Super-soft symmetry energy encountering non-Newtonian gravity in neutron stars

De-Hua Wen,1,2 Bao-An Li,2 and Lie-Wen Chen3

1Department of Physics, South China University of Technology, Guangzhou 510641, P.R. China
2Department of Physics and Astronomy, Texas A & M University-Commerce, Commerce, Texas 75429-3011, USA
3Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
(Dated: August 11, 2013)

Considering the non-Newtonian gravity proposed in the grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the super-soft nuclear symmetry energy at supra-saturation densities. The degree of possible violation of the Inverse-Square-Law of gravity in neutron stars is estimated using an Equation of State (EOS) of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

PACS numbers: 26.60.-c, 97.60.Jd, 14.70.Pn

The density dependence of nuclear symmetry energy $E_{\text{sym}}(\rho)$ is an important ingredient for understanding many interesting phenomena in astrophysics, cosmology and nuclear physics.19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 The super-soft ones (e.g., the original Gogny–Hartree–Fock (GHF) prediction23 and group III in 24) predict that the $E_{\text{sym}}(\rho)$ increases continuously at all densities, many other models, see, e.g., refs. 19,20,21,22,23,24,25,26,27,28,29,30,31,32, predict that the $E_{\text{sym}}(\rho)$ increases, and then decreases above certain supra-saturation densities. The $E_{\text{sym}}(\rho)$ may even become negative at high densities, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. This latter kind of symmetry energy functions are generally regarded as being soft. Some (e.g., the UV14+ TNI in 20 and group II in 24) of them can describe very well all observed properties of neutron stars (NSs). However, the super-soft ones (e.g., the original Gogny–Hartree–Fock (GHF) prediction23 and group III in 24) that quickly drop to zero around three times the saturation density of either can not keep the NSs stable or predict maximum NS masses significantly below 1.4 M⊙ depending on the EOS used for symmetric nuclear matter. Given the above theoretical situation, experiments on nuclear matter at high density $E_{\text{sym}}(\rho)$ are thus most important.

Very interestingly, circumstantial evidence for a super-soft $E_{\text{sym}}(\rho)$ was found very recently from analyzing the FOP1/GSI data on neutron stars in relativistic heavy-ion collisions 23,24,25 within a transport model using the MDM (momentum-dependent interaction) EOS 23. While the symmetric part of the MDM EOS is consistent with the existing terrestrial nuclear laboratory data, 2,3,8,25, the total pressure of NS matter obtained using the super-soft $E_{\text{sym}}(\rho)$ (which is actually the original GHF prediction) preferred by the FOP1/GSI data can not keep neutron stars stable.

Among possibly many important issues in astrophysics and cosmology, this finding poses immediately a serious scientific challenge: how can the NSs be stable with such kind of super-soft symmetry energy? In fact, this question has been raised repeatedly and the answer has been negative along different experimental indications available. In the literature, the super-soft symmetry energy was often regarded as being "unpleasant", see, e.g., 23, or "unphysical", see, e.g., 24,25,26. These assertions, of course, are all based on the assumption that gravity is well understood. However, it is really remarkable that gravity, despite being the most to be discovered, is actually still considered by the most poorly understood force 23,24,25,26,27. In fact, in pursuit of unifying gravity with the three other fundamental forces, conventional understanding about gravity has to be modified due to either the geometrical aspect of the extra-space-time dimensions predicted by string theories and/or the exchange of the weakly interacting bosons newly proposed in the super-symmetric extension of the Standard Model, see, e.g., refs. 41,42,43, for reviews. Consequently, the Inverse-Square-Law (ISL) of gravity is expected to be violated. In stable neutron stars at equilibrium, which is determined by the weak and electromagnetic interactions, the gravity has to be balanced by the strong interaction. Neutron stars are thus a natural testing ground of grand unification theories. In this Letter, we show that the super-soft $E_{\text{sym}}(\rho)$ preferred by the FOP1/GSI data can readily keep neutron stars stable if the non-Newtonian gravity is considered.

The deviation from the ISL of gravity can be characterized effectively by adding a Yukawa term to the normal gravitational potential 44,45, i.e.,

$$V(r) = \frac{G_m m_\gamma}{r} \left(1 + e^{-r/\lambda}\right);$$

where λ is a dimensionless strength parameter, is the length scale and G_m is the universal gravitational constant. Alternatively, the Yukawa term can also be considered as due to the putative 8th force 44,45,46 coexisting with gravity or a non-universal gravitational "constant" 47,48 of $G(r) = G_1 \left[1 + e^{-r/\lambda}\right]$. In the scalar/vector boson exchange picture,
\[g^2 = 4 \left(\frac{G \, m^2}{r^4} \right) \] and \(m \) is the mass of the boson-baryon coupling constant, the mass of the vector and baryon mass, respectively. To reduce gravity from the ISL, the exchange of a vector boson is necessary. It is worth noting that a neutral spin-1 vector boson has a favorite candidate. It is very weakly coupled to baryons \cite{44}, can mediate the interactions among Dark Matter (DM) candidates \cite{41,44} and has been used to explain the 511 keV
ray observation from the galactic bulge \cite{43,50,53}.

According to Fuji \cite{53}, the Yukawa term is simply part of the mass system in general relativity. Consequently, the Einstein equation remains the same and only the EOS is modified. Within the mean-\(\tilde{\rho} \) approximation, the extra energy density due to the Yukawa term is \cite{42,43}

\[
\nu_{\text{ub}} = \frac{1}{2} \left(\frac{\Sigma}{4} \right) \frac{g^2 e^r}{r} \langle x_1 \rangle \frac{g^2}{Z} e^{\frac{x_2}{Z}} \left[1 - \frac{g^2}{Z^2} \right] \quad ; (2)
\]

where \(V \) is the normalization volume, \(e \) is the baryon number density and \(r = x_1, x_2 \). The corresponding addition to the pressure is then \(P_{\text{ub}} = \frac{1}{2} \frac{g^2}{Z^2} e^{\frac{x_2}{Z}} \left[1 - \frac{g^2}{Z^2} \right] \): Assuming a constant boson mass independent of the density, one obtains \(P_{\text{ub}} = \frac{1}{2} \frac{g^2}{Z^2} e^{\frac{x_2}{Z}} \left[1 - \frac{g^2}{Z^2} \right] \): For the purposes of the present study, it is sufficient to consider neutron stars as simply consist of neutrons (n), protons (p) and electrons (e). Including the Yukawa term, the total pressure inside neutron stars is \(P = P_{\text{nuc}} + P_{\text{ub}} \). For the inner and outer crusts we use \(P_{\text{crust}} \), the EOS of Carriere et al. \cite{53} and that of Baym et al. \cite{54}, respectively. They are smoothly connected to the EOS in the core \cite{54}. For the latter we use \(E_{\text{nuc}}(\rho) = \frac{1}{2} \frac{G}{h^2} \left(\frac{8}{3} \right) \rho \pi^2 \arctan^2 \frac{2}{\rho} + \frac{1}{4} \left(\frac{4}{3} + 12 \frac{p^2}{\rho^2} \right) \ln \frac{4p^2 + 6}{2} \); \(\rho \)

\[
E_{\text{sym}}(\rho) = \frac{8}{9} \frac{p^2}{h^3} \left(\frac{4}{3} \right) \rho \pi^2 \ln \frac{4p^2 + 6}{2} + \frac{C_1}{9} \frac{p^2}{h^3} \left(\frac{4}{3} \right) - \frac{C_2}{9} \frac{4p^2 + 6}{2} \right) \quad ; (3)
\]

where \(p^2 = -3 \frac{2}{\rho} \) is the Fermi momentum for symmetric nuclear matter at density \(\rho \). The coefficients \(A_1(x) = 0.95 \rho \) \(x = \frac{2}{\rho} \) and \(A_2(x) = 0.05 \rho \) \(x = \frac{2}{\rho} \). The values of the parameters are \(A_1(x) = 0.95 \rho \) \(x = \frac{2}{\rho} \) and \(A_2(x) = 0.05 \rho \) \(x = \frac{2}{\rho} \). The resulting symmetric EOS contribution \(\frac{dE_{\text{nuc}}}{d\rho} \) is consistent with what is extracted from studying kaon production and nuclear collective \(\omega \) in relativistic heavy-ion collisions using hadronic transport models assuming no hadron to Q uark-G luo Plasm a phase transition up to about 5 \(A_{\rho} \). The parameter \(x \) in Eq. \(\rho \) was introduced to vary the density dependence of \(E_{\text{nuc}}(\rho) \) without changing any property of symmetric nuclear matter and the value of \(E_{\text{nuc}}(\rho) = 31 \text{ MeV} \). Shown in the inset of Fig. \(\rho \) are two typical \(E_{\text{sym}}(\rho) \) denoted as M D X1 and M D X0 obtained by using \(x = 1 \) and \(x = 0 \), respectively. While the M D X1 \(E_{\text{sym}}(\rho) \) increases continuously, the M D X0 \(E_{\text{sym}}(\rho) \) becomes negative above 3 \(\rho \). Only the M D X1 \(E_{\text{sym}}(\rho) \) can reproduce the FO P I/G SIP ion production data within the transport model analysis \cite{35}.

It is seen that the corresponding M D X1 pressure decreases with increasing density as shown with the lowest curve in Fig. 1. However, the Yukawa term makes the pressure grow continuously with increasing density with a value of \(g^2 \) higher than about 10 GeV \(\rho \).

Shown in Fig. 2 is the mass-radius relation of static neutron stars obtained from solving the Tolman-O ppnheim-von- Volko (TOV) equation using the M D X1 \(E_{\text{sym}}(\rho) \) and various values for the \(g^2 \). The result obtained using the M D X0 without including the Yukawa term is included as a reference \cite{58}. The causality \(\rho \) and rotational constraint \cite{57} are also shown. The Keplerian \(\rho \)-mass shedding) frequency is approximately \cite{53}

\[k = \frac{1}{\nu} \frac{M}{M_{\text{max}}} \left(R_{\text{max}} - R \right) \frac{2 \pi}{\text{kHz}} \]
The inelastic interactions on the measurements related to the mass distribution, such as equivalent to the mass between 1.4 and 2.5 M, can have a maximum mass between 1.4 and 2.5 M, or equivalently j j^2 = (2x 78) 10^{-3} m^2, neutron stars can have a maximum mass between 1.4 and 2.5 M, and a corresponding radius between 12 and 18 km.

For canonical neutron stars of 1.4 M, the radius is quite sensitive to the g^2 = 2 value used. Thus, besides the accurate measurement of neutron star radii, additional measurements related to the mass distribution, such as the mean ent of inertia, will be very useful in setting astrophysical constraints on the EoS and g^2 = 2. According to Lattimer and Schutz, the slow rotation limit the mean ent of inertia can be well approximated as

\[I \approx (0.237 \ 0.008) R^2 \ 1 + 4.2 \ \frac{N}{a} \ \frac{m}{90} \ \frac{m}{10^{-3}} \]

Shown in Fig. 3 is the I as a function of M. For M = 1.4 M, the MDx0 without the Yukawa contribution gives an I no more than 18 \times 10^{18} kg m^2. However, significantly larger I values are obtained with the MDx1 E_sym () and the Yukawa contribution. The discovery of the double-pulsar system PSR J0737-3039 A & B provides a great opportunity to determine accurately the mean ent of inertia of the star A [62, 63]. These studies have estimated various upper limits on the M in the range of \(0.3 \times 10^{-6} \) and 8.5 \times 10^{-6} m, there is a clear trend of increased strength at shorter length. What we have constrained is the value of g^2 = 2 or equivalently the j j^2 from the pressure necessary to support both static neutron stars and the fastest pulsars. While we expect that the range parameter has to be much larger (smaller) than the radii of the nuclei (neutron stars), we can not set separate constraints on the values of the MDx1 E_sym () and the Yukawa contribution. The inelastic interactions on the measurements related to the mean ent of inertia, such as the mean ent of inertia, will be very useful in setting astrophysical constraints on the EoS and g^2 = 2. According to Lattimer and Schutz, the slow rotation limit the mean ent of inertia can be well approximated as

\[I \approx (0.237 \ 0.008) R^2 \ 1 + 4.2 \ \frac{N}{a} \ \frac{m}{90} \ \frac{m}{10^{-3}} \]

Shown in Fig. 3 is the I as a function of M. For M = 1.4 M, the MDx0 without the Yukawa contribution gives an I no more than 18 \times 10^{18} kg m^2. However, significantly larger I values are obtained with the MDx1 E_sym () and the Yukawa contribution. The discovery of the double-pulsar system PSR J0737-3039 A & B provides a great opportunity to determine accurately the mean ent of inertia of the star A [62, 63]. These studies have estimated various upper limits on the M in the range of \(0.3 \times 10^{-6} \) and 8.5 \times 10^{-6} m, there is a clear trend of increased strength at shorter length. What we have constrained is the value of g^2 = 2 or equivalently the j j^2 from the pressure necessary to support both static neutron stars and the fastest pulsars. While we expect that the range parameter has to be much larger (smaller) than the radii of the nuclei (neutron stars), we can not set separate constraints on the values of the MDx1 E_sym () and the Yukawa contribution. The inelastic interactions on the measurements related to the mean ent of inertia, such as the mean ent of inertia, will be very useful in setting astrophysical constraints on the EoS and g^2 = 2. According to Lattimer and Schutz, the slow rotation limit the mean ent of inertia can be well approximated as

\[I \approx (0.237 \ 0.008) R^2 \ 1 + 4.2 \ \frac{N}{a} \ \frac{m}{90} \ \frac{m}{10^{-3}} \]

Shown in Fig. 3 is the I as a function of M. For M = 1.4 M, the MDx0 without the Yukawa contribution gives an I no more than 18 \times 10^{18} kg m^2. However, significantly larger I values are obtained with the MDx1 E_sym () and the Yukawa contribution. The discovery of the double-pulsar system PSR J0737-3039 A & B provides a great opportunity to determine accurately the mean ent of inertia of the star A [62, 63]. These studies have estimated various upper limits on the M in the range of \(0.3 \times 10^{-6} \) and 8.5 \times 10^{-6} m, there is a clear trend of increased strength at shorter length. What we have constrained is the value of g^2 = 2 or equivalently the j j^2 from the pressure necessary to support both static neutron stars and the fastest pulsars. While we expect that the range parameter has to be much larger (smaller) than the radii of the nuclei (neutron stars), we can not set separate constraints on the values of the MDx1 E_sym () and the Yukawa contribution. The inelastic interactions on the measurements related to the mean ent of inertia, such as the mean ent of inertia, will be very useful in setting astrophysical constraints on the EoS and g^2 = 2.
at supra-saturation densities using several observables simultaneously from independent experiments analyzed using different models. If confirmed, it may point towards a violation of the ISL on neutron stars.

We would like to thank M. I. K. Ivanouchenko for useful communications and G. C. Yong, C. Xu and J. Xu for helpful discussions. The work is supported in part by the National Natural Science Foundation of China under Grant No. 10647116, 10710172, 10575119, 10675082 and 10975097, the Young Teachers’ Training Program from China Scholarship Council under Grant No. 2007109651, the MOE of China under project NCET-05-0392, Shanghai Rising-Star Program under Grant No.06Q(A)14024, the SRF for ROCS, SEM of China, and the National Basic Research Program of China (973 Program) under Contract No.2007CB815004, the US National Science Foundation under Grants No. PHY 0652548 and No. PHY 0757839, the Research Corporation under Award No. 7123 and the Texas Coordinating Board of Higher Education Grant No.003565-0004-2007.