THE MASSES OF POPULATION II WHITE DWARFS1,2,3
Jason S. Kahirai, D. Saul Davids, Harvey B. Richer5
P. Bergeron6, Marcia Catelan1,4, Brad M. S. Hansen5, and R. Michael Rich5,
Draft version August 10, 2013

ABSTRACT

Globular star clusters are among the first stellar populations to have formed in the Milky Way, and thus only a small sliver of their initial spectrum of stellar types are still burning hydrogen on the main-sequence today. A 1/6 of all the stars born with m more m < 0.8 M⊙ have evolved to form the white dwarf cooling sequence of these systems, and the distribution and properties of these remainnants uniquely holds clues related to the nature of the now evolved progenitor stars. With ultra-deep HST imaging observations, rich white dwarf populations of four nearby Milky Way globular clusters have recently been uncovered, and are found to extend an impressively > 8 m magnitude in the faint-blue region of the H-R diagram. In this paper, we characterize the properties of these population II remainnants by presenting the first direct mass measurements of individual white dwarfs near the tip of the cooling sequence in the nearest of the Milky Way globulars, M 4. Based on G em ini/GMOS and Keck/LRIS ultradeep spectroscopic observations, our results indicate that 0.8 M⊙ population II main-sequence stars evolving today form 0.53 ± 0.01 M⊙ white dwarfs. We discuss the implications of this result as it relates to our understanding of stellar structure and evolution of population II stars and for the age of the Galactic halo, as measured with white dwarf cooling theory.

Subject headings: globular clusters: individual (M 4) | stars: evolution | stars: mass loss | techniques: spectroscopic | white dwarfs

1. INTRODUCTION

The end products of stellar evolution for 98% of all stars will be white dwarfs. This final state results because most stars are not massive enough to ignite C and O, so that nuclear reactions cease with the formation of a degenerate core of He or a combination of He, C, and O. With the cessation of nuclear reactions, white dwarfs emit light only via their cooling and become dimmer as time passes. These remainnants have very thin surface layers of H and/or He, the bulk of the envelope having been blown away during relatively quiescent stages of mass loss in the progenitor star. For the oldest stellar populations, > 15% of the entire present day mass of the system is tied up in white dwarfs, and therefore their distribution and detailed properties represent a unique link to explore the nature of the now-evolved population II progenitors. Such studies are enhanced in star clusters where all of the remainnants are co-spatial, have the same total age, and evolved from stars with the same metallicity, yet over a range in initial mass.

M 4 is a globular star cluster that has been dated to a formation time roughly 12 Gyr ago (e.g., Kroupa & Chaboyer 2003), and therefore represents the first structures to form in the Milky Way. These systems are among the first important tools that we have to probe the formation and evolution processes of galaxies (Brodie & Strader 2006). Given their ages, the present-day mass sequence turnoff mass in globulars is about 0.8 M⊙, and therefore the bulk of their population has evolved through post-main-sequence evolution, a jury having formed faint white dwarf stars. Through an ast 400 orbits of Hubble Space Telescope imaging observations this decade, our team has uncovered the complete white dwarf cooling sequences of the two nearest globular clusters, M 4 and NGC 6397 (Richer et al. 2004, 2008), and will target the third nearest cluster, 47 Tuc, in Cycle 17 (GO-11677). A shallower study of the massive globular Omg Cen by Monelli et al. (2005) and Calamida et al. (2008) has successfully uncovered over 6500 remainnants in this single cluster, roughly a quarter of the total known

1 Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
2 Based on observations obtained at the Gemini Observatory (Program IDs: GS-2005A-Q-5 and GS-2006B-Q-25), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).
3 Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal GO-8679.
4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218; jkalirai@stsci.edu
5 Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1; slavich@richer@astro.ubc.ca
6 Department of Physics, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Quebec, Canada, H3C 3J7; bergeron@astro.umontreal.ca
7 Departamento de Astronomía, Pontificia Universidad Católica de Chile, Aven. Vicuña Mackenna 4860, 782-0436 Santiago, Chile; mcatelan@astro.puc.cl
8 John B. Kerrigden Memorial Foundation Fellow
9 Department of Physics and Astronomy, Box 951547, Knuasen Hall, University of California at Los Angeles, Los Angeles CA, 90095; hansen@astro.ecl.ucla.edu
10 Given the larger distance, the brightest faint-blue objects on
The white dwarf population in the entire Milky Way from all other studies combined (e.g., Eisenstein et al. 2006, and subsequent Sloan Digital Sky Survey work). The color-magnitude diagrams (CMDs) of these clusters, extending to impressively faint magnitudes, are presented in Figure 1 (see also Bedin et al. 2009 for a more recent ACS study of M4).

The white dwarf cooling sequences of nearby globular clusters have been analyzed to independently (e.g., of main-sequence stars and turnoff morphology) derive the distances and ages of the clusters (Hansen et al. 2004, 2007), explore age variations between metal-rich and metal-poor systems using stars whose evolution is almost completely independent of metallicity (Hansen et al. 2007), possibly suggest large fractions of helium-core white dwarfs produced through binary interactions (Monelli et al. 2005; Calamida et al. 2008), and hint that mass loss stages leading to the formation of white dwarfs may involve small asymmetric kicks (Davis et al. 2008). For each of these studies, the interpretation of the photometry to yield the results depends on knowledge of the apparent Omega Cen white dwarf cooling sequence may be subdwarf stars.

For each of these studies, the interpretation of the photometry to yield the results depends on knowledge of the apparent Omega Cen white dwarf cooling sequence may be subdwarf stars.
hab objects based on kinematic analysis. The masses of six of these white dwarfs range from 0.44 (0.51 M\(_*\)) with an additional lower mass star at 0.35 M\(_*\).

In this paper we present the rst results from a new study aimed at directly (i.e., purely from spectroscopic absorption line fitting) measuring the masses of known population II white dwarfs in different environments. Our goal is to target the brightest white dwarfs in the nearest globular star clusters (such as M 4, NGC 6397, and 47 Tuc) and in the halo, with ground-based spectroscopic instruments on 8-10 m telescopes. The clusters listed above span an appreciable range in metallicity (factor of 20) and are located at distances such that the brightest white dwarfs with M\(_V\) = 10.5 have apparent magnitudes of V = 22 (24). The faintness of these stars, crowding issues in the cluster, and the need to obtain high signal-to-noise (S/N) spectra of the higher order Balmer lines at < 4000 Å make this a difficult, but possible, project with current telescopes. Below, we discuss the results from our rst study, in which we target two dozen white dwarfs in M 4 with the Gemini/GMOS and Keck/LRIS multi object spectrographs over several observing runs. The spectra for six of these stars, that are contained as cluster members and that have su cient S/N to yield accurate mass measurements, are consistent with M\(_{\text{ef}}\) = 0.53 ± 0.01 M\(_*\). The impact of this mass measurement on our understanding of stellar structure and evolution, and for dating halo globular clusters through white dwarf cooling theory, are discussed. An analysis of the remaining M 4 spectra that did not yield mass measurements, e.g., to define the spectral types of population II white dwarfs, is presented in the companion paper by Davis et al. (2009).

2. IMAGING AND SPECTROSCOPIC OBSERVATIONS OF M 4

The deep HST imaging data of M 4 illustrated in Figure 1 (left) were collected with the Wide Field Planetary Camera 2 (WFPC2) camera in 2001 as a part of GO-8679 (Riher et al. 2004). The observations spanned a total of 123 orbits, in the broadband F 606W and F 814W filters, and were centered on a field located at (,) = (16°23' 54.5", 26 32.243(3)°), 2.4 pc (4.8') S-E of the center of the cluster. Although the HST photometry is very accurate, and there is no ambiguity on the membership of the white dwarfs, the bulk of the stars are too faint to be useful for spectroscopic follow-up with modern day facilities. Additionally, the WFPC2 field of view is 5.3 square arc minutes, about six times smaller than our ground-based instrument, and therefore the spectroscopic program would be highly inefficient with just this input list of targets. Below we discuss suplemental imaging of these data with the Gemini South telescope (x1), followed by spectroscopic follow-up (x2). In x2.3 and 2.4, we discuss additional spectroscopic observations of M 4's white dwarf population with the Keck I telescope.

2.1. Gemini/GMOS Photometry and Astrometry

We reobserved M 4 with the Gemini South telescope and Gemini multi-object Spectrograph (GMOS), anchoring the deep HST field near the south-eastern edge of the ground based in age and placing shallower HST pointings near the western side. The GMOS photometry, over

Fig. 2.1 The footprint of the HST/WFPC2 (dotted line), Gemini/GMOS (solid line), and Keck/LRIS (dashed) instrument. The Cycle 9 deep HST observations shown in Figure 1 constrain the bottom-right pointing, with the two other HST pointings being archive observations that we retrieved. The white dwarf candidates selected from the GMOS photometry (i.e., stars with m magnitudes between V = 20 and 24, and colors less than V - i 0.5) are shown as dots. The objects targeted for GMOS spectroscopy are shown as diamonds and those for LRIS spectroscopy are represented with pluses. The center of M 4 is located at (,) = (254.398, 26.526) and is indicated with an asterisk. A 5.5° × 5.5° area, has the added advantage that it extends continuous in aging into the denser region towards the center of M 4 and therefore provides a high density of targets down to a given magnitude limit. Obviously, crowding in the ground-based data prevents the targeting of white dwarfs near bright stars, and this increases in the direction of the cluster center. A footprint of the HST and GMOS in ages is provided in Figure 2.

As this map illustrates, less than half of the Gemini/GMOS field of view overlaps the HST/WFPC2 observations. In order to e cctively select white dwarf candidates over the entire GMOS field, we obtained imaging in both the g and r bands down to a depth of 25th mag. The images were corrected for bias and at ecking by the Gemini iraf pipeline, version 14.1. The processed images were then reduced with the standard DAOPHOT/ALLSTAR photometry package to yield PSF photometry (Stetson 1994). Further details on the steps involved in our application are provided in Kalirai et al. (2008) for a similar study.

The matched catalog of WFPC2 and GMOS sources contains 10\(^3\) stars. We calibrate the g and r magnitudes to HST F555W and F814W (hereafter called V and I) using derived transformations for the common stars in the space-based and ground-based systems (see Davis et al. 2009 for details on the transformation). These sets are then applied to the entire GMOS catalog. The positions of all stars on the GMOS in age were carefully measured with respect to both HST positions and standard USNO guides stars to yield precise astrometry.

The Gemini/GMOS CMD of M 4 is presented in Figure 3. Both the main-sequence and white dwarf cooling sequence are well measured, the latter containing about
Fig. 3. The CMD constructed from the GMOS photometry (solid dots). There is a clearly identified white dwarf cooling sequence extending from $22 < V < 24.5$ with an approximate color of $V - I = 0.3$ (one brighter object is also present). This CMD is contaminated by a more distant field population, located blueward of the main sequence. There is also contamination in the white dwarf region of the CMD from field white dwarfs and possibly blue compact galaxies, which we address in the footnote. The open circles encircling the dots represent those objects which were targeted by Keck/LRIS for spectroscopy (see x2.4). The red open circles are additional objects that were targeted by Gemini/GMOS, and that are not in the Keck sample due to slit constraints (see x2.2 and x2.4). The open circles lacking small dots are HST detections for which we do not have ground based photometry (two of these stars are off the plot). These latter objects were selected for the sole purpose of filling the mask in relatively empty regions, and therefore no pre-selection was used.

Two dozen candidates brighter than $V = 24$. The location of these white dwarf candidates are illustrated on Figure 2 as smaller points. The selection here includes stars with $20 < V < 24.5$ and colors $V - I < 0.5$. Note the paucity of ground based candidates in the two inner WFPC2 fields (top left). There are in fact many white dwarfs at these positions, however, the crowding limits their detection from the ground.

We further subdivide the sample of white dwarf candidates into two bins, with priority 1 stars being our strongest white dwarf candidates in the dominant part of the cooling sequence, and priority 2 objects being somewhat uncertain objects that are located in the cooling sequence (e.g., redder or bluer) and/or near a bright star. These latter objects are only included in the spectroscopic mask if they do not overlap a priority 1 star (hence, we get a spectrum of the potential white dwarf for free). Any of the confirmed members of the sample are candidate CVs in the priority 2 sample, most of these are HST proper motion members as well. In total, 21 white dwarf candidates were targeted with Gemini/GMOS for follow up spectroscopy. Note, a few of the very red or faint objects shown in the CMD were included without pre-selection for the purpose of filling the spectroscopic mask (these objects were not detected from the ground).

An example of the GMOS and WFPC2 photometry, astrometry, and postage stamp images of the whole white dwarf candidates are provided in the Appendix.

2.2. Gemini/GMOS Spectroscopy

In total, we obtained approximately 14.5 and 9 hours of queue scheduled spectroscopic science exposures with Gemini/GMOS in June/August 2005 and August/September 2006, respectively. The observations were taken with the B600 grating, covering a broadband wavelength region of 3700 A centered at 4680 A. The data were binned by a factor of two in the spectral direction in order to improve the S/N. All science exposures were obtained in sub-arcsecond seeing conditions and photonetic skies.

The raw data frame were downloaded from the Canadian Astronomical Data Center (CADC) in multi-extension FITS (MEF) format and reduced with the Gemini IRAF Package, version 1.4. The reductions are described in detail in Davis et al. (2009). Of the 21 targeted white dwarfs, a spectrum was recovered for all but three. Remarkably, all 18 of the recovered spectra show pressure broadened absorption lines indicative of white dwarfs. The spectra for these 18 stars, as well as an analysis of their spectral types is also presented in Davis et al. (2009). Unfortunately, in order to determine the reliable spectroscopic masses, characterization of H is crucial, and even H 8 (3889 A) is very useful. The lack of UX at these wavelengths in our Gemini data limited the utility of the GMOS spectra for the central goals of this paper. Although we could derive masses measurement from the spectra (see 4.4), the uncertainties are several tenths of a solar mass and therefore we decided to supplement these data with higher S/N observations, especially at bluer wavelengths.
2.3. Keck/LRI S Target Selection

With a sample of cool white dwarfs established from the G M Q S observations, we applied for Keck telescope time to reobserve the targets using the LRI S multi-object spectrograph. Not only does Keck provide a larger aperture than Gemini, but the spectrograph is very efficient in the blue and has an atmospheric dispersion correction to minimize light loss at large airmass (this is important for this study since Keck is in the north and M 4 is in the south). Given the small liberties in the end of view (LRI S has a 5° 7° footprint), we simply used as many of the cool white dwarf sample from Gemini as our input, as well as several additional redder stars in the same brightness range. The location of the 31 LRI S targets in the ground-based CMD are shown in Figure 3 as larger open circles. The objects marked in red circles are those that were targeted with Gemini, but not Keck. The LRI S footprint is also shown in Figure 2.

2.4. Keck/LRI S Spectroscopy

Keck/LRI S spectroscopic observations (R. M. Rich, PI) of the single M 4 mask proved challenging. Half nights, due to the low declination of M 4, were scheduled in 2005 June, 2007 April/July, and 2008 April, with the 2007 and 2008 observations being tied to the LRI S atmospheric dispersion correction system. The multiple allocations were required due to poor weather that resulted in the loss of a significant number of scheduled hours. Altogether, we obtained 10.5 hours of useful exposure time. Even these data are of highly variable quality, with seeing measurements ranging from 0.9 to over 2.0. In these crowded disks, our radial spectra are dominated by a few of the contributions from the best nights.

LRI S (Oke et al 1995) has a dichroic that splits the spectrum into two channels at 5500 A. On the blue side, we use the 400/3400 grism (dispersion = 1.09 A/pixel) which covers a wavelength region from the atmospheric cutoff to the dichroic. For the red side, we use the 600/7500 grating (dispersion = 1.28 A/pixel), centered at 6600 A, which covers a wavelength baseline of 2620 A. At our resolution and central wavelength, only H, which is a rather poor mass indicator, landed on the red side. Hence, we chose not to reduce the red-side data for this paper.

The blue-side LRI S spectra were reduced using standard IRAF tasks. The trace, sky subtraction, and extraction were all performed with the apall task. As expected given the better blue sensitivity of LRI S compared to G M Q S, the trace at blue wavelengths was far more certain. Given the high levels of crowding and background light from bright M 4 stars in the disk, our ability to obtain a reliable trace, and perform accurate sky subtraction is dependent on the particulars of each individual slit (see x3).

The wavelength calibration was calculated in IRAF from spectra of three lamps containing Hg, Zn, and Cd. The typical naive dispersion of the wavelength solution was well constrained, with uncertainties of 0.1 A. The reduced, wavelength calibrated LRI S spectra were u x calibrated using the spectrophotometric standard H 2.44. Finally, the individual spectra were combined using sc combine, with weights assigned according to the

<table>
<thead>
<tr>
<th>Identication #</th>
<th>RA (J2000)</th>
<th>DEC (J2000)</th>
<th>V</th>
<th>I</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD 00</td>
<td>245.9579</td>
<td>26.5559</td>
<td>0.32</td>
<td>23.32</td>
<td></td>
</tr>
<tr>
<td>WD 01</td>
<td>245.9256</td>
<td>26.5540</td>
<td>1.18</td>
<td>22.77</td>
<td></td>
</tr>
<tr>
<td>WD 02</td>
<td>245.9406</td>
<td>26.5531</td>
<td>0.69</td>
<td>22.32</td>
<td></td>
</tr>
<tr>
<td>WD 03</td>
<td>245.9710</td>
<td>26.5551</td>
<td>0.93</td>
<td>25.21</td>
<td></td>
</tr>
<tr>
<td>WD 04</td>
<td>245.9638</td>
<td>26.5551</td>
<td>0.27</td>
<td>22.69</td>
<td></td>
</tr>
<tr>
<td>WD 05</td>
<td>245.9224</td>
<td>26.5480</td>
<td>0.27</td>
<td>22.71</td>
<td></td>
</tr>
<tr>
<td>WD 06</td>
<td>245.9262</td>
<td>26.5442</td>
<td>0.28</td>
<td>22.65</td>
<td></td>
</tr>
<tr>
<td>WD 07</td>
<td>245.9884</td>
<td>26.5414</td>
<td>0.82</td>
<td>21.99</td>
<td></td>
</tr>
<tr>
<td>WD 08</td>
<td>245.9763</td>
<td>26.5396</td>
<td>0.67</td>
<td>22.65</td>
<td></td>
</tr>
<tr>
<td>WD 09</td>
<td>245.9419</td>
<td>26.5238</td>
<td>0.26</td>
<td>22.50</td>
<td></td>
</tr>
<tr>
<td>WD 10</td>
<td>245.9120</td>
<td>26.5281</td>
<td>2.03</td>
<td>22.28</td>
<td></td>
</tr>
<tr>
<td>WD 11</td>
<td>245.9867</td>
<td>26.5300</td>
<td>1.31</td>
<td>26.96</td>
<td></td>
</tr>
<tr>
<td>WD 12</td>
<td>245.9427</td>
<td>26.5241</td>
<td>0.22</td>
<td>23.52</td>
<td></td>
</tr>
<tr>
<td>WD 13</td>
<td>245.9764</td>
<td>26.5240</td>
<td>2.54</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>WD 14</td>
<td>245.8980</td>
<td>26.5214</td>
<td>0.85</td>
<td>24.99</td>
<td></td>
</tr>
<tr>
<td>WD 15</td>
<td>245.9625</td>
<td>26.5190</td>
<td>0.26</td>
<td>22.73</td>
<td></td>
</tr>
<tr>
<td>WD 16</td>
<td>245.9276</td>
<td>26.5175</td>
<td>0.28</td>
<td>23.53</td>
<td></td>
</tr>
<tr>
<td>WD 17</td>
<td>245.9515</td>
<td>26.5147</td>
<td>0.32</td>
<td>23.20</td>
<td></td>
</tr>
<tr>
<td>WD 18</td>
<td>245.9521</td>
<td>26.5125</td>
<td>0.25</td>
<td>23.64</td>
<td></td>
</tr>
<tr>
<td>WD 19</td>
<td>245.9281</td>
<td>26.5092</td>
<td>0.43</td>
<td>23.33</td>
<td></td>
</tr>
<tr>
<td>WD 20</td>
<td>245.9436</td>
<td>26.5090</td>
<td>0.32</td>
<td>23.01</td>
<td></td>
</tr>
<tr>
<td>WD 21</td>
<td>245.9263</td>
<td>26.5067</td>
<td>1.22</td>
<td>23.15</td>
<td></td>
</tr>
<tr>
<td>WD 22</td>
<td>245.9521</td>
<td>26.5037</td>
<td>0.19</td>
<td>23.41</td>
<td></td>
</tr>
<tr>
<td>WD 23</td>
<td>245.9364</td>
<td>26.4994</td>
<td>0.51</td>
<td>22.54</td>
<td></td>
</tr>
<tr>
<td>WD 24</td>
<td>245.9216</td>
<td>26.4984</td>
<td>0.26</td>
<td>22.72</td>
<td></td>
</tr>
<tr>
<td>WD 25</td>
<td>245.9442</td>
<td>26.4941</td>
<td>0.39</td>
<td>22.21</td>
<td></td>
</tr>
<tr>
<td>WD 26</td>
<td>245.9265</td>
<td>26.4930</td>
<td>1.32</td>
<td>24.53</td>
<td></td>
</tr>
<tr>
<td>WD 27</td>
<td>245.9006</td>
<td>26.4856</td>
<td>0.58</td>
<td>23.44</td>
<td></td>
</tr>
<tr>
<td>WD 28</td>
<td>245.9179</td>
<td>26.4840</td>
<td>0.30</td>
<td>22.81</td>
<td></td>
</tr>
<tr>
<td>WD 29</td>
<td>245.8674</td>
<td>26.4780</td>
<td>0.30</td>
<td>22.94</td>
<td></td>
</tr>
<tr>
<td>WD 30</td>
<td>245.9353</td>
<td>26.4719</td>
<td>1.07</td>
<td>22.86</td>
<td></td>
</tr>
<tr>
<td>Gem WD 05</td>
<td>245.9195</td>
<td>26.4860</td>
<td>1.33</td>
<td>22.48</td>
<td></td>
</tr>
<tr>
<td>Gem WD 11</td>
<td>245.9633</td>
<td>26.5174</td>
<td>0.40</td>
<td>23.39</td>
<td></td>
</tr>
<tr>
<td>Gem WD 15</td>
<td>245.9349</td>
<td>26.5246</td>
<td>0.25</td>
<td>22.75</td>
<td></td>
</tr>
<tr>
<td>Gem WD 17</td>
<td>245.9504</td>
<td>26.5344</td>
<td>1.10</td>
<td>21.31</td>
<td></td>
</tr>
</tbody>
</table>

*These stars were not detected from the ground; m magnitudes are from the HST photometry.

individuals/N ratios.

We summarize the identity, positions, and brightnesses of all white dwarf candidates in Table 1. The four stars that have slit contacts, and therefore were not observed with Keck, are listed at the bottom of the table. Altogether, 31 objects were targeted with Keck/LRI S. Note, the identity of these stars as WD at this stage does not confirm their nature, although we will later that most are in fact white dwarfs. We use this naming scheme for convenience as we will refer back to this Table in future sections.

3. Eliminating Non-White Dwarf and Stars with Poor Spectra

The ground-based CMD of our targets in Figure 3 shows that the dominant, blue white dwarf cooling sequence of M 4 extends from V = 22.5 to 23.5, and contains eleven stars that were spectroscopically observed with LRI S (note, the clump at V = 22.7, I = 0.3 contains very LRI S targets). An additional target, W D O 2, is almost one magnitude brighter than the family of fainter points and has V = 21.3, another four stars are fainter and bluer than the cooling sequence at V = 23.5, V I = 0.25 (including the one object without ground based photometry), and two stars are at the faint end and redder than the cooling sequence at V = 23.2 and V I = 0.4. Most of the stars that are redder than this sample of 18 objects (i.e., V I > 0.5) yielded spectra
that are not interesting for the goals of this paper and will be commented upon further in Davis et al. (2009). In Table 1, these objects are WD 01, 03, 07, 08, 10, 11, 13, 14, 21, 23, 26, 27, and 30. The one exception to this is possibly the relatively bright star just beyond the \(V = 0.5 \) color cut at \(V = 22.54, V = 0.51 \) (WD 23). This star is a proper motion member of M 4 but, as shown in the Appendix in Figure A3, is located very close to a bright neighbor. Likely, the color (and spectrum) of this star is contaminated from the neighboring star and we therefore eliminate it from our analysis.

The family of 18 white dwarf candidates in M 4's 'pseudo' cooling sequence are all confirmed to be white dwarfs (see Davis et al. 2009). For our primary goal of measuring accurate masses, we want to restrict this sample to only include well measured, isolated white dwarfs with robust S/N (see x4.1). The stars along the cooling sequence in our sample vary in brightness by about a factor of three, and therefore the fainter stars will intrinsically have much less signal than their brighter counterparts. Added to this, we note that the

![Diagram](image-url)
and W D 01 (see model likely that the is older along M 4's
that W D 02 i s moved from the dominant sequence 2007). The technique has also been cross-checked against independent measurements of the mass of a white dwarf such as astrometry for binary systems (e.g., Sirius B, Barbule et al. 2005), ts to the mass-radius relation for stars with trigonometric parallaxes (Holberg, Bergeron, & Gianninas 2008), the gravitational redshift method (Reddish 1996), and pulsation mode analysis (Kawaler 1991). For temperatures hotter than 12,000 K, these methods are in excellent agreement with the spectroscopic line tting technique (Bergeron, Liebert, & Fullbright 1995).

In this section, we rst brie y describe our method to calculate masses for the ten white dwarfs discussed above. We then verify the uncertainties in the masses using synthetic spectra of the same quality as the observations, and using the same methods described below. Finally, we remove all white dwarfs from the sample and analyze the masses of the common M 4 members.

4.1. Balmer Line Fits

Fitting the Balmer lines of a white dwarf to model atmospheres involves reproducing multiple line pro les from H to higher order transitions (Bergeron, Sa er, & Liebert 1992). Typically, four or ve well measured lines are enough to constrain the temperature (T e) and surface gravity (log g) of the star (Bergeron, Sa er, & Liebert 1992). The ith Balmer line in this sequence, H i, is the weakest and bluest (at = 3889 A), and therefore a spectrograph with high throughput in the blue is needed to characterize the feature accurately in faint stars. General details of the tting technique used to derive T e and log g are provided in Bergeron, Sa er, & Liebert (1992), and recent new extreemers to this method are given in Liebert, Bergeron, & Holberg (2005). Additional information on the tting of white dwarf spectra similar to these observations, and taken with our instrumental setup, are presented in x6 of Kallias et al. (2005). Specifically, the improved method to normalize the line pro les described in Liebert, Bergeron, & Holberg (2005) is used in our work.

Simultaneous t s of model atmospheres to all of the Balmer lines, in each of the ten white dwarfs discussed

Table 2

<table>
<thead>
<tr>
<th>ID</th>
<th>V</th>
<th>T eff (K)</th>
<th>log g</th>
<th>M ass (M)</th>
<th>V_diam</th>
<th>t_eq</th>
<th>S/N</th>
<th>Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>W D 00</td>
<td>23.32</td>
<td>20,600</td>
<td>600</td>
<td>7.75</td>
<td>0.09</td>
<td>0.52</td>
<td>0.04</td>
<td>22.82</td>
</tr>
<tr>
<td>W D 04</td>
<td>22.69</td>
<td>24,300</td>
<td>500</td>
<td>7.68</td>
<td>0.08</td>
<td>0.50</td>
<td>0.03</td>
<td>22.40</td>
</tr>
<tr>
<td>W D 06</td>
<td>22.65</td>
<td>25,600</td>
<td>500</td>
<td>7.87</td>
<td>0.08</td>
<td>0.59</td>
<td>0.04</td>
<td>22.59</td>
</tr>
<tr>
<td>W D 15</td>
<td>22.73</td>
<td>24,300</td>
<td>600</td>
<td>7.79</td>
<td>0.09</td>
<td>0.55</td>
<td>0.04</td>
<td>22.57</td>
</tr>
<tr>
<td>W D 20</td>
<td>23.01</td>
<td>19,700</td>
<td>500</td>
<td>7.73</td>
<td>0.10</td>
<td>0.51</td>
<td>0.05</td>
<td>22.89</td>
</tr>
<tr>
<td>W D 24</td>
<td>22.72</td>
<td>25,700</td>
<td>500</td>
<td>7.70</td>
<td>0.08</td>
<td>0.51</td>
<td>0.03</td>
<td>22.33</td>
</tr>
<tr>
<td>W D 02</td>
<td>21.32</td>
<td>18,400</td>
<td>500</td>
<td>8.16</td>
<td>0.04</td>
<td>0.75</td>
<td>0.03</td>
<td>23.56</td>
</tr>
<tr>
<td>W D 05</td>
<td>22.71</td>
<td>28,200</td>
<td>500</td>
<td>7.59</td>
<td>0.08</td>
<td>0.48</td>
<td>0.03</td>
<td>21.93</td>
</tr>
<tr>
<td>W D 09</td>
<td>22.50</td>
<td>25,100</td>
<td>500</td>
<td>8.19</td>
<td>0.09</td>
<td>0.79</td>
<td>0.05</td>
<td>23.10</td>
</tr>
<tr>
<td>W D 29</td>
<td>22.94</td>
<td>20,900</td>
<td>500</td>
<td>7.44</td>
<td>0.11</td>
<td>0.41</td>
<td>0.04</td>
<td>22.32</td>
</tr>
</tbody>
</table>

Note: The Spectral S/N is calculated at 4030 A as discussed in x4.2.

The new Stark broadening calculations in Tremblay & Bergeron (2009) have not been used to recalibrate the T eff and log g values (which would require approximate shifts of +1,500 K and 0.1 dex), although the masses have been corrected as discussed in x4.1.

Theoretical luminosity from spectral ts (see x4.3). The error bar includes the 1 error in the distance modulus (0.09 m aags).

The spectral S/N per resolution element, calculated between H and K.

The membership evaluation (see x4.3); PM = Proper motion Member, Lum = Luminosity Member, DD = Double Degenerate Candidate.
above, are presented in Figure 5 (top–right). With each panel, the absorption lines of a given white dwarf are arranged with \(H \) at the bottom and successive higher order transitions on top. The models are shown as smooth red curves and are excellent in all cases. We also comment that the two anomalous features, small spikes caused by bad sky subtraction in the \(H \) line of WD 00 and 29, do not affect the results of the test. This line is least sensitive to changes in the gravity of the star. The output from the spectroscopic tests are the \(T_e \) and \(\log g \) for each star, which we summarize in Table 2.

The masses of these ten stars (\(M_{\text{sol}} \)) are simply calculated by combining the measured surface gravity of the stars with the well-established mass-radius relation for white dwarfs. In general, most of the white dwarf masses are \(0.5 \ M_{\odot} \) with an uncertainty of \(10% \). We also estimate both the cooling ages, \(t_{\text{cool}} \), and the theoretical luminosity of each star by interpolating the \(T_e \) and \(\log g \) within evolutionary models similar to Fontaine, Brassard, & Bergeron (2001), but assuming a 50/50 carbon-oxygen core (see 12). Our total calculation assumes thick hydrogen layers with \(g(\text{H}) = M_{\odot} M_{\odot} = 10^4 \) and helium layers of \(g(\text{He}) = 10^2 \), and are summed in Table 2 and discussed further below. We also tested the sensitivity of our results to model assumptions (e.g., \(\text{Wood} \) 1995) with pure carbon cores and to model objects with thin hydrogen layers (e.g., \(g(\text{He}) = 10^2 \)). The results from these comparisons, for both the non-member stars and the theoretical luminosities, are identical to our default values within the measured uncertainties in these properties (which are small, see Table 2). We note, however, that the cooling ages of these bright, young white dwarfs are systematically larger than the pure C core models by 20% (30%).

At the time of writing this paper, Tremblay & Bergeron (2009) have just presented the first results from an improved calculation of the Stark broadening of hydrogen lines in dense plasma that are representative of white dwarf atmospheres. Their new results, including non-linear effects, suggest that the masses measured through the spectroscopic technique require a slight upward revision of \(0.034 \ M_{\odot} \). As the temperature of the stars using the new calculations are also slightly hotter (\(\approx 1,000 \ 2,000 \ K \)), the luminosities are unaffected. The implications of this study have not yet been investigated and the dependency of this offset on mass is not well constrained. In the results that follow, we have adjusted our default masses by \(+0.034 \ M_{\odot} \) to be consistent with these new calculations (including the reported masses in Table 2). We have not corrected the individual \(T_e \) and \(\log g \) values by a com m on offset (which would be approximately \(1,500 \ K \) and 0.1 dex, respectively).

4.2. Testing the Uncertainties in \(M_{\text{sol}} \): Synthetic Spectral Fits

The S/N of the ten white dwarfs in our sample is listed in column 8 of Table 2. This is calculated from the pseudo-continuum between the \(H \) and \(H \) Balmer lines, at 4030 Å. The pixel-to-pixel RMS scatter is converted to a S/N per resolution element by multiplying the square root of the number of pixels per FW HM (sky, in our case). The bulk of the stars have \(S/N = 40 \pm 50 \), although a few are as low as \(30 \) and one object is above \(S/N = 60 \). Note, these S/N values should only be used as a relative ranking of the quality of each spectra, and are not indicative of the global S/N. We can see that, due to the throughput, the S/N decreases bluward of the wavelength at which we make this measurement.

In Figure 6 (top), we produce simulated white dwarf spectra over a range of S/N. These spectra have been convolved with a Gaussian profile with \(6 \) AFW HM. Directly convolving the spectrum with \(S/N \) to these simulated spectra, we can conclude that most of our objects are better than the \(S/N = 30 \) case, and similar, if not better, than the \(S/N = 40 \) case. For the latter, we generate a model with 500 trials and each of these spectra in our test code. The prescription used in the tting is identical to that for our actual white dwarfs, namely, the same models are used in the \(t \) with \(\text{Benchmark} \) lines. The results from this test are shown in the middle panel of Figure 6. The input stellar parameters for the synthetic white dwarf are \(T_e = 25,000 \ K \), \(\log g = 7.80 \), and \(M = 0.536 \ M_{\odot} \). From the distribution of recovered masses, we nd that \(i = 0.54 \ M_{\odot} \) with a dispersion of \(0.06 \ M_{\odot} \). Therefore, we expect to measure the mass for our white dwarfs to roughly \% precision based on this test, which agrees nicely with our reported uncertainties in mass (see Table 2, column 5). In the bottom panel of Figure 6, we extend the test above for other S/N values and plot the associated error from this tting.

4.3. Establishing Cluster Membership

Thus far, we have established masses for ten white dwarfs in the M 4 direction. As we have reported in previous spectroscopic studies of white dwarfs in star clusters, some fraction of the stars along these lines of sight are actually members of the \(\text{EL3E} \) population and therefore need to be removed before discussing the mass distribution of bona fide members. The best method to establish such membership is through proper motion analysis, and we have such data from the HST overlap of a portion of our LRIS eld (see Figure 2). Out of these ten white dwarfs, we can confirm that WD 00, 09, 20, and 24 are proper motion members (as are WD 16 and 23); these are rejected from our sample based on the poor quality of the recovered spectra and or contamination from a nearby neighbor (see x3). This is not a surprising result since the proper motions were folded into the selection process to target white dwarfs in the region of overlap with our HST eld.

In addition to these WDs, we also note that the members objects in our sample closely follow the 0.5 M cooling sequence, and are consistent in position in the CMD with the \(\text{common members} \). Although we do not have proper motions for these stars, some of them are likely members of M 4. To distinguish members from non-members, we can use the theoretical luminosities of each star to calculate its distance modulus. Any stars that have signifi cantly discrepant values from the known distance of M 4, \(v = V - 12.51 \), should be eliminated from our sample as they likely represent eld white dwarfs along the line of sight, binary white dwarfs, or possibly objects for which the spectroscopic t is incorrect due to some...
Fig. 6. Synthetic white dwarf spectra are created over a range of S/N from 10 to 150, as measured at 4030 Å between the H and H Balmer lines (top panel). The typical white dwarf in our observations shown in Figure 5 is similar in spectral quality to the S/N = 40 case in this plot. In the middle panel, we illustrate the results from re-tuning 500 simulated spectra with this S/N. The input spectra in this Monte Carlo trial all had $T_\text{eff} = 25,000$ K, log $g = 7.80$, and $M = 0.536$ M\odot. Our results, using the same methods of tting ve Balmer lines as outlined in X4.1, indicates that the mean recovered mass in bins of 1-0.54 M\odot with a 1σ error in the mean of 0.05 M\odot. In the bottom panel, we illustrate the error in the recovered mass from similar trials of 500 synthetic spectra for a series of S/N ratios. For values comparable to our data, we should be able to recover the mass of these white dwarfs to 10%.

unknown artifact in the spectrum.

We compare the calculated distance modulus of each of our ten white dwarfs with the known M 4 distance in Figure 7. The 1σ uncertainty in the theoretical magnitude (i.e., from spectral tting) is plotted as a horizontal bar for each star, and the mean distance of M 4 and 2 uncertainties are indicated with the solid and dashed lines. We can use the proper motion members of the cluster as a rough guide to establish the expected scatter of known members in this diagnostic. The calculated distances of three of the four proper motion members of the cluster, W D 00, 20, and 24, are close to, but slightly lower than m, whereas the fourth star (W D 09) appears to be 0.7 mags closer than the cluster. This object could therefore be a non-member that shares the proper motion of the cluster. Alternatively, if the object is a member, its overabundance nature may suggest an unresolved double degenerate in the cluster. We note that the mass derived from the spectrum of this star yields an unexpectedly high value of $M = 0.79$ M\odot (see Table 2). Three additional white dwarfs are clearly members of the cluster, W D 04, 06, and 15, whereas three other stars W D 02, 05, and 29 are possibly white dwarfs.

To summarize, our sample of singly evolved, M 4 members white dwarfs includes three objects that are proper motion members (W D 00, 20, and 24) and three objects which are on the cooling sequence and have the correct distance from spectral tting (W D 04, 06, and 15).

Fig. 7. The combination of the theoretical magnitude of each white dwarf, from tting the spectrum with models, and the observed magnitude is used to calculate individual distance moduli. The length of the bar for each white dwarf represents the 1 error in the theoretical magnitude. The solid line indicates the distance modulus of M 4 (Ricker et al. 2004) of $m - M = 12.51 - 0.09$, and the dashed lines represent 2 bounds. The three objects at the bottom of the diagram, W D 00, 20, and 24, are known proper motion members of M 4. A further proper motion member, W D 09, is a populated star and appears to be 0.7 mags closer than the cluster. Likely, this star is either a field object sharing the proper motion of the cluster or an unresolved double degenerate. Another three objects in the middle of the diagram, W D 04, 06, and 15 are all consistent with membership whereas three objects at the top, W D 02, 05, and 29 are excluded from our membership sample.

4.4. Analysis of $M_{n}\odot$

Theory predicts that the masses of white dwarfs form in old, population II systems such as globular clusters are expected to be in the range $0.51 < M < 0.55$ M\odot (Renzi & Fusi Pecci 1988; Renzini et al. 1996). As Table 2 indicates, the smallest white dwarf that we have from model atmospheres of M 4 is more massive than the average mass of 0.5 M\odot . The uncertainties in our mass measurements are all roughly the same, under 10%, and therefore the un-weighted mean mass of the sample of six white dwarfs is $M_{\text{nal}} = 0.53 \pm 0.01$ M\odot.

The present-day temperature of these cooling reams is also well measured from our data. There is a group of four stars in our sample with $V = 22.6$ (M = 10.1) and all have the same temperature, $T_\text{eff} = 25,000$ K. The two fainter stars, W D 00 and 20, are cooler than this group by about 5,000 K, as expected. The surface gravities, log g, of all six stars are in the range 7.68 ± 0.09. As mentioned earlier, the exact T_eff and log g values have not been adjusted to correct these discrepancies in the final calibration of the new HST study (Tremblay & Bergeron 2009).

Our sample of M 4 cluster members white dwarfs in this study puts us in the fortunate situation of having characterized a group of four reams at the same position on the CM D. Hansen et al. (2007) demnstrate that the mass difference between white dwarfs at the tip of the cooling sequence to those members fainter at the limit of the HST study is only 0.1 M\odot. These four
From the time measured to be shown in the lower panel. The spectroscopic mass from the time measured to be $M = 0.54$ ± 0.02 M, in excellent agreement with our findings above.

5. STELLAR EVOLUTION THEORY

5.1. The Initial-Final Mass Relation

The mass distribution of white dwarfs in nearby open star clusters has been mapped since 1977 when Volker W. E. van den Bergh compared theoretical models of mass loss (e.g., Fusi-Pecci & Renzini 1976) to the observed masses of a few remnant stars in the Hyades and Praesepe clusters (W. E. van den Bergh 1977). Since this pioneering work, similar mass measurements have been made for over 100 stars in a dozen open star clusters. A review of this earlier work is provided in W. E. van den Bergh (2000) and a compilation of some more recent results is presented in Ferrario et al. (2005), excluding very recent studies by Dobbie et al. (2006); W. E. van den Bergh & Bolte (2007); Kalari et al. (2007, 2008); W. E. van den Bergh, Bolte, & Koester (2009); Dobbie et al. (2009).

The mass distribution of the remnant stars varies as a function of the turnoff mass of their parent cluster, suggesting that more massive progenitors produce more massive white dwarfs (see Salaris et al. 2009 for a detailed analysis of the present relation). New mass measurements by our team in three older star clusters with ages of a few Gyr have recently permitted, for the first time ever, a purely empirical t to the data without the need for a theoretical anchor at low masses (see below).

With the present study, we can once again extend the initial-final mass relation to new bounds. As the initial mass function in the case (all?) stellar populations is bottom-heavy, the characterization of mass loss from these low mass stars affects our understanding of stellar evolution for the bulk of all stars today. In Figure 9, we present all of the constraints to date at the low mass end of the relation, corrected by +0.034 M from our previous reporting to re-examine the new Stark broadening (see x4.1). The data includes the two confirmed clusters members in the 1.4 Gyr cluster NGC 7789 (Kalari et al. 2008), the two white dwarfs in the 2.5 Gyr cluster NGC 6819 (Kalari et al. 2008), the single carbon-oxygen core white dwarf in the 8.5 Gyr cluster NGC 6791 (Kalari et al. 2007), and the six white dwarfs in M 4 from this study. For the latter, we have used the progenitor mass to the expected mass at the turnoff in an old, metal-poor population, $M_{\text{initial}} = 0.80$ M, with an adopted error of 0.05 M. The data points for individual white dwarfs in these clusters are shown as open circles and binned averages of the population in each cluster are illustrated with larger, filled circles. For older clusters, all of the white dwarfs at the top of the cooling sequence evolved from progenitors just above the present day turnoff, and therefore we expect a single mass at the cooling sequence in a given cluster. Of course, in younger clusters, our spectroscopic mass measurements can include stars along the entire cooling sequence of the cluster and therefore there

13 The exact turnoff mass depends on the metallicity and age of the cluster, and the choice of theoretical model assumed. For example, if a helium mass model with Fe/H = +1.1 and $t = 12$ Gyr, the VandenBerg, Sengbusch, & Bowler (2006) models yield a turnoff mass of 0.82 M.
5.2. The Dependence of Mass Loss on Metallicity

In addition to extending the initial-final mass mapping to lower mass, M4 represents the first star cluster with a significantly sub-solar metallicity in which white dwarf mass estimates have been measured. The mean mass of the cluster is [Fe/H] = 1.10 (Marino et al., 2008), and Tie mass estimate to the bulk of the open clusters used to determine the relation and 40 times more metal-poor than the mean metal-rich system NGC 6791 ([Fe/H] = +0.40, Peterson & Green, 1998). For this cluster, after accounting for the new Stark broadening calculations discussed earlier, Kalirai et al. (2007) actually measured a mass for nine white dwarfs of $M_{\text{med}} = 0.46$ 0.06 M$_\odot$, much lower than expected. As they show, the bulk of these white dwarfs contain helium cores, after evolving through a channel involving intense mass loss on the red giant branch, likely driven by the high metallicity of the cluster. The single data point shown in Figure 9 is based on the only clearly non-H-core white dwarf in that sample, and does not affect the discussion above. However, the results from NGC 6791 suggest strong dependencies of mass loss on metallicity, especially at super-solar metallicities.

To date, we lack a good theoretical understanding of the dependence of post-main-sequence mass loss on metallicity. The general expectation in evolutionary models is that core helium core white dwarfs from a given metallicity, and therefore higher rates of mass loss. However, the exact treatment depends on the models, and the alphas on the asymptotic giant branch (e.g., see Ekern et al., 2000 and Habing, 1996), phases of stellar evolution that are poorly understood. As Carpano (2008) points out, mass loss prescriptions along the red giant branch, and we'll discuss the implications of these expectations in the next section.

![Graph showing mass loss vs. metallicity](image)
relation. The solid line in Figure 9 is a linear fit to the entire sample of open cluster white dwarf (main-sequence progenitors masses) from Kalb et al. (2008),

\[M_{\text{nal}} = (0.109 \pm 0.007) M_{\text{initial}} + 0.428 \pm 0.025 M. \]

The zero point of this relation has been adjusted to re-act a globular set of +0.034 M in the white dwarf mass measurements, although the slope may in fact also be a flected if the M is found to vary with mass (see Figure 11 and 12 in Tremblay & Bergeron 2009). The bounds on this relation range from the oldest open cluster white dwarfs in NGC 6791 to the youngest white dwarfs in the Pegasus, and therefore are \(M_{\text{initial}} = 1.1 \pm 0.5 M. \) A small extrapolation of the empirical relation to the mass of the present-day turnoff in M 4 (e.g., 0.8 M) yields \(M_{\text{nal}} = 0.52 \pm 0.02 M, \) which is therefore consistent (at 1σ) with our measured value of the masses of M 4's white dwarf population. These data therefore hint that mass loss rates have a weak or no dependence on metallicity, at least over the range extending from metal-poor populations such as M 4 to roughly solar mass metallicity. Interestingly, we know from our study of NGC 6791 that mass loss rates are strongly correlated with metallicity at extremely high [Fe/H], and therefore this may lead to an interesting shape for the solar mass relation from white dwarf spectroscopy. Of course, stronger conclusions will be drawn from additional observations of clusters spanning a wider range of metallicities, especially at the metal-poor end. For comparison, if we add our new data point for M 4 to the initial mass relation and recalculate the best-fitting parameter of any possible metallicity-related biases, we nd a slightly shallower relation with \(M_{\text{nal}} = (0.101 \pm 0.006) M_{\text{initial}} + 0.463 \pm 0.018 M. \)

Finally, we note that the metallicity of M 4, [Fe/H] = 1.10, is only slightly more metal-rich than the global metallicity of both the stellar halo of the Milky Way ([Fe/H] = 1.6; = 0.6; Morrison et al. 2003) and M 31 ([Fe/H] = 1.5; = 0.7; Kalb et al. 2006). Assuming the dominant population in these galaxies consists of old stars (e.g., 10 Gyr), the same 34% stellar mass loss fraction should be representative of stars evolving in these populations. By directly inputting this mass loss into numerical stellar evolution models of the same age and metallicity (e.g., Girardi et al. 2000), we can add an important observational constraint to the metallicity of light from the stellar halos of spiral galaxies using population synthesis techniques (e.g., Bruzual & Charlot 2003).

6. THE AGES AND DISTANCES OF GLOBULAR CLUSTERS

In Section 1 we introduced the extensive HST observations that have been done on the deepest CMDs of ever measured, with any instrument (e.g., the HST Cycle 13 observations of NGC 6397 in Riecher et al. 2008). Although these data sets have led to a wide range of astrophysical studies, the primary goal of the observations was to establish turnoff-independent white dwarf cooling ages for population II star clusters. In this respect, the present study serves to establish several of the input ingredients that are needed to make these measurements. For example, knowledge of the masses and spectral types of white dwarfs, and the initial mass relation, are all required to fully model observed white dwarf cooling sequence (e.g., Hansen et al. 2004; 2007).

6.1. Speciﬁc Ingredients for Accurate Age Measurements

For M 4, two recent studies have modeled the white dwarf cooling sequence using independent data sets, and both have concluded with similar ages (however, see discussion below). First, Hansen et al. (2004) used a full 2D treatment of the white dwarf cooling sequence in the observed HST WFC2 CMD (i.e., both metallicity and color information are used), and just recently, Bedin et al. (2009) have used an empirical ed technique of age dating based solely on the luminosity function in the newer and deeper ACS data. An analysis of these studies illuminates several interesting choices relative to the models in this paper:

The present-day mass of cluster white dwarfs forming today sets the normalization for the masses along the entire cooling sequence. In their modeling, Hansen et al. (2004) assume the mass at the tip to be 0.5 M and Bedin et al. (2009) assume 0.54 M. As we have shown, the actual mass of white dwarfs at the bright end of the cooling sequence is only slightly lower at 0.53 M and therefore the mass distribution (and hence cooling rates) along the entire cooling sequence are not very different from the assumed values in these studies.

Hydrogen (DA) and helium (DB) atmosphere white dwarfs have different cooling rates, and so the fraction of stars cooling in these spectral types leads to structure in the luminosity and color function that must be modeled correctly to infer the age of the population from white dwarf cooling theory. For M 4, NGC 6397, and NGC 6752, spectroscopy of the white dwarf cooling sequence indicates that 100% of the stars at the bright end have hydrogen atmosphere white dwarfs (see Moehler et al. 2004 and Davis et al. 2009). Hansen et al. (2004) treated the fraction of DB white dwarfs as a free parameter and found the best fit to yield an upper limit of 40% (good fits were obtained as long as more than 60% of the white dwarfs are DA), whereas Bedin et al. (2009) choose an arbitrary value of 30% (e.g., the disk disk ratio).

The initial mass relation is required to properly evolve the progenitor stars on to the white dwarf cooling sequence. The normalization and form of the initial mass relation adopted in both of these studies (e.g., WD 1992), is based on empirical constraints from solar mass metallicity data points at higher masses, and a theoretical anchor at low masses. This can now be updated to our new result given earlier.

We encourage future theoretical modeling of white dwarfs to make full use of this new information in their analysis, preferably on the newer ACS imaging data of M 4. Of course, the white dwarf models themselves should also be updated with new physical insights. For example, the contribution to the opacity of cool white dwarfs from the far red wing of the Ly line (Kowalski 2007) alone can
yield ages of globular clusters (e.g., NGC 6397) that are higher by 0.5 Gyr (Kowalski 2007; B. Hansen 2009, private communication).

6.2. A Closer Look at M 4’s White Dwarf Cooling Age: M 4 od and D istance Uncertainties

We noted above that the Hansen et al. (2004) and Bedin et al. (2009) studies concluded with similar white dwarf cooling ages for M 4. Formally, Hansen et al. (2004) reported an age of 12.1 Gyr (2 lower limit of 10.3 Gyr) and Bedin et al. (2009) measured an age of 11.6 Gyr (internal errors). A deeper look at these two studies suggests they are, in fact, grossly inconsistent with one another given di erences in white dwarf cooling models and uncertainties in the cluster distance modulus. As our present work is closely linked to obtaining very accurate absolute age measurements of globular clusters (through the study of white dwarfs), we briefly summarize these two studies below and highlight the respective assumptions and di erences that are being made.

In the Hansen et al. (2004) study, the authors compare their data to those of three sets of models and adopt a distance to M 4 based on the well-established technique of subdwarf distance tting. They nd d = 1.73 0.10 kpc for M 4 (e.g., Richer et al. 1997), which is identical to independent distance measurements for the cluster from the Baade-Wesselink distance using the M 4 RR Lyrae stars (d = 1.73 0.01 kpc, Liu & Janes 1990) and from astrometry (d = 1.72 0.14 kpc, Peterson et al. 1995). At present, it appears that the latter estimate is the most secure. For the subdwarf measurements, the comparison was based on pre-He Aparicio parallaxes, and for some other clusters, a calculation with post-He Aparicio parallaxes indicates a longer distance by 0.2 m as than initially estimated (Girattoni et al. 1997). Similarly, the Baade-Wesselink method yields luminosities for M 4’s RR Lyrae stars that are fainter by 0.2 m as compared to the M V [Fe/H] relation derived by Girattoni et al. (1997) for clusters with low extinction (using post-He Aparicio main-sequence tting techniques). Unfortunately, re-deriving the distance to M 4 using any photometric technique is problematic, given the very high extinction along the line of sight (A V > 1), the variation in A V across the face of the cluster, and the non-standard shape of the extinction curve along this line of sight (which passes through the Scopuli-Ophiuchus dark cloud complex (Viba, Cote, & Tapia 1993). Irrespective of the adopted distance (although see below), Hansen et al. (2004) nd that the white dwarf cooling age they derive for M 4 from their own models (e.g., Hansen 1999) is consistent with that measured using the Chaubrier et al. (2000) models, however they rule out the Salaris et al. (2000) models which yield ages that are older than the Universe. Therefore, this suggests that, for the same distance modulus and data set, simply changing the white dwarf model yields an absolute age di erence of 2 Gyr.

In the recent Bedin et al. (2009) study, the authors use only the Salaris et al. (2000) white dwarf models, and still conclude with an age similar to that derived by Hansen et al. (2004). The di erence is actually re ected in the distance to M 4; both Bedin et al. (2009) also use a much larger (i.e., 15%) value of d = 1.98 kpc. This value is formally inconsistent with the three independent studies above. Bedin et al. (2009) measure the distance to M 4 by simply tting a single isochrone of approximate age to the correct metallicity to the turno and horizontal branch. However this has almost been avoided for a large number of reasons. First, and most importantly, there are uncertainties in both the microphysics built into the stellar evolution models (e.g., opacities, equation of state e ects, and nuclear reaction rates) and in the treatment of processes that do not come from rst principles (e.g., convection, core-rotation, di usion, gravitational settling, etc.) 14. Because of these unknowns, simply adopting an isochrone from another group’s model would lead to a di erent measured distance modulus for the cluster (e.g., model predicts a di erent horizontal branch luminosities). Second, such model and data sets yield distances require transformation of the model from the theoretical to the observational plane, resulting in another source of error. Finally, in this speci c case, this comparison does not alleviate any of the aforementioned uncertainties related to our lack of knowledge of the reddening and extinction along this line of sight. In the end, the application of the Salaris et al. (2000) models and the longer distance modulus derived by Bedin et al. (2009) extensively o set each other, yielding a derived age similar to that of Hansen et al. (2004).

Summarizing, there are clearly both intrinsic di erences in white dwarf models calculated by di erent groups and there is a lack of consensus on the correct distance to M 4. For the former, increased testing of the white dwarfs models on star clusters with well known fundamental parameters (e.g., distance, metallicity, and foreground reddening) are required to resolve the correct prescriptions. For the latter, it appears that only the Peterson, Rees, & Cudworth (1995) astrometric measurements is free of the unknown reddening and extinction laws along this line of sight, and therefore should be preferred. Until these di erences are unambiguously resolved (e.g., the Space Interferometer Mission could directly measure the distance to M 4 to within a few percent), the error budget from these uncertainties will remain large and the new physical constraints on masses, spectral types, and the initial mass relation are secondary to the analysis. Of course, if the properties of bright white dwarfs in other population II systems are similar to M 4, the new results can have immediate signi cance on those studies. This is especially exciting given the remarkable data set that has been presented for NGC 6397 by Richer et al. (2008) and will soon be available for 47 Tuc (B. Richer, Cycle 17 ACS/WFC 3 Proposal GO-11677).

6.3. White Dwarfs as Standard Candles

The mass measurement of white dwarfs in a globular cluster provides an important leverage to the use of these stars as distance calibrators. Although the white dwarf cooling sequence is fainter than the bright part of the main-sequence in a star cluster, uncovering the sequence can offer several advantages over canonical techniques involving main-sequence tting. For example, the location of the bulk of the white dwarf cooling sequence in a CMD does not depend on the metallicity or

14 Vandenberg, E., Stetson, P., & Bolte (1996) present a detailed discussion of these effects on stellar evolution models.
age of the population, or on any of the other systematics that plague main-sequence evolution (e.g., convection theory). However, the location does depend on mass (e.g., Woot 1995), with a 0.1 M⊙ difference translating to a (m−M) = 0.25 shift (i.e., a 12% distance offset). So, rest, a simple set can now be calculated to correct the location of any local calibrating sample of white dwarfs with parallax measurements (usually a 0.5 M⊙ for each white dwarf) to the expected location of 0.53 M⊙ stars. Following this, a straightforward comparison with the apparent luminosity of the globular cluster white dwarf cooling sequence can yield the distance to the population (e.g., see Renzini et al. 1996). Unfortunately, it is difficult to actually make this measurement at distance independently derive the distance of M 4 given the aforementioned uncertainties in the slope of the extinction curve along this line of sight. However, the true distances of other clusters with well-constrained redshifts and extinctions can be easily derived from their cooling sequences and the new mass measurement.

7. Summary

We have presented the rest directly determined spectroscopic mass measurement of white dwarfs that are known to be population II members. Our mass measurements suggest that the remainder mass at the tip of the white dwarf cooling sequence in the globular cluster M 4 in M mass = 0.53 M⊙, in nice agreement with expectations based on stellar evolution theory. These results suggest that low mass population II stars will lose 34% of their mass through post main-sequence stellar evolution. If, in fact, all Milky Way globular clusters have the same age, then this mass loss rate should be applicable to the evolution of stars in all but the most metal-rich Galactic globular clusters. We use this mass measurement to rest extend the initial mass relation of stars to the lowest possible limit, given the age of the Universe. This simple observation also hints that mass loss rates are not significantly different from metal-poor stars when compared to solar metallicity stars of the same mass. Finally, we offer several pieces of new input: that are required to mass more accurate white dwarf cooling ages of globular clusters in the Galactic halo.

In aging observations of globular clusters with ground and space based telescopes have now uncovered thousands of white dwarfs in population II clusters (e.g., see Figure 1). The science that results from these purely photometric surveys is greatly enhanced with spectroscopic follow up, which we have shown can yield the spectral types of the remnants (Davis et al. 2009), the mass of initial mass, and the mass at the tip of the observed cooling sequence (and therefore a calibration for the mass along the entire cooling sequence). All of the nearest globular clusters are in the southern hemisphere, and given their larger distances compared to M 4, an extension of this work to these systems will require superior blue sensitivity and throughput, and much larger allocations of spectroscopic time on 8-meter class telescopes (e.g., see Mohler et al. 2004). Future white dwarf spectroscopy in these clusters will benefit greatly from a 30-m telescope with a multi-object spectrograph with the bluest sensitivity. Such a telescope would not only allow a direct mass measurement of the mass loss rates in an expanded set of open and globular clusters, but would permit the first initial mass relation to be built from observations of a set of white dwarfs in a single cluster. Deep spectroscopy of white dwarfs over a range in luminosity (and therefore mass) can be engaged in a given cluster, minimizing the systematics introduced by metallicity variations in samples of clusters. Fortunately, the nearest three globular clusters also sample a wide range in mass (e.g., a factor of 20 from NGC 6397 at [Fe/H] = 2.0 to 47 Tuc at [Fe/H] = 0.7), and therefore the dependence of mass loss on metallicity can be probed in detail with such observations.

We wish to thank D. Reitze for help with designing the spectroscopic masks in this program. We also wish to thank J. Hurley for useful discussions related to stellar evolution, white dwarfs, and binarity.

JSK’s research is supported in part by a grant from the STScI Director’s Discretionary Research Fund. The research of HBR is supported by grants from the Natural Sciences and Engineering Research Council of Canada. He also thanks the Canada-US Fulbright Program for the award of a Fulbright Fellowship. PB is supported in part by the NSERC Canada, by the Fund FCAR (Quebec), and as a Cottrell Scholar of Research Corporation for Science Advances em. Support for MC is provided by Proyecto Basal PFB-06/2007, by CONICYT Centro de Astrofísica 15010003, by Proyecto FONDECYT Regular #1071002, and by a John Simon Guggenheim Memorial Foundation Fellowship. RMR acknowledges support from grant AST-0709479 from the National Science Foundation.
SNAPSHOT FIGURES OF ALL WHITE DWARF CANDIDATES

Fig. A1. These snapshot figures show several pieces of information for each of the white dwarf candidates WD 00 (WD 08). The two panels on the left illustrate the location of these stars on the ground based CMD (top) and the HST CMD (bottom), where available. The individual candidate star is marked in each panel with a larger red diamond. The location of the star relative to our imaging field of view is also shown in the top-right panel (see Figure 2 for details on this plot). In the bottom-right panel, we present a small snapshot in age of the candidate. Several objects that are targeted clearly have very little flux in the ground based in age and/or are located close to bright stars. These stars are HST detections and are discussed, and removed from subsequent analysis, in x3. Note, the identifications of "LR IS" in this figure correspond to WD * in Table 1. A higher resolution version of this figure is available in A p J.
Fig. A2. | Same as Figure A1 for WD 09 | WD 17. A higher resolution version of this figure is available in ApJ.
Fig. A3. Same as Figure A1 for WD 18-WD 26. A higher resolution version of this figure is available in ApJ.
Fig. A4. Same as Figure A1 for WD 27, WD 30, and Gem WD 05, 11, 15, and 17. A higher resolution version of this figure is available in ApJ.
REFERENCES

Klaus, L. M., & Chaboyer, B. 2003, Science, 299, 5603
Renzini, A., & Fusi-Pecci, F. 1988, ARA&A, 26, 199