Introduction: The spectroscopy of excited meson states is enjoying a renaissance through the observations of multiple new states in the charmonium sector. This will continue through the forthcoming experimental efforts at G leX, BES III and PANDA that will probe the spectroscopy of mesons in both the light and charm sectors. New states dem and explanation within QCD and may offer insight into the appropriate degrees-of-freedom of low energy QCD. A particular example is mesons of exotic J^{PC}, those states whose quantum numbers cannot be constructed from a quark-antiquark bound state, and whose existence may signal the existence of explicit gluonic degrees of freedom.

Lattice QCD provides an ab initio method for the determination of the hadron spectrum. This approach to spectroscopy necessitates methods that ensure the two-point correlation functions of field operators with the selected quantum numbers under investigation. However, it has proven difficult to extract precise information from lattice QCD about excited states, states of high spin, and states with exotic J^{PC}. In this letter we will present results using a large basis of composite QCD operators and a variational analysis method which show that such extractions are now possible.

Access to states of spin-two or higher requires operators with spatially separated quark fields. To facilitate this kind of construction, a new quark-antiquark construction algorithm, called "distillation", was developed recently which enables efficient calculations of a broad range of hadron correlation functions, including those with spatially separated quark fields.

In Euclidean space, excited-state contributions to correlation functions decay faster than the ground-state and at large times are swamped by the larger signals of lower states. In an isotropic lattice, where the temporal direction is discretized with a finer grid spacing than its spatial counterparts, one can easily provide this resolution while avoiding the increase in computational cost that would come from reducing the spacing in all directions. To this end, a large-scale program has been initiated to generate dynamical anisotropic gauge ensembles with two light clover quarks and one strange quark.

In this work, we present a new construction algorithm and a large variational basis of operators, we extract a highly excited isovector meson spectrum on dynamical anisotropic lattices. We show how carefully constructed operators can be used to reliably identify the continuum spin of extracted states, overcoming the reduced cubic symmetry of the lattice. Using this method we extract, with confidence, excited states, states with exotic quantum numbers (0^-, 1^- and 2^-) and states of high spin, including for the first time in lattice QCD, spin-four states.

Spin on a cubic lattice: Lattice QCD computations consider the theory discretised on a four-dimensional Euclidean hypercubic grid. The reduced three-dimensional rotational symmetry with respect to the continuum introduces complications when one wishes to study particles of a particular spin, since spin no longer identifies irreducible representations of the cubic symmetry group.

There are single-cover lattice imps for each parity and charge-conjugation: A_1, T_1, T_2, E and A_2. The distribution of the various Λ component of a spin-1 meson into the lattice imps is known as subduction, the result of which is displayed in Table 1. In the continuum limit, the full rotational symmetry is restored and the component subduced into different imps will degenerate, whereas at finite lattice spacing they will be split by an amount scaling with at least one power of the lattice spacing, a.

This suggests a simple method to assign continuum spins by attempting to identify degeneracies across lattice imps compatible with the subduction patterns in Table 1. Unfortunately the empirical meson spectrum shows a number of approximate degeneracies that may be confused with those originating through discretisation. As an example consider the $c\bar{c}\rho\pi$ states in charmonium, split only by a small spin-orbit force. These states would appear in a lattice computation as a single state in each of A_1, T_1, T_2 and E and could easily be mistaken...
with a single $J = 4$ state split by discretisation effects.

In the high lying part of the calculated spectrum, shown in Figures 4 and 5, we observe considerable degeneracy that renders spin-identification by this method virtually im possible. In this letter we consider using the additional information embedded in the overlaps of states on to carefully constructed operators at zero momentum.

Meson operators: By using a circular basis for both spatial derivatives and the three-vector-like gamma matrices (1), we can utilise the SO (3) Clebsch-Gordan coefficients to construct continuum operators of de nine spin. For example, with one derivative and a vector gamma matrix we can construct operators of overall spin $J = 0; 1; 2$:

$$\begin{align*}
(D_{J_0 = 0})^I &\equiv 1m_1; 1m_2; J; M; e = m_1; \bar{D}_{m_2} e, \\
(D_{J_0 = 1})^I &\equiv 1m_3; J; D; m_0; J; M; \\
1m_1; 1m_2; J; D; m_0; e = m_1; \bar{D}_{m_2} e.
\end{align*}$$

where repeated m indices are summed. In the distillation from work, the fermion e indices, e are summed using a low-rank ltering operator.

In the case of two derivatives we couple into a de nine spin before coupling to the gamma matrix:

$$\begin{align*}
(D_{J_0 = 2})^I &\equiv 1m_4; J_0; m_0; D; J; M; \\
1m_2; J_1; m_1; J_0; m_0; 1m_1; 1m_3; J_1; m_1; J_0; m_0; e = m_1; \bar{D}_{m_2} e.
\end{align*}$$

For three derivatives combining the outermost derivatives together flags ensures de nine charge conjugation:

$$\begin{align*}
(D_{J_0 = 3})^I &\equiv 1m_5; J_2; m_0; J; M; \\
1m_2; J_3; m_1; J_2; m_0; 1m_1; 1m_3; J_3; m_1; J_2; m_0; e = m_1; \bar{D}_{m_2} e.
\end{align*}$$

This scheme can be extended to any desired number of covariant derivatives, which in practical calculations are replaced by gauge-covariant nine di erences. The gauge links appearing in these derivatives are stoutly eared to reduce UV uctuations. To be of any real use in lattice calculations these operators of de nine continuum spin, J, must be subduced into the irreducible representations of the cubic lattice rotation group ($ = fA_1; T_1; T_2; E; A_29$). Noting that each class of operator is closed under rotations, the subductions can be performed using known linear combinations of the M components for each J:

$$O^{[J]} (D_{[n]} y)^I P = P^{[J]} D_{[n]} y^{[J]} M^{[J]}$$

where M is the r^{th} row of the irrep. Note that, although $O^{[J]}$ can have an overlap with all spins contained within it, it still carries the momentum of the J from which it was subduced, a feature we exploit below.

Spectral analysis: For each lattice irrep P the full matrix of correlators $C_{ij}(t)$ was computed with equivalent rows () averaged over. The dimension of the matrix is therefore equal to the number of operators constructed in that irrep.

The correlation matrix can be described by a spectral decomposition $C_{ij}(t) = \sum_\nu \delta(t - \nu) (C_{ij}(\nu))$ (we only consider zero momentum), where $Z^{\nu}_i = \langle j G^{\nu} j | i G^{\nu} j \rangle$, i is a state, j and $C_{ij}(\nu)$ is related to the $C_{ij}(\nu) = \sum_\nu \delta(t - \nu) (C_{ij}(\nu))$. Our implementation of this approach is described in [1].

The extracted spectrum across lattice irreps, including all operators with up to three derivatives, is shown in Figures 4 and 5. We give the number of operators in each irrep and the color coding indicates continuum spin assignment suggested by a method we now describe.

Our particular choice of operator construction offers us a method to identify the continuum spin roll of a state. We take advantage of the fact that, at the lattice spacing we work, we expect lattice operators acting on extended objects such as mesons to behave in a manner reasonably close to the full rotational symmetry. In the continuum our operators are of de nine spin such that $h^{[J]} D^{[M]} J^{[M]} i = Z^{[J]} M^{[M]} t$ and so $h^{[J]} D^{[M]} J^{[M]} i = S^{[J]} M^{[M]} Z^{[J]} M^{[M]}$ is a single number of dynamical origin describing the overlap of the state of spin J on to the operator used. We form a correlator in a given irrep P and average over equivalent rows, P:

$$\begin{align*}
\langle C^{[J]} (t) \rangle = \sum \langle \langle C^{[J]} (t) \rangle \rangle.
\end{align*}$$

Inserting a complete set of meson states between the operators and using the fact that the subduction coefficients form an orthonormal matrix $S^{[J]} J^{[M]} = \sum_i S^{[J]} i S^{[M]} i$, we obtain terms proportional to $Z^{[J]} Z^{[J]}$. These terms do not depend upon which we have subduced into. Hence for example a $J = 3$ meson created by a $J = 3$ operator will have the same Z value in each of the A_2, T_1, T_2 irreps. Since this derivation uses an outhed, semi-classical basis it is valid in the continuum limit and at finite lattice spacing we expect there
Fig. 1: Extracted spectrum of states in the PC = + j++ channels displayed by lattice irrep. The number of operators in each irrep is given below the irrep label. All masses scaled by the baryon mass as extracted on this lattice. Boxes represent the extracted mass and one sign a statistical uncertainty. Color coding indicates continuum spin identification. Orange boxes have well-determined masses but undetermined spin. Grey boxes have masses that are not well determined by the variational fitting method. States with exotic quantum numbers 0^+ and 2^+ are highlighted.

Fig. 2: As previous but for PC = + j++. The lowest lying exotic 1^+ is highlighted.

Fig. 3: Overlaps Z of a selection of operators on to states in each lattice irrep, .2^+ s are normalized so that the largest value across all states is equal to 1. Lighter area at the head of each bar represents the one sigma a statistical uncertainty.

...
Two-meson states: We might expect to observe an abundance of two-meson states above 2m, but such states are not apparent in our extracted spectrum. This is most clearly seen in the A_1 channel where the lightest state extracted is a $J = 4$ state above 1.5f, while a pseudoscalar-vector state with the minimum relative momentum allowed in our finite box would be expected close to 1.2m. The operators used in this study featured only a single \-eld pair and so do not have overlap onto quark Fock states higher than qq. QCD dynamics can act to mix qq Fock states with two-meson basis states to form mesonic eigenstates. This mixing is expected to be significant when a discrete lattice two-meson state is degenerate within a single meson to within that meson's continuum decay width. At this relatively heavy quark mass, we expect low-lying resonances to have small widths due to reduced phase-space for their decay and hence for there to be only small mixing with two-meson states, perhaps explaining our lack of observation of such states. A calculation similar to the one reported herein has been carried out on a lattice of spatial extent 2.4f. The extracted spectrum is found to be identical within statistical uncertainties to that presented here. This is more evidence that we are not seeing two-meson states since their allowed relative momentum, and hence their energy levels, would have changed signi cantly. These issues can be properly investigated by including in the variational basis operators featuring a product of two fermion bilinears, expected to have good overlap on to two-meson states. This work is underway.

Summary: We have demonstrated a lattice QCD operator construction that enables the identification of continuum spin with some con dence. Using distillation technology to construct the correlators, and a variational analysis to study them, we have extracted an excited state spectrum featuring well-determined states with exotic quantum numbers and, for the rst time, states of spin-4.

It is notable that our extracted spectrum has both features of the $n^{2S+1}L_J$ state assignments of bound-state quark models and also states that do not seem to lie within that classi cation. We believe that this study is seeing a full spectrum of QCD mesons which includes exotic and non-exotic hybrid mesons.

Acknowledgments – We thank our colleagues within the Hadron Spectrum Collaboration. The Chroma software suite \cite{9} was used to perform this work on clusters at Je meson Laboratory using time awarded under the USQCD Initiative. Author ed by Je meson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-060R23177.

Electroni c address: dudek@je. org

References:

\[6\] B. Blossier, M. della Morte, G. von Hippel, T. M. endes, and R. Sommer, JHEP 04, 094 (2009), 0902.1265.

