Fractal initial conditions and natural parameter values in hybrid inflation

Sebastien Clesse
Service de Physique Theorique, Universite Libre de Bruxelles,
CP 225, Boulevard du Triomphe, 1050 Brussels, Belgium and
Center for Particle Physics and Phenomenology, Louvain University,
2 chem in du cyclotron, 1348 Louvain-la-Neuve, Belgium

Christophe Ringeval
Center for Particle Physics and Phenomenology, Louvain University,
2 chem in du cyclotron, 1348 Louvain-la-Neuve, Belgium

Jonathan Rocher
Service de Physique Theorique, Universite Libre de Bruxelles,
CP 225, Boulevard du Triomphe, 1050 Brussels, Belgium
(Dated: August 10, 2013)

We show that the initial eik values required to produce inflation in the two eik hybrid models, and its supergravity F-term extension, do not suffer from any fine-tuning problem, even when the eiks are restricted to be sub-planckian and for almost all potential parameter values. This is due to the existence of an initial slow-roll violating evolution which has been overlooked so far. Due to the attractor nature of the inflationary valley, these trajectories end up producing enough accelerated expansion of the universe. By numerically solving the full non-linear dynamics, we show that the set of such successful initial eik values is connected, of dimension two and possesses a fractal boundary of infinite length exploring the whole eik space. We then perform a Monte Carlo Markov Chain analysis of the whole parameter space consisting of the initial eik values, eik velocities and potential parameter values. We give the marginalized posterior probability distributions for each of these quantities that the universe is able long enough to solve the usual cosmological problems. In ation in the original hybrid model and its supergravity version appears to be generic and more probable by starting outside of the inflationary valley. Finally, the implication of our findings in the context of the eternal inflation scenario are discussed.

PACS numbers: 98.80.Cq

Keywords:

I. INTRODUCTION

The paradigm of inflation[1,2,3,4] is currently the simplest way to solve the standard cosmological problems and explain the Cosmic Microwave Background (CMB) anisotropies observed so far, though other alternative mechanisms have been proposed (for a review see [5] and references therein). Many models of inflation have been proposed [6,7], based on single eik or multi-eik potentials. If single eik models are effective models, hybrid models explore the possibility that the inflation is coupled to other scalar eiks, as first proposed by Linde [8]. When coupled to a Higgs-type eik, inflation is realized in the so-called \"inflationary valley\" when the Higgs vacuum expectation value (vev) vanishes and the inflation end is triggered when the Higgs boson becomes tachyonic and develops a non-vanishing vacuum expectation value (vev). Similar models have rapidly been constructed in various theoretical frameworks [9,10,11], the most popular of them being the supersymmetric supergravity versions of F-term or D-term inflation [12,13].

In the limit of sub-planckian eik values, all hybrid inflation models were ever thought to require extremely fine-tuned initial eik values to produce enough e-folds of acceleration, from the original model proposed by Linde to most supersymmetric metric versions [14,15], with the exception of hilltop potentials which assume that inflation takes place near a maximum of the potential [16,17]. The successful initial eik values were found located only in an extremely narrow band around the inflationary valley, or on a few scattered points away from it [21]. This was considered as a fine-tuning problem for these models since any pre-inflation era would have to be fine-tuned to allow in inflation to last long enough to solve the standard cosmological problems. This fine-tuning has recently been revisited in Ref. [22] for the original hybrid model as well as for the supersymmetric F-term and shifted models. Using higher precision, it was shown that the successful initial eik values are rather organised in intricate dense regions outside of the inflationary valley (see for instance Fig. 7 of Ref. [22]). The area occupied by these regions was found to represent up to 15% of the sub-planckian eik regime for the original hybrid model.
and up to 80% for smooth hybrid inflation. The physical explanation of these new successful regions comes from the existence of an initial fast-roll phase during which the eikons roll down the potential in a chaotic way followed by a climbing up of the valley and a slow-rolling phase back down.

However, as discussed in Ref. [22], these new successful regions appeared to depend on the shape of the potential and therefore on the potential parameters. O n e may wonder whether these features are a new solution of the nongauged problem, i.e., if they are robust with respect to the potential parameters. Moreover, Ref. [24] did not discuss the statistical properties of this space and the ekt of the initial eik velocities which were assumed vanishing. Finally, the popular supergravity metric extensions, F- or D-term hybrid models, were not studied. The purpose of the present paper is to quantify how these new successful inflationary regions are widespread in the higher-dimensional space of all the model parameters, i.e., by considering not only the initial eik values but also the initial velocities and the potential parameters. We also extend our analysis to the F-term hybrid model, studied in SUGRA [12,13].

In order to deal with a multidimensional parametric space, after having discussed the fractal nature of the successful inflationary regions, we introduce a probability measure and perform their exploration by using Monte Carlo (Markov Chains (MCMC) methods. The outcome of our approach is a posterior probability distribution on the model parameters, initial velocities and eik values such that in inflation less than one hundred e-folds. As will be shown in the following, thanks to inflation starting "out of the valley", a high number of e-folding appears to be generic, and, favoured, in the original hybrid model for parameter ranges covering several orders of magnitude. We have also checked that such a result is not peculiar to a given potential by applying the same analysis to the more realistic two- eik F-term inflationary models. This treatment allows us to establish natural bounds on the parameter space (or combination of parameters) for each of these scenarios.

At this point, we would like to emphasize that our aim is not (yet) to constrain these models with the current cosmological microwave background (CMB) and astrophysical data but rather to discuss in detail their ability to generate an inflationary phase. In particular, in the small eik limit, original hybrid models are known to generate a blue spectrum of scalar initial perturbations, which is disfavoured by recent CMB experiments [24]. Our use of this model here is motivated by its simplicity and its representativeness of the non-linear two-eik dynamics. The more realistic F-term SUGRA models are in agreement with the current CMB data: it predicts an almost scale-invariant spectrum and the global formation of cosmic strings [24], a combination which was shown to be favoured by observations in Ref. [24].

The paper is organized as follows. In the following section, we discuss the fractal nature of the successful regions of inflation in the original hybrid model and define a probability measure over the full parameter space. In Sec. III, the MCMC method is introduced and we study step by step the effect of the initial eik velocities and the potential parameters on the probability of obtaining 60 e-folds of inflation. We then present the full posterior probability distributions of these parameters for the original hybrid scenario. In Sec. IV, we perform the same analysis of the F-SUGRA hybrid potential. Some conclusions and perspectives are finally presented in the last section.

II. FRACTAL INITIAL FIELD VALUES

A. The Model

The original hybrid model of inflation was proposed in Refs. [8,13], its potential reads

\[V(\phi) = \frac{1}{2} m^2 \phi^2 + \frac{1}{4} M^2 \phi^4 + \frac{1}{2} \phi^2 \phi'^2; \]

(1)

The eik is the inflaton and is the auxiliary Higgs-type eik while \(\phi \) are two positive coupling constants and \(m, M \) are the two mass parameters. In inflation is assumed to be realized in the false vacuum along the valley, \(h = 0 \) and ends due to a tachyonic instability of when the inflaton reaches a critical value \(\phi = M^2 / m^2 \).

The classical system evolves toward its true minimum \(h = 0 \), and \(h = M \) whereas in a realistic scenario one expects the tachyonic instability to trigger a preheating era [22,23,24,31,32].

To observe the effects of varying the free parameters in the dynamical solutions, it is more convenient to rewrite the potential into

\[V(\phi) = 4 \left(1 - \frac{2}{M^2} - \frac{2}{\phi} + \frac{2}{\phi' + \phi'}\right); \]

(2)

under which \(\phi ; \phi' \) are three mass parameters. With this expression, the critical point of instability now reads

\[c = \frac{\phi}{M}; \]

(3)

1 Such probability distributions are almost independent of the chosen number of e-folds: once the eik rolls down in a small enough region of the potential, the total number of e-folds generated is always very large.

2 This conclusion can be altered when additional couplings are included for the inflaton [24].

3 Throughout, the paper alludes to the vev of a eik.
It is common usage to consider the effective one-ei potential by restricting the ei dynamics to the in atomic valley and one gets

\[V(\phi) = 4 + \frac{1}{1+2^2} \quad (4) \]

B. Equations of motion

In a Friedmann-Lemaître-Robertson-Walker (FLRW) metric, the equations governing the two-ei dynamics are the Friedmann-Lemaître equations,

\[\frac{H^2}{a^2} = \frac{8}{3m_{\text{pl}}^2} \left(1 + \frac{V(\phi)}{M_{\text{pl}}^4} \right); \]
\[\frac{\dot{a}}{a} = \frac{8}{3m_{\text{pl}}^2} \left(2^2 - \frac{V(\phi)}{M_{\text{pl}}^4} \right); \]

as well as the Klein-Gordon equations

\[\dot{\phi} - \frac{\mathcal{V}(\phi)}{\mathcal{M}_{\text{pl}}} = 0; \]
\[\dot{\phi} - \frac{\mathcal{V}(\phi)}{\mathcal{M}_{\text{pl}}} = 0; \]

where \(H \) is the Hubble parameter, \(\dot{a} \) is the scale factor, and a dot denotes derivative with respect to cosmic time.

In order to study the two-ei dynamics of the hybrid model, without assuming slow-roll, one has to integrate these equations numerically from a given set of initial conditions (IC) for the ei values. Throughout the paper, we will denote a successful IC as a point in ei space that lead to a sufficiently long phase of in ation to solve the horizon and flatness problem. We will assume that \(N \equiv \ln(a/a_{\text{ini}}) \geq 60 \) e-folds is the critical value required, though this value can change by a factor of two depending on the reheating temperature and the Hubble parameter at the end of in ation \[0 \leq a_{\text{ini}} \leq 1 \]. However, generally, once in ation starts it lasts for much more than 60 e-folds and our results are not sensitive to the peculiar value chosen.

C. The set of successful initial ei values

As already mentioned in the introduction, the space of successful IC for the ei values alone has been discussed in Ref. \[22, \] and found to be composed of a intricate ensemble of points organized into continuous patterns. In Fig. 1, we have represented the mean number of e-folds generated at each sub-Planckian initial ei values, for a set of seed potential parameters and assuming vanishing initial velocities. We have computed the trajectories obtained from 2048 initial ei values and stopped the integration when the ei is trapped in one of the minimum of the potential, i.e., \(H^2 = \frac{V(3M_{\text{pl}}^4)}{M_{\text{pl}}^4} \), or when the accelerated expansion exceeds 10^5 e-folds. The resulting grid is a small intrigued structure of successful regions spread over the whole plane which ends up being difficult to represent in a figure. As a result, we have chosen to present in Fig. 1 a downgraded 512^2 pixels image in which each pixel has been given a color according to the average number of e-folds obtained in our original 2048 grid. A given pixel may therefore hide both successful and unsuccessful initial ei values and the color measures their relative density. A higher resolution image would be self-similar to Fig. 1, with more thinner successful domains visible.

Notice that we recover the in ationary valley as the white vertical narrow strip located along \(\phi = 0 \) whereas the minimum of the potential along the horizontal axis at \(\phi = 0.15M_{\text{pl}} \) (for \(M = 0.03m_p \), as chosen in the figure). The black region in Fig. 1 precisely corresponds to the trajectories below the critical point \(\phi < c \) which are fast-rolling inside the minimum. In analogy with the anamorphosis of light produced by a distorted mirror,
each point outside the in a t ionary va lle y is con nected by a tra jec ty to a point in side the in a t ionary va lle y. The tra jec ty rst fast-rolls to wards the bot to m of the po ten tai l, and after a few re boun ds be come or i ent ed al ong the va lle y, cl im bs it and then pro du ces in a ti on when slow-rol ling back down. Ther e is thus a one-to-one cor res pon dence be tween the IC and the po int in the val ley for which the tra jec ty stops to cl im b and starts to slow-rol l.

It was shown in Ref. [22] that such "anam or phosis points" can cover up to 15% of the total area when re-stricting the IC to sub-planar values. More o ver, as can be checked in Fig. 1, these regions exhibit a fra c ti al look ing as pect. Be fore study ing the in uence of the po ten ti al pa ram et ers and ini tial eld ve loci tes, one may wonder if the area of this two-di mensional set of points is indeed well-de ned? Equi valently, do new suc cess-ful re gions ap pear inside un suc cessful dom ains and con versely? In or der to quantify how much the anam or phosis points are a prob able way to have in ation in the whole pa ram et er space, we rst address the ques tion of de ning a measure on the ini tial eld val ue sp ace. In par ti cul ar, this requires to de term ine the di mension of the set

\[S \ f(i; \ v) \ N > 60g : \quad (7) \]

D. Chaotic dynam ical system

1. Phase space analysis

As suggested by Fig. 1, at xed po ten ti al pa ram et er val ues, the dynam ical sys tem de ned by Eqs. (3) and (4) seem s to ex hi bit a cha otic be havi or. In par ti cul ar, the sen siti vi ty of the tra jec tories to the ini tial eld ve loci tes com es from the pres ence of three atractor s. Two of them are the global minima of the po ten ti al, \(M \) res pecti vel y at \((0; 0) \), in which all clas si cal tra jec tories will end, whereas the less obvi ous is a quasi-atriactor \(I \) de ned by the in ationary va lle y itself \((0, c) \). In deed, whatever the ini tial eld ve loc i tes, as soon as the sys tem ent ers slow-rol l one has (in Planck units) [35],

\[\psi^2 \ \frac{d^2}{dN^2} + \frac{d}{dN} = 2i; \quad 1; \quad (8) \]

where \(i \) is the rst Hubble o w func tion [36]. The sys tem there fore spends an exponentially long am ount of cos mi c ti me in the va lle y. The sen siti vi ty to the ini tial con di tions com es from the pres ence of these three atractor s: either the tra jec ty ends rap i dly into one of the two glob alm ina, or it lands on the va lle y where it free zes.

A phase space plot is repre sen ted in Fig. 2 in which we have com puted 25 tra jec tories from a grid of ini tial eld ve loci tes. The in ationary va lle y clearly ap pears as the atractor with quasi null ve loci ty ve ctor \((1, 1)\), while around the two glob alm ina, two \"towers\" ap pear due to the eld osc illa tions around them.

\[\text{FIG. 2: Phase space } \psi^2(\ i; \ v) \text{ for } 25 \text{ trajectories and vanishing initial velocities. The potential parameters are set to the values } M = 0.03m_p; \quad 63m_p; \quad 6.36 \times 10^4. \text{ All trajectories end on the three attractor of the dynamical system: the two global mina of the potential, and the in ationary valley with almost vanishing slow-roll velocity. These three attractors induce the chaotic behavior.} \]

2. Basins of attraction

From the de nition of \(S \) in Eq. (7), one has

\[S = F^1(I); \quad (9) \]

where \(F(\ i; \ v) \) stands for the map ping induced by the di er en tial sys tem of equa tions (5) and (6). The set of suc cessful ini tial eld val ues \(S \) is therefore the basin of at traction of the atractor \(I \) [37,38]. Since the atractor \(I \) is a dense set of dim ension 2, \(F \) is con ti nuous, one ex pects \(S \) to con tain a dense set of dim ension 2 [38]. As can be intuitively guessed, the bound ar y of \(S \) can how- ever be of in tricate struc ture be cause of the sen siti vi ty to the ini tial con di tions: two tra jec tories in ni cely close ini tially can ev olve com plet ely di er en tly. As we show in the fol lowing, \(S \) is ac tu ally a set of dim ension two having a fra ctal bound ar y of dim ension greater than one.

Finally, by the de nition of a con tinuous map ping, all parts of \(S \) , boundary included, must be connected to get her and to the in ationary va lle y \(I \). The fra c tal look ing as pect of Fig. 1 is only ind uced by the in tra cteable bound ar y struc ture of \(S \) which is ex ploring all the ini tial eld val ues space. The fra cta lity of the bound a ries of the space of ini tial eld val ues was rst men tioned in Ref. [39], but the study was re strict ed to a small re gion of the eld space and the mo del in cluded di ssip a tive core cli ents. As an aside rem ark, let us notice that the ex istence of a fra ctal bound ar y may have strong implica tions in the context of eternal chaotic in ation: there would exist in ationary solu tion close to any ini tial eld val ues.

In or der to quantify the chaotic prop erties of the dy nam ical sys tem de ned by the map ping \(F(\ i; \ v) \), we turn to the calc ula tion of the Lyapunoff exponents.
where \(\theta \) is the solution of Eq. (10) with \((0,0) = (i,j) \). If the considered set is an attractor or an invariant set of the differential system having a natural measure, one can show that the exponents do not depend on the initial point \(i \). At \(x \) potential parameters, there are four Lyapunov exponents associated with the differential system of Eqs. (5) and (6). If the largest exponent is positive, then the invariant set is chaotic.

In Fig. 3, we have computed the largest Lyapunov exponent at each point of the plane \((i,j) \). The numerical method we used is based on Refs. [40,41] and uses the public code LENS. Let us notice that since \(\mu \) is only a quasi-attractor, we have stopped the evolution at most when \(H_{\text{end}} = V = (3M_1^2) \), i.e., just before the \(\mu \) sets would classically enter either \(M_\perp \) or \(M_\perp \). As can be seen, all points belonging to \(S \) exhibit the same and all negative Lyapunov exponent; the invariant set \(S \) is therefore non-chaotic. On the other hand, all the other initial states associated with the basins of attraction of \(M \) have a positive Lyapunov exponent. For those, the \(\mu \) evolution is chaotic and exhibits a sensitivity to the initial conditions. Notice that these exponents \(m \) may slightly vary from point to point due to our choice to stop the integration at \(H_{\text{end}} \) instead of the classical attractor \(M_\perp \). This is particularly visible for the trajectories starting close to \(H_{\text{end}} \) (green shading); there is not enough evolution to get rid of the transient evolution associated with the initial conditions.

E. Fractal dimensions of \(S \) and its boundary

1. Hausdorff and box-counting dimension

Since we suspect a set with fractal properties, the natural measure over \(S \), extending the usual Lebesgue measure, is the Hausdorff measure. The \(s \)-dimensional Hausdorff measure of \(S \) is defined by [39]

\[
H^s(S) = \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{N} \delta^{s_i} \right\}
\]

where \(\delta \) is the covering of \(S \), and \(s_i \) is the diameter function has been defined by \(\delta^i \) the smallest sum of the \(s \)th powers of all the possible diameters of all sets covering \(S \), when \(\delta \to 0 \). Having such a measure, the fractal dimension of \(S \) is defined to be the minimum value of \(s \) such that the Hausdorff measure remains null (or equivalently the maximum value of \(s \) such that the measure is in finite). In practice, measuring the Hausdorff dimension using this definition is not trivial, due to the necessity of exploring all possible coverings. However, in our case, we are interested in the fractal properties of a basin of attraction associated with a continuous dynamical system and one can instead consider the so-called box-counting dimension [43]. This method simply restricts the class of the \(U_i \) to a particular one, all having the same diameter. \(\delta \) is self-similar, one can show that box-counting and Hausdorff dimensions are equal. In general, the Hausdorff dimension is less or equal than the box-counting one. Here, \(F \) being a contracting continuous ow, we expect the equality to also hold.
To define the box-counting dimension, we cover the set S with grids of step size Δ, and count the minimal number of boxes $N(\Delta)$ necessary for the covering. The box-counting dimension is then given by

$$D_B = \lim_{\Delta \to 0} \frac{\log N(\Delta)}{\log(1/\Delta)} = \frac{\log N(\Delta)}{\log 1/\Delta}$$

(13)

This method has the advantage to be easily implemented numerically and, in the following, we will apply it to calculate the dimension of S and its boundary.

2. Fractal boundary of S

For each randomly chosen point of the plane (x,y), we compute three trajectories. The first one starts from the point under consideration while the two others have initial conditions modified by \pm and along one direction (for example along x, but the chosen direction does not affect the result). For each of these trajectories, we determine in which attractor (M or I) the x-coordinate of the box-counting dimension is made through the determination of the M-inkowski dimension of the boundary of S. From Eq. (14), assuming that, at small

$$f(\Delta)/\Delta = 0.20$$

the box-counting dimension of the S boundary is then given by

$$D_B = 2 \left(\frac{\log N(\Delta)}{\log 1/\Delta} \right)$$

(15)

In Fig. 4, we have plotted $f(\Delta)$ as a function of Δ for potential parameters. We recover the expected power-law behaviour, the slope of which is approximately 0.20. As a result, the boundary of S is indeed a fractal of box-counting dimension

$$D_B = 1.20$$

(16)

Notice that this value depends on the chosen set of potential parameters, as one may expect since they affect the shape of S and the typical size of the structures.

3. Dimension of S

In order to determine the box-counting dimension of S itself, one can apply a similar method than the one used for its boundary. Now $f(\Delta)$ denotes the proportion of points for which at least one of the three trajectories end in the attractor I (this condition therefore includes also

the points belonging to the boundaries). The resulting power-law is represented in Fig. 5.

For small enough values of Δ, the boxes are small enough to be fully contained in S, and the function $f(\Delta)$ remains constant. As a result, the box-counting dimension of S is 2. We therefore conclude that, like for the well-known Mandelbrot set [42], the boundary of S is fractal but the set of stationary points is not and has the dimension of a surface. Consequently, although the boundary of S has an infinite length ($D_B = 1.2$), it has a vanishing area: the Hausdorff dimension of S (boundary included) is therefore also 2. As a result, the two-dimensional Hausdorff measure on S reduces to the usual two-dimensional Lebesgue mea-
ure and this will be our choice for defining a probability measure in the rest of the paper.

As previously emphasized, the potential parameters and initial eld velocities have been fixed in this section and the set S is actually the two-dimensional section of an higher dimensional set, whose boundary is also certainly fractal (and therefore of null measure). Since one can no longer use griding method to explore such a high dimensional space, we move on in the next section to a MCMC exploration of the full parameter space to assess the overall probability of getting in action in the hybrid model.

III. PROBABILITY DISTRIBUTIONS IN HYBRID INFLATION

The aim of this section is to use Monte-Carlo-Markov-Chains (MCMC) techniques in order to explore the whole parameter space, including the initial eld velocities and all the potential parameters. With unlimited computing resources, we could have used a griding method to localize the hypersurfaces in which in action occurs, as we have done for the two-dimensional plane $(i; j)$ in the previous section. For the original hybrid model, we have in total seven parameters that determine the (what we call) a unique trajectory: two initial eld values, initial eld velocities and the three potential parameters M_j, and λ. To probe this seven-dimensional space, more than just m ensuring the hypersurfaces of the successful in action regions, we do not a probability measure over the full parameter space. Using Bayesian inference, one can assess the posterior probability distribution of all the parameters to get enough e-folds of in action. Monte Carlo Markov Chains (MCMC) method is a widespread technique to estimate these probabilities, its main power being that it numerically scales linearly with the number of dimensions, instead of exponentially.

Several algorithms exist in order to construct the points of a Markov chain, the Metropolis-Hastings algorithm being probably the simplest. Each point x_{i+1}, obtained from a Gaussian random distribution (the so-called proposal density) around the previous point x_i, is accepted to be the next element of the chain with the probability

$$P(x_{i+1}) = m \ln \left(\frac{P(x_{i+1})}{P(x_i)} \right);$$

where $P(x)$ is the function that has to be sampled via the Markov chain. MCMC methods have been intensively used in the context of CMB data analysis [49,46,47,48], where the function $(j) / L^2 \Lambda$ is the posterior probability distribution of the model parameters given the data. In the context of Bayesian inference, this one is evaluated from the prior distributions $P(\lambda)$ and the likelihood of the experiment $L(\lambda)$. After a relaxation period, one can show that Eq. (17) ensures that m is the asymptotic stationary distribution of the chain [54]. The MCMC elements directly sample the posterior probability distribution (j) of the model given the data.

In our case, we can similarly define a likelihood L as a binary function of the potential parameters, initial eld values and velocities. Either the trajectory ends up on I and produces some one or more e-folds of in action, or it does not. In the former case we set $L = 1$ whereas $L = 0$ for no in action. The function P is sampled then defined by $= LP(\lambda)$ where stands for eld values, velocities and potential parameters and P is the prior probability distribution that we will discuss in the next section.

A. Prior choices

MCMC methods require a prior assumption on the probability distributions of the eld, velocities and potential parameters. As we only consider in this work the initial conditions and parameter space leading to at least 60 e-folds of in action, the prior choices are only based on theoretical arguments. These arguments can be linked to the framework from which the potential is deduced. If one considers the hybrid model to be embedded in supergravity, the elds have to be restricted to values less than the reduced Planck mass. We adopt here this restriction for initial eld values, not only because of this argument, but also because it has been shown in Ref. [22] that if super-Planckian elds are allowed, trajectories become generically successful. On the other hand, the eld's considered to suffer some tuning when one of the elds has to be order of magnitude smaller than the other. As in action is not possible for very small initial values of both elds (because of the Higgs instability), we have considered a priori for initial eld values in $[M_i, M_f]$ as opposed to a priori for the logarithm of the elds. Note that one has to include negative values of the elds in order to take into account the orientation of the initial velocity vector.

Concerning the initial eld velocities, from the equations of motion, one can easily show that there exist a natural limit 5

$$v^2 = \frac{d}{dN} + \frac{d}{dN} \leq 6;$$

Similary, our prior choices are at distributions inside such a circle in the plane $(g; i)$, where ΛN^{-1} denotes a partial derivative with respect to the number of e-folds.

In the absence of a precise theoretical setup determining the potential there are no a priori theoretical constraint on its parameters M_j, and λ. Let us just mention that for < 0.3, the dynamics of in action in the valley is possibly strongly affected by slow-roll violations [22]. As a result, with the concern to not support a particular

5 This is just the limit $v < 3$ in Planck units [23].
mass scale, we have chosen the following at priors on the logarithm of the parameters:

\[
\begin{align*}
1 < \log_{\text{min}} & < 4; \\
3 < \log_{\text{max}} & < 0.7; \\
6 < \log_{\text{min}} \frac{M}{M_{\text{pl}}} & < 2; \\
\end{align*}
\]

(19)

in which the upper and lower limits have been set for numerical convenience, and \(M > M_{\text{pl}} \).

Notice that the dependencies are not in important here because this parameter only rescales the potential and thus does not change the dynamics.

In the next sections, we perform the MCMC exploration of the parameter space from these priors. Firstly by reproducing the results of Sec. II in the two-dimensional section \((\psi, \phi)\), then by including the initial e-folds velocities and finally by considering all the model parameters. Unless otherwise mentioned, the chains contain \(10^6\) points, which corresponds to one percent error on the marginalized probability distributions. In the graphs, the overall values of the posterior probability density distributions have not been represented since they are determined by the posing the integral over the parameters to be equal to one.

B. MCMC on initial e-folds values

In order to test our MCMC, we have first explored the space of initial e-folds values leading to not to more than 60 e-folds of inflation. The potential parameters have been fixed to various values already explored by grid method in Sec. II and Ref. [22], while the initial velocities are still assumed to vanish. The MCMC chain samples have been plotted in Fig. 6. Notice that to recover the fractal structure of the boundary of \(S\), one has to adjust the choice of the Gaussian widths of the proposal density distribution. If those are too large, the acceptance rate will be small because the algorithm tends to test points far away from the last successful point, and if they are too small the chains remain stuck in the fractal structures without exploring the entire space. Nevertheless, with an intermediate choice, Fig. 6 shows that the intricate structure of the boundary of \(S\) can be explored with the MCMC more than being just an efficient exploration method compared to gridding, the MCMC also provides the marginalized probability distributions of \(\psi\) and \(\phi\) such that one gets in action. They have been plotted in Fig. 7 (top two plots), the normalization being such that their integral is unity. As one can guess from Fig. 5, with vanishing initial velocities and a fixed set of potential parameters, in action starting in the valley is not the preferred case since the area under the distribution of \(\phi\) outside of the valley is larger than inside. Moreover, these distributions take non-vanishing values everywhere and there is therefore no tuning problem. Of course, one still have to consider the other parameters and this is the topic of the next sections.

C. MCMC on initial e-folds values and velocities

The initial values of the e-folds velocity are inside a disk of radius 6 in the plane \((\psi_{i} ; \phi_{i})\) (in Planck units). The marginalized two-dimensional posteriors for the initial e-folds values is plotted in Fig. 4 whereas the marginalized posterior for each e-fold is represented in Fig. 6 (middle line). Even if non-vanishing velocities are considered, the successful in stationary patterns remain. Notice that they appear to be blurred simply because of the weighting induced by marginalising the full probability distribution over the initial velocities.

In Fig. 8, we have also represented the marginalized posterior probability distribution for the modulus and direction of the initial velocity vector. Their atness implies that there are no preferred values. This is an important result because one could think that large initial velocities could provide a way to kick trajectories in or out of the successful regions. This actually never happens because of the Hubble damping term in the Friedmann equations, allowing only a generation of a small number of e-folds before the trajectory falls in one of the three attractors.
The only restriction being associated to the necessity of \(M < M_{\text{pl}} \) as discussed in Sec. IIIA. The chains contain 200,000 elements and the estimated error on the posteriors is about a few percents.

We have plotted in Fig. [9] the marginalised two-dimensional posterior for the initial \(\theta \) values. In comparison with Fig. [8] and [10], the most probable initial \(\theta \) values are now widespread all over the accessible values; the intricate patterns that were associated with the successful \(\theta \) values (at xed potential param eters) are now diluted over the full parameter space. The resulting one-dimensional marginalised probability distributions for each \(\theta \) are plotted in Fig. [10] (bottom panels). One can observe that the distribution is nearly at outside the valley but remain peaked around a extremely small region around \(\theta = 0 \). Integrating over the \(\theta \) values, initial conditions outside the valley are still the preferred case.

Concerning the probability distributions of the modulus \(\psi \) and the angular direction of the initial velocity vector, results integrated over the whole parameter space do not present qualitative differences compared to the posteriors with xed potential parameters, as one may expect since the Hubble dam ping prevents the initial veloci ties to influence the dynamics (see Fig. [8]).

The marginalised probability distributions for the potential parameters are represented in Fig. [11]. These posteriors seem to indicate that the three parameters are bounded but one should pay attention to the in uence of our prior choices over the posterior [53]. In fact, the posteriors for \(M_0 \) and \(\theta_0 \) are found to depend on our prior choice: changing the upper or lower limit on the \(\theta_0 \) prior (or \(M_0 \) -prior) affects the values at which the \(M_0 \) - and \(\theta_0 \) posteriors fall. Such a situation is typical of the existence of correlations between these two parameters. In fact, we have therefore computed the two-dimensional marginalised posterior distribution in the plane \((\psi_0, \theta_0 \)) and found out that this probability distribution clearly exhibits a correlation between these two parameters: the lower bound on \(M_0 \) depends on the minimal allowed value of \(\theta_0 \). Such a correlation comes from the fact that, to realize enough in a tion for a given IC, the critical instability point \(\psi_{\text{crit}} \) should not be larger than the anamorphosis image of the IC (the point in the valley where slow rol l starts). Restricting initial \(\psi \) to sub-Planckian values leads to an upper bound on the largest image, and thus an upper bound on the instability point. From Eq. [3], the relevant quantity that is constrained is the combination...
The posterior distribution for the initial field values. The marginalisation is
over the initial field velocities and all the potential parameters. The shading is proportional to the
probability density value. The in-aton valley is still visible around $\epsilon = 0$ and the posterior takes non-vanishing values everywhere in the $(\epsilon; \eta)$ plane.

$$P_{\epsilon} = e^M.$$

We have plotted in Fig. 12 the marginal posterior distribution associated with the parameter $\log(P_{\epsilon} = e^M)$. and at 95% confidence level, we nd

$$\frac{P_{\epsilon}^{\epsilon}}{M} < 4 \times 10^3; \quad (20)$$

The parameter ϵ is the other constraint that the MCMC exhibits. It is explained by the possible apparition of slow-roll violations in the valley, when becomes too small. These slow-roll violations prevent the generation of an in-atonary phase if the trajectory is too high in the valley. At a two-sign a level, one has

$$m_{\text{pl}} > 17; \quad (21)$$

This lower limit is equivalent to the upper limit on m observed in [22]: a large in-aton mass induces a fast roll evolution and requires super-planckian initial conditions to realize in-aton in a chaotic way. We stress that these constraints come only from requiring enough in-ation in the hybrid model. However, the initial field values, velocities, and other potential parameters. In this respect, the limits of Eqs. (20) and (21) can be considered as natural.

To conclude this section, we have shown that in-ation is generic in the context of the hybrid model and we have derived the marginalised posterior probability distributions of all the parameters such that 60 e-folds of inflation occur. As discussed in the introduction, the original hybrid model under scrutiny is however a toy model known to be disfavored by the current CMB data. In this respect, one may wonder whether our results are peculiar to this model or can be generalised to other more realistic two-field in-atonary models. This point is addressed in the next section in which we have performed a complete study of the SUGRA F-term hybrid in-aton. In that model, the dynamics depends on only one potential parameter; also constrained by cosmological strings formation. The challenge will thus be to confront this constraint to the natural bounds that can be deduced from MCMC methods by requiring enough e-folds of inflation.

IV. PROBABILITY DISTRIBUTIONS IN F-SUGRA INFLATION

The minimum supersymmetric versions of hybrid in-ation are known as the F-term and D-term in-atonary models [12,13,15], where the slope of the valley is generated by radiative corrections. The F-term model is compatible with the current CMB data since a red spectrum of the cosmological perturbations is generic [12,52,53]. In addition, this model is more predictive and testable than its non-SUSY version since it contains only one coupling constant and one mass scale.

A. The model

In the following, we are analysing the space of initial conditions and model parameters leading to enough inflation for the so-called F-term model based on the superpotential [12]

$$W_{\text{F}} = S(\epsilon; M^2); \quad (22)$$

The in-aton is contained in the super field S. The Higgs pair ϕ is charged under a gauge group G, that is broken at the end of in-ation when the Higgs pair develops a non-vanishing expectation value (vev) M. The superpotential leads in global SUSY to a tree level potential

$$V_{\text{tree}}(S; \epsilon) = 2 M^2 - \frac{2^2}{4} + \frac{1}{8} s^2 2^2; \quad (23)$$

where the effective in-aton S and Higgs $\phi; \eta$ can be made real and canonically normalised $\phi^2 < (S) = 2 < (\epsilon) = 2 < (\eta)$. The local minima of the potential at large S provide a direction for the in-aton s: $V_0 = 2 M^4$. This tree level direction is lifted by two effects. Firstly, radiative corrections are induced by the SUSY breaking that supports in-ation. In addition, if the field values are close to the reduced Planck mass M_{pl}, one should expect supergravity corrections $S = M_{\text{pl}}$ to the tree level potential. The radiative corrections along the
in ationary valley can be derived using the Coleman-Weinberg formula [54]. They reduce to [12]

\[
V_{1}^{CM\text{-loop}}(s) = \frac{4M^4N^2}{32} \left(\ln \frac{s^2}{2} + (z + 1)^2 \ln(1 + z) \right) \\
+ \left(z \ln(1 - z) \right) ;
\]

(24)

where \(z = s^2 M^2 \), \(N \) stands for the dimensionality of the representations to which belong and represents a non-physical energy scale of renormalization. Realistic values of \(N \) can be derived from the embedding of the model in realistic SU SY Grand Unified Theories (GUT) as shown in Ref. [23]. For example, in the case of an embedding of the model in SU SY SO(10), belong to the representation 16,16 or 126,126. However, as pointed out in Ref. [53], it is possible that only some components of take a mass correction of order \(M \) so that effectively\(^6 \) \(N = 2;3 \). For the sake of generality, we will assume that \(N \) can take values in the range \([2;126] \).

This model is also known to generically produce cosmic strings at the end of ation [23] and this imposes an upper limit on the ationary mass scale \([53,55,56]\)

\[
M \geq 15 \text{ GeV} ; \quad 7 \times 10^{-7} \frac{126}{N} ;
\]

(25)

Secondly, SUGRA corrections also contribute to lifting the tree-level at direction and will be taken into account since the -ed values we are probing are not always negligible compared to the Planck mass. It has been noticed in Ref. [13] that the F-term hybrid in ation model doesn’t suffer from the problem only when the Kähler potential

\(^6\) This depends on the mass spectrum of the assumed GUT model.
FIG. 11: Marginalized probability distribution for the potential parameters of the hybrid model. Notice that some of the bounds are set by the prior choices.

is (close to) minimum.

\[K = j \bar{j} + j + \bar{j} + j \bar{j} \quad (26) \]

which is what we assume in the following. In terms of the canonically normalized effective Higgs and waterfall

\[V_{\text{tree}}(s; \bar{s}) = 2 \exp \left(\frac{s^2 + \bar{s}^2}{2M_{pl}^2} \right) \]
\[+ \frac{s^2}{4} + \frac{1}{M_{pl}^2} + \frac{1}{4} \left(\frac{s^2}{2} \frac{1}{M_{pl}^2} + \frac{s^4}{4M_{pl}^2} \right)^2 \]
\[(27) \]

The dynamics along the inflationary valley is driven by the radiative corrections and by the SUGRA corrections. The radiative corrections play a major role in the last e-folds of inflation (thereby generating the observable spectral index), whereas most of the dynamics actually place for e-fold values dominated by the SUGRA corrections. We have calculated the amplitudes for both corrections and found that only at the end of the inflationary potential for e-fold values dominated by the SUGRA corrections. In the present work, the regions of the parameter space leading to inflation do not depend on the very last part of the e-fold evolution: as soon as 60 e-folds are obtained, the initial conditions are considered successful and this generally occurs in the valley at larger e-fold values. Outside the inflationary valley, we therefore expect the tree level dynamics to dominate over the radiative corrections, especially for small coupling. There also, in addition to the tree level, at large e-folds, SUGRA corrections are expected to be important.

Resulting of these considerations, we have neglected radiative corrections and used for our study below the potential of Eq. (27).
B. Fractal initial e-folds values

The analysis of the SUGRA F-term model has been conducted along the lines described in Sec. II and Sec. III. We have rst veri ed that, at xed potential parameter M and vanishing initial velocities, the set of initial e-fold values S de ned by Eq. (1) is two-dimensional with a fractal boundary. In Fig. 13, we have represented the set S of successful initial e-fold values for the mass scale M = 10^{-2} m_{pl}. Notice that the coupling constant being an overall factor, it doesn’t in pact the dynamics of the e-folds. Our study is therefore valid for any value of and of the dimensionality of the Higgs e-fold, since the relationship M () depends only on N.

As for the original hybrid model, the highest Lyapunov exponent for the successful initial e-fold values is negative and the set S is non-chaotic. Outside of S, trajectories have positive Lyapunov exponents and exhibit chaos.

For vanishing initial velocities, we have reported in Table I the area occupied by the set S in the plane (s;) for various sections along the potential parameter M. Like for the original hybrid model, we recover a signi cant proportion of successful initial e-fold values outside the valley. This result holds even for M 1 though at small M, the potential becomes very at and the number of oscillations of the system before being trapped in the ationary valley can exceed 10^3. Simulations become therefore more time-consuming and error-bars in Tab. I increase. Reducing M also reduces the typical size of structures in the plane (s;), which evolves from Fig. 13 to a more intricate space of thinner successful IC. As suggested by the Tab. I, we will see below that this doesn’t alter the probability of getting in ation by starting the evolution outside the valley.

Concerning the fractal properties of S, we have applied the same method as in Sec. II to compute the box-counting dimensions of S and its boundary. As expected, we recover that S is of box-counting dimension two whereas the function f () for its boundary is represented in Fig. 14. We obtain that, as in the non-SUSY case, the boundaries are fractal with dimension

$$D_f = 1.5,$$ \hspace{2cm} (28)

These results allow us to use the usual Lebesgue measure to de ne the probability distribution over the whole parameter space.

<table>
<thead>
<tr>
<th>Values of M</th>
<th>Area of S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 10^{-6} m_{pl}</td>
<td>0 (exact)</td>
</tr>
<tr>
<td>M = 10^{-2} m_{pl}</td>
<td>12.9 0d</td>
</tr>
<tr>
<td>M = 10^{-5} m_{pl}</td>
<td>12.9 0d</td>
</tr>
<tr>
<td>M = 10^{-3} m_{pl}</td>
<td>10.3 05</td>
</tr>
</tbody>
</table>

TABLE I: Percentage of successful initial e-fold values, at vanishing initial velocities, for various values of the potential parameter M. The error bars come from the site numerical precision, which decreases with M.
The F-SUGRA in ationary valley has a slightly higher probability density around \(\theta = 0 \) but is extremely localised: as a result, in ation is more probable by starting out of the valley.

\[\text{FIG. 15: Marginalised posterior probability distributions for the initial field values (upper panels) and the initial velocities, modulus } v, \text{ and angle } \theta. \]

The marginalised posterior probability distributions of the mass scale \(M \) of F-SUGRA in ation.

\[\text{FIG. 16: Marginalised posterior probability distribution of the mass scale } M \text{ of F-SUGRA in ation.} \]

values, in ation is clearly more probable by starting out of the valley. Finally, only the posterior probability distribution of \(\log M \) is strongly suppressed at large values. We nd, at 95\% confidence level (see Fig. 16),

\[\log(M) < 133; \quad (31) \]

As for the original hybrid model, this limit comes from the condition of existence of a sub-planckian in ationary valley which is related to the position of the instability point. Indeed, from Eq. (27), one nds

\[\frac{d\nu_{\text{SUGRA}}}{d} = 0 \quad s = s_c = \frac{V_u}{M_{\text{pl}}} \left(\frac{M}{M_{\text{pl}}} \right)^4 \]

\[\text{(32)} \]

where we have kept only the sub-planckian solutions. This expression shows that there is an in ationary valley at \(s = s_c \), and for \(s > s_c \). As a result of the two-field dynamics, we nd that a valley supporting at least 60 e-folds of in ation require the more stringent bound of Eq. (31). Let us nally notice that the most probable values we obtain on \(M \) to get in ation in Eq. (31) are compatible with the existing upper bound coming from cosmological string constraints: \(M < 10^{-3} M_{\text{pl}} \) (see Ref. [53, 5]).

\[\text{V. CONCLUSION} \]

In this paper, by numerically solving the two-field dynamics of the original hybrid model and its SUGRA F-term version, we have shown that 60 e-folds of in ation is a generic outcome. Contrary to what is usually assumed, one does not need to re-tune the initial field values around \(\theta = 0 \) to get in ation. In fact, the in ationary valley, instead of an all extension in field space, is one of the three dynamical attractors of the di erential system given by the Einstein and Klein Gordon equations in a FLRW universe (the others being the in a
of the potential. As a result, any trajectory will end in one of these three attractors and the set S of successful initial conditions therefore belongs to the basin of attraction of the in ationary valley. We have shown that such a set is connected and of dimension two while exhibiting a fractal boundary of dimension greater than one. Moreover, it occupies a signifcant fraction of the sub-planckian ξ regime. In order to quantify what are the natural ξ and parameter values to get in action for both of these models, we have introduced a probability measure and performed a MCMC exploration of the full parameter space. It appears that the in ationary outcome is independent of the initial ξ velocities, is more probable when starting out of the in ationary valley, and favours some "natural" ranges for the potential parameter values that cover many order of magnitudes. The only constraints being that the in ationary valley should exist.

Let us notice that the posterior probability distributions we have derived are not sensitive on the fractal property of the boundary of S. This is expected since, even fractal, the boundary remains of null ξ measure compared to S. However, its existence may have implications in the context of chaotic eternal in ation [59, 58]. Indeed, the boundary itself leads to in ation and spawn the whole ξ space such that its mere existence implies that in ationary bubbles starting from almost all sub-planckian ξ values should be produced. Here, we have been focused to the classical evolution only and our prior probability distributions have been motivated by theoretical prejudice (at sub-planckian prior). In the context of chaotic eternal in ation, our results are however still applicable provided one uses the adequate prior probabilities which are the outcome of the super-Hubble chaotic structure of the universe [59]. Provided the eternal scenario does not correlate with the classical dynamics, one should simply factorize the new priors with the posteriors presented here to obtain the relevant posterior probability distributions in this context.

Acknowledgments

It is a pleasure to thank T. Caretto, S. Colombi, G. Esposito-Farese, A. Fusco, A. Lenzi, J. M. Martin, P. Peter, and M. Tytgat for discussions and comments. S. C. is supported by the Belgian Fund for Research (F. R. S.). J. R. is funded in part by ISN and Belgian Science Policy IAP V/11.

[34] C. Ringeval, Lect. Notes Phys. 738, 243 (2008), astro-