F_A^1 = \lim_{r! 0} \frac{L}{2} \int_0^1 d x dy P_L(\cos \phi) \int_0^2 d \omega^2 X^a X^b X^c X^d = (A.34)
\]

where the integral is taken over the \(2 \)-sphere, we have used the Jacobian \(\theta(\cos \phi, \phi) = 1, \) and the integrand is understood to be already evaluated at \(t = t_0 \). The Legendre polynomial can be written in the form \(P_L(\cos \phi) = 1 + 2H(\phi,) \), where \(H(\phi,) \) admits a regular Taylor expansion in \(\phi \). Consider first the contribution of the term \(\int d \omega^2 \pi_{abcd} \) to \(F_A^1 \): The corresponding integrand in Eq. (A.34) has the form \(\int \int_0^2 \pi_{(3)}(r; x; y) \) (recalling \(2 = x^2 + y^2 \)), where \(\pi_{(3)} \) is a polynomial of homogeneous order \(3 \) in \(r; x; y \). This contribution to the integrand is therefore bounded, and we are allowed to swap the limit and integral just as we did with \(F_C^1 \). The resulting integral then vanishes by virtue of the same symmetry argument applied in the case of \(F_C^1 \). Both functions \(\pi_{abcd} \) and \(H(\phi,) \) are even in each of \(x \) and \(y \), while all the possible terms in \(\pi_{(3)}(0; x; y) \) are odd in either \(x \) or \(y \).

We are thus left with the contribution

\[
F_A^1 = \lim_{r! 0} \frac{L}{2} \int_0^1 d x dy P_L(\cos \phi) \int_0^2 d \omega^2 X^a X^b X^c X^d = (A.35)
\]

To evaluate this integral, we divide the integration domain (the \(2 \)-sphere) into two regions: Let \(D_\text{in} \) denote the square \(h < x < h, x < h, y > h \) for some particular \(0 < h < 1 \) (say, \(h = 1 = 10 \); and let \(D_\text{out} \) denote the remaining integration area. Consider first
the contribution to F_A^1 from D_{out}: Since in this domain the integrand is regular (the only singularity is at $x = y = 0$, which is in D_{in}), we are allowed to interchange the limit and integration. As a result, the integrand takes the form $\text{^3}_{0x}P X^b$, and the integral over D_{out} vanishes by virtue of the odd symmetry. The remaining piece of the integral, over D_{in}, is

$$F_A^1 = \lim_{r!0} \frac{L}{2} h \frac{Z_h}{h} \frac{Z_h}{h} \frac{dx}{h} \frac{dy}{h} \frac{\text{^3}_{0x}P X}{(P X X X)^{b-2}}.$$

This integral takes a simpler form if we express it in terms of the rescaled coordinates $x \rightarrow r, y \rightarrow \rho, x \rightarrow X = (0; l, x, y) = (0; l, x, y) = (0; l, x, y)$ (where we have already taken $t!0$). For given $r \neq 0$ we have $\text{^3}_{0x}P X X X = r(P X X X)^{b-2}$, where the sign corresponds to the sign of r. Hence we obtain

$$F_A^1 = \lim_{r!0} \frac{L}{2} h \frac{Z_h}{h} \frac{Z_h}{h} \frac{dx}{h} \frac{dy}{h} \frac{\text{^3}_{0x}P X}{(P X X X)^{b-2}}.$$

where the last equality holds because the integrand, expressed in terms of the title variables, no longer depends on r. This integral is now elementary, and evaluating it gives

$$F_A^1 = LA + B.$$

where the signs correspond to $r!0$, and where the various Boyer-Lindquist components of A are given in Eq. [33]. [Section V.D of Ref. [22] explains in detail how the integral in Eq. [A.37] is evaluated in the special case of Schwarzschild, and the method is directly applicable to Kerr.] Notice that F_A^1 is found to depend on l only through the prefactor L.

In summary, collecting the results [A.20], [A.30], [A.33] and [A.38], we find that the modes F_s^1 are given precisely by

$$F_s^1 = LA + B.$$

where A and B are l-independent. Comparing with Eq. [A.11], we identify A and B as the first two of the regularization parameters. This comparison also implies $C = 0$. Furthermore, we find that each of the individual terms in the sum over l in Eq. [A.2] vanishes, giving also $D = 0$. This completes the derivation of all regularization parameters.

We comment on a potentially confusing aspect of the above analysis: We have discarded in Eq. [A.23] the $O(x)$ terms of $F_s^1(x)$, which vanish at $x = 0$. Clearly, the multipole expansion of these neglected terms could contribute to F_s^1 [e.g., they may well add a term / L^2 in Eq. [A.33]]. Such terms, however, must add up to zero upon summation over l (when evaluated at the particle). They hence act neither the value of D in Eq. [A.2], nor the value of the final SF in Eq. [36].

References

[arXiv:gr-qc/9606003].
[arXiv:gr-qc/9702048].
[100] A. Le Tiec, presentation at the 12th Capra meeting on radiation reaction; posted on the
meeting’s website.
[arXiv:gr-qc/0303054].
[162] N. W. arburton and L. Barack, in preparation; see also W. arburton’s presentation at the 12th Capra meeting, posted on the meeting’s website.[1].