Search for the Standard Model Higgs Boson at CMS

Tommaso Dorigo \(^1\) (for the CMS collaboration)

\(^1\) INFN, Italy

Abstract

The prospects for the search of the Standard Model Higgs boson with the CMS experiment at the LHC are presented. The analyses rely on a full simulation of the detector response and are based on explicit strategies for the measurement of experimental and background systematics from data. The discovery reach is presented as a function of the Higgs boson mass. A new complete strategy is presented for the early searches and for the control of systematicatics at very low luminosities of \(0(1 \text{ fb}^{-1})\).

1. Introduction

The Standard Model (SM) requires the existence of a scalar Higgs boson to break electroweak symmetry and provide mass terms to gauge bosons and fermions. Indirect constraints from radiative corrections to electroweak observables indicate for the Higgs boson mass the bound \(M_H < 157 \text{ GeV} \) \(^3\), at 95\% of Confidence Level (CL). Direct constraints from experimental searches at LEP II and Tevatron have determined that \(M_H > 114 \text{ GeV} \) with the exclusion of the range \(160 \text{ GeV} < M_H < 170 \text{ GeV} \), at 95\% CL \(^2\).

The SM Higgs boson can be produced in proton-proton collisions at the Large Hadron Collider (LHC) by several di-jet mechanisms (Fig. 2). The production by gluon-gluon fusion is the most frequent, with cross sections up to several tens of picobarns; smaller is the production by vector boson fusion (VBF), which however provides a striking signature of two forward quark jets. The main production mechanisms have been investigated to assess the chances of an early detection of the Higgs boson with the Compact Muon Solenoid (CMS) detector \(^3\).

Searches in three of the main signatures of Higgs production and decay are summarized below; these target the whole favourable range of \(M_H \) mass values, with the rest two extending above 200 GeV and the third one covering the low-mass region of \(M_H < 135 \text{ GeV} \):

- \(gg \to H \to WW\) (\(\ell \ell, jj \)), with the decay of both W bosons to \(e^+e^-, \mu^+\mu^- \) pairs;
- \(gg \to H \to ZZ\) (\(\ell^+\ell^-\ell^+\ell^- \)), with the decay of both Z bosons to \(e^+e^- \) or \(\mu^+\mu^- \) pairs;
- \(q\bar{q} \to H \to \ell^+\ell^-\) with a decay \(H \to \ell^+\ell^- \) accommodated by two forward hadronic jets.

2. The \(H \to WW\) Search

The search for the \(WW\) (\(\ell\ell, jj \)) decay mode at CMS \(^4\) employs events containing exactly two opposite-charge leptons (\(e\) or \(\mu\)) with transverse momenta \(p_T > 10 \text{ GeV} \) and pseudorapidity \(\eta < 2.5\), with at least one of them having \(p_T > 20 \text{ GeV} \). The following additional pre-selection cuts are then applied: a jet veto (\(N_{\text{jets}} < 15 \text{ GeV} \)), large missing energy \(E_T^{\text{miss}} > 30 \text{ GeV} \), and a dilepton mass above resonances \(m_{\ell\ell} > 12 \text{ GeV} \).

Two separate search strategies are studied: a cut-based analysis and a Neural-Net-based analysis (NN). In both cases the selection is optimized using the azimuthal angle between the leptons, an upper cut on the dilepton mass, and require events on lepton mass and missing energy. The NN analysis uses additional kinematic variables to separate the signal from the main backgrounds (Fig. 3).

The analyses include complete techniques to determine the background rates with control samples. The top-pair background can be sized up with events containing two additional jets, while the SM production of WW pairs can be normalized using data with \(m_H > 115 \text{ GeV} \).

The modified frequentist CLs method \(^5\) is used to convert the number of expected signal and background events into a significance of the observable signal, as a function of the Higgs mass. A further optimization of the NN output is used to select the final candidates.
The H ⇔ ZZ search

In the H ⇔ ZZ search events are selected to contain four charged leptons (e⁺e⁻e⁺e⁻, e⁺e⁻µ⁺µ⁻, or e⁺e⁻µ⁺µ⁻), with pair masses mjj > 12 GeV. To remove the Z̄Z and tt backgrounds further, CMS uses the combined isolation of the two least-isolated leptons, and the sign canonical impact parameter with respect to the primary vertex. The reconstructed mass of the dilepton pairs is requested to lay in the windows [50, 100] and [20, 100] GeV.

The qgH → qg search

A study of the observability of the VBF signature qgH → qg, for Higgs masses between 115 and 145 GeV, has been performed using events containing one leptonic decay candidate (e⁺e⁻ or µ⁺µ⁻), collected by a low-pT electron or muon trigger. A second lepton candidate is required to produce a narrow E_T > 30 GeV jet containing one track with p_T > 6 GeV within its core.

The two forward jets characteristic of VBF processes are used to reduce backgrounds, mainly coming from QCD multijet production and Z → ll decays. The mass of two forward jets with E_T > 30 GeV has to exceed 400 GeV, and they must be separated in pseudorapidity by more than 2.5 units.

Backgrounds amount to 318 events, with 56 ± 16 expected from the Higgs signal, depending on M_H. The sensitivity of this search channel is found to be insufficient to provide an independent evidence of the SM H boson in early LHC data.

5. Combination of H → ZZ, H → WW searches

An additional study was carried out for a combination of the WW and ZZ channels to determine the range of Higgs boson masses that CMS is likely to exclude at 95% CL, in the absence of a signal, using the results of [4] and [6]. The combination was performed with both the CL_s and a Bayesian method. In general, the two methods were found to agree within 10%, which is also a measure of the typical variation in their di erence.

Fig. 5 shows the limits which can be obtained with luminosity of 1 fb⁻¹ at 14 TeV together with the result of considering a modified scenario, in which 1 fb⁻¹ of collisions is produced at the reduced energy of 10 TeV.

6. Acknowledgments

The author wishes to thank Eleftheria Petrakou for her editorial help in the preparation of this paper.

References