We propose a natural extension of Horava's model for quantum gravity, which is free from the notorious pathologies of the original proposal. The new model endows the scalar graviton mode with a regular quadratic action and remains power-counting renormalizable. At low energies, it reduces to a Lorentz-violating scalar-tensor gravity theory. The deviations with respect to general relativity can be made weak by an appropriate choice of parameters.

Introduction: Recently, Horava has proposed an interesting new approach to quantum gravity [1]. The key idea of the proposal is to abandon the fundamental role of the local Lorentz invariance and to assume instead that this appears only at low energies as an approximate symmetry. The breaking of Lorentz invariance is achieved by equipping the space-time with an additional geometric structure: a preferred foliation by 3-dim ensonial space-like surfaces, which deforms the splitting of the coordinates into space and time. This allows to completely decouple the action of Einstein's general relativity (GR) with higher spatial derivatives of the metric which improve the UV behavior of the graviton propagator and make the theory renormalizable by power-counting. At the same time, the action remains second order in time derivatives thus avoiding the problem with ghosts which appear in the covariant formalism of higher-derivative gravity [2].

The concrete realization of this idea developed in [1] is formulated as follows. One considers the ADM decomposition of the space-time with the preferred foliation,
\[ds^2 = (N^2 - N_{ij}N^i)dt^2 - 2N^{ij}dx^i dx^j; \]
and writes a generic action of the form [16]
\[S = \frac{M_p^2}{2} d^3x \sqrt{-N} K_{ij} K^{ij} - K^2 V(ij); \]
where \(M_p \) is the Planck mass; \(K_{ij} \) is the extrinsic curvature tensor
\[K_{ij} = \frac{1}{2N} \left(\dot{N}_{ij} + r_i N_j + r_j N_i \right); \]
with trace \(K \); \(\dot{N} \) is the determinant of the spatial metric \(i_{ij} \), and \(N \) is the lapse function; \(r_i = \) a dimensionless constant.

The potential term \(V(ij) \) in (1) depends only on the 3-dim ensonial metric and its spatial derivatives and is invariant under 3-dim ensonial di eomorphisms. Explicitly,
\[V = R + M_p^2 \left(A_1 R + A_2 R_{ij} R^{ij} + \cdots \right) + M_p^4 \left(B_1 R^2 + B_2 R_{ij} R^{ij} R^{kl} + \cdots \right); \]
where \(R_{ij}, R \) are the Ricci tensor and the scalar curvature constructed out of the metric \(i_{ij}; i_{ij} r_i r_j, \) and \(A_0, B_0 \) are constants. The ellipses represent other possible operators of dimension 4 and 6 which can be constructed out of the metric \(i_{ij} \) and are invariant under 3-dim ensonial di eomorphisms. As discussed in [1], restricting to the operators of dimension up to 6 is sufficient to make the theory naively renormalizable by power-counting. In what follows we set \(A_1 = 1 \) which can always be achieved by a suitable rescaling of time.

The action (1) reduces to that of GR if \(M_p = 1 \) and the terms of dimension 4 and 6 in \(V \) vanish. For other choices of parameters the model explicitly breaks the general covariance down to the subgroup consisting of (time-dependent) 3-dim ensonial di eomorphisms and a reparametrizations,
\[x = x(t; x); \quad \tau = \tau(t); \]
with a standard transformation rules for the metric components. This invariance gives the kinetic part of the action (1) to be a function of \(K_{ij} \). The symmetries (4) allow for a new choice of which does not restrict \(N \) to depend only on time, \(N = N(t) \). In this way one obtains the so-called \(\eta \)-projectable version of the theory. In this version of \(\eta \)-projectable version the lapse is a generic function of space-time.

The introduction of terms with higher spatial derivatives in the action leads to different scaling dimensions of space and time in the UV. Assigning dimensions 1 to the space coordinates and 3 to time results in a theory which is naively power-counting renormalizable [1]. Namely, one considers the scaling transformation actions
\[x = x \eta^1 x; \quad \tau = \tau \eta^3 \tau; \]
Under this scaling, the kinetic part of the action (1) and the operators of dimension 6 in \(V \) are left unchanged (they are marginal) [17]. The rest of operators in \(V \) are relevant deformations. According to the standard arguments, the action constructed from such operators is perturbatively renormalizable. At low energies the potential is dominated by the operator of the lowest dimension, namely, the scalar curvature \(R \). This leads to the recovery in the infrared of the relativistic scaling dimension 1 for both space and time.
is supplemented by certain type of new terms. The pathologies include strong coupling at action

The Lagrangian (12) describes healthy excitation processes. Hence, there are restrictions on the parameter β, such that the excitations are valid. From the Lagrangian (12), we obtain the following quadratic Lagrangian:

$$L = \frac{1}{2} \left(M_{\phi}^2 | \dot{\phi} |^2 + | \phi |^2 + 4 \mathcal{E} - i \mathcal{E} \right)$$

where M_{ϕ}^2 and \mathcal{E} are related to the one-coupling term in the potential, in particular, the scalar sector.

Integrating out the non-derivative fields ϕ_i and ϕ_j, we obtain the following equation:

$$L = \frac{1}{2} \left(M_{\phi}^2 | \dot{\phi} |^2 + | \phi |^2 + 4 \mathcal{E} - i \mathcal{E} \right)$$

where M_{ϕ}^2 and \mathcal{E} are related to the one-coupling term in the potential, in particular, the scalar sector.

Integrating out the non-derivative fields ϕ_i and ϕ_j, we obtain the following equation:

$$L = \frac{1}{2} \left(M_{\phi}^2 | \dot{\phi} |^2 + | \phi |^2 + 4 \mathcal{E} - i \mathcal{E} \right)$$

where M_{ϕ}^2 and \mathcal{E} are related to the one-coupling term in the potential, in particular, the scalar sector.

Integrating out the non-derivative fields ϕ_i and ϕ_j, we obtain the following equation:

$$L = \frac{1}{2} \left(M_{\phi}^2 | \dot{\phi} |^2 + | \phi |^2 + 4 \mathcal{E} - i \mathcal{E} \right)$$

where M_{ϕ}^2 and \mathcal{E} are related to the one-coupling term in the potential, in particular, the scalar sector.
one reads off the condition to avoid exponential instabilities (assuming that (15) holds),

$$P \{ x \in Q (x) > 0 \ \text{at } x < 0 : \quad (17)$$

This condition puts certain restrictions on the constants f_i, g_i. In particular, we obtain that m must belong to the interval

$$0 < m < 2 : \quad (18)$$

The precise form of the constraints on the other parameters coming from (17) is quite cumbersome and we refer to it in this Letter. Nevertheless, the reader can easily convince himself that there is a non-empty region of the parameter space where (17) is satisfied.

In deriving (12) we have used in an essential way the dependence of the potential of the model on a_i. Indeed, in the absence of such a dependence, as happens in the non-projectable version of the original Horava's proposal, the constants f_2, f_3, g_2, g_3 become zero and the polynomial $Q (x)$ vanishes identically. This means that the Lagrangian (12) is singular in this limit.

We can also compare the situation in our model with the projectable case of Horava gravity. The latter is obtained from our expressions by taking the limit $\mu \to 1$, which forces (the perturbation of N) to be constant in space. From the dispersion relation (16) one reads that in this case the scalar mode has an imaginary sound speed at low energies, cf. [7],

$$c^2_{\text{proj}} = \frac{1}{3} \frac{1}{m} < 0 :$$

This leads to an exponential instability, that can be tamed only by the higher order terms in the dispersion relation. Thus, the characteristic rate of the instability is of order $c^2_{\text{proj}} \mu F$. In principle, this rate can be suppressed by choosing (1) to be extremely small. However, in this case the strong coupling scale of the theory becomes unacceptably low [5, 6].

Let us return to our model. It is important to stress that the healthy behavior of the scalar mode can be achieved simultaneously with the stability in the sector of the helicity-2 perturbations. Indeed, the dispersion relation for the latter depends only on the couplings in front of the operators in the first column of the list (8). After fixing these couplings to ensure stability of the helicity-2 modes, we still have the freedom to choose the couplings of the remaining operators in the list. This amounts to the possibility of freely choosing the constants f_i, g_i in the scalar Lagrangian (11) to satisfy (17).

The existence of a healthy quadratic action for the perturbations around Minkowski space-time guarantees the absence of short-scale instabilities for any smooth background. Indeed, at short scales a smooth metric can be approximated by the flat one, implying that the short-wavelength perturbations around this metric behave in the same way as in Minkowski. Additionally, a regular quadratic Lagrangian allows to develop the standard perturbation theory to account for the interactions of the modes. Together with the power-counting renormalizability of the model, this strongly suggests that, with appropriate choice of parameters, the theory is free of strong coupling at all energies. Still, an explicit analysis of the perturbation theory series is needed to check this conjecture.

Newton's law and low energy cosmology: At low energies the dispersion relation (16) for the scalar mode becomes linear,

$$k^2 = \frac{1}{3} \frac{2}{1} \quad (19)$$

Depending on the values of m and ϕ, the propagation velocity of the scalar may differ from (1) (the velocity of the helicity-2 modes), which means that Lorentz invariance is generically broken at low energies. The presence of a gap-less scalar gravitational mode potentially implies an interesting low-energy phenomenology of the model to be confronted with the existing tests of GR [8]. Leaving a comprehensive study of this issue for future research, we analyze in this section two basic phenomenological aspects of the model.

First, we consider the large distance behaviour of the gravitational field of a static point-like source of mass M. Note that only the scalar part of the metric is excited in this case. The corresponding low-energy Lagrangian is obtained by combining the first two lines of Eq. (11) with the source term. The static part of the Lagrangian is given by

$$L = \frac{M}{2} \frac{2}{2} + 4 + \left(\partial_i \phi \right)^2 m^3 (x) : (20)$$

The solution of the equations of motion following from this Lagrangian reads,

$$G_N = \frac{1}{8 \ M^2 (1 - 2) \phi} : (21)$$

Remarkably, the gravitational field has the same form as in GR with the effective Newton constant

$$M^2 (1 - 2) \phi.$$
one obtains the standard Friedmann equation,
\[
 H^2 = \frac{8}{3} G_{\text{com}} \phi, \quad \text{where} \quad H \text{ is the Hubble paramater, is the total density of the Universe.} \quad \text{The effective gravitational constant is} \quad G_{\text{com}} = \frac{2}{8 M_\odot (3 - 1)}.
\]

Note that $G_{\text{com}} \geq G$. A similar discrepancy between the gravitational constants appearing in the Newton’s law and in the Friedmann equation also arises in certain low-energy theories constructed to describe the Lorentz-violating eects in gravity. These models include the Einstein (aether theory (see [9] for a recent review) and the gauged ghost condensate [10]. The observational bound on this discrepancy comes from the measurements of the primordial abundance of \He^8 and reads [9, 11]
\[
 G_{\text{com}} = G \geq 1 + 0.03. \text{In our model, this implies rather mild constraints on the parameters.}
\]

Discussion: In this Letter we have described a natural extension of the non-projectable version of Horava’s proposal for quantum gravity, which is free from the pathologies present in the original formulation of that proposal. The extension is obtained by including in the action all terms allowed by the symmetries and the requirement that the model is power-counting renormalizable. It remains to be seen if the proposed model provides a valid theory of quantum gravity.

At low energies the model does not reduce to GR but to a Lorentz-violating scalar-tensor theory. This potentially implies a rich low-energy phenomenology to be confronted with existing tests of GR. Remarkably, the eects of the scalar model at large distances can be made weak by an appropriate choice of the parameters without spoiling the good features of the model. It is clear that a detailed study of the phenomenological aspects of the theory will provide further constraints on its parameters.

A common problem of any theory with high-energy breaking of Lorentz symmetry is the mechanism to recover the Lorentz invariance in the infrared. This issue arises because the Lorentz violation in the UV generically translates at low energies into the difference of the limiting propagation velocities for different particle species [12]. On the other hand, such differences are tightly constrained experimentally [13]. This seems to require a very precise fine-tuning of parameters to reconcile the theory with experiment. A more elegant solution would be to invoke some (super) symmetry which relates all the matter species in the UV and is broken at a scale much lower than the characteristic scale of Lorentz violation (which in the present setup is naturally of order the Planck mass). In this case, the Lorentz violating eects would be suppressed at low energies by the ratio of the two scales. Clearly, this remains an open issue.

At the purely theoretical level, the violation of Lorentz invariance down to the infrared leads to apparent paradoxes even in the absence of any matter fields. We have seen that the propagation velocity of the scalar gravitational waves is in general different from that of the helicity-2 modes. This opens up the possibility to realize a perpetuum mobile of the second kind, and hence to violate unitarity, in gedanken processes involving black holes [14, 15]. It will be interesting to see if and how this puzzle is resolved in the model proposed in this Letter.

Acknowledgments We thank Robert Brandenberger, Shinji Mukohyama and Igor Tkachev for stimulating discussions. This work was supported in part by the Swiss Science Foundation (D.B.), the Tomalla Foundation (S.S.), RFBR grant 08-02-00768-a (S.S.) and the Grant of the President of Russian Federation NS-1616.2008.2 (S.S.).

[16] The 3-dimensional indexes $i; j; \ldots$ are raised and lowered using γ_{ij}, and covariant derivatives are associated to γ_{ij}.
[17] This is true classically. At the quantum level one expects the corresponding operators to acquire logarithmic running under the renormalization group.
[18] In fact, the additional of these terms is compulsory as nothing prevents them from being generated by perturbative quantum corrections.