Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy

Shin'ichi Ando, Marc Kamionkowski, and Irina Mocioiu

1California Institute of Technology, Mail Code 350-17, Pasadena, California 91125, USA
2Pennsylvania State University, 104 Davey Lab, University Park, Pennsylvania 16802, USA

(Dated: October 22, 2009)

If dark energy (DE) couples to neutrinos, then there may be apparent violations of Lorentz/CPT invariance in neutrino oscillations. The DE-induced Lorentz/CPT violation takes a specific form that introduces neutrino oscillations that are energy independent, i.e., for particles and antiparticles, and can lead to novel effects for neutrinos propagating through matter. We show that ultra-high-energy neutrinos may provide one avenue to seek this type of Lorentz/CPT violation in neutrino oscillations, in proving the current sensitivity to such effects by seven orders of magnitude. Lorentz/CPT violation in electron-neutrino oscillations may be probed with the zenith-angle dependence for high-energy atmospheric neutrinos. The "smoking gun," for DE-neutrino coupling would, however, be a dependence of neutrino oscillations on the direction of the neutrino momenta relative to our peculiar velocity with respect to the CMB rest frame. While the amplitude of this dependence is expected to be small, it may nevertheless be worth seeking in current data and may be a target for future neutrino experiments.

PACS numbers: 98.80.-k, 95.36.+x, 95.85.Ry, 14.60.Pq, 11.30.Er

I. INTRODUCTION

The accelerated cosmic expansion [1] poses difficult questions for theoretical physics [2, 3, 4]. Is it simply due to a cosmological constant? Is some new negative-pressure dark energy (DE) required? Is general relativity modified at large distance scales? The major thrust of the empirical assault on these questions has been to determine whether the expansion history and growth of large-scale structure are consistent with a cosmological constant or require some exotic physics [5].

However, it may be possible to explore whether there are other experimental consequences of the new physics [6] which we collectively refer to as DE, although it may involve a modification of gravity rather than the introduction of some new substance responsible for accelerated expansion. If cosmic acceleration is due to a cosmological constant (i.e., if general relativity is valid and the equation-of-state parameter is \(w = -1 \)), then the vacuum is Lorentz invariant. If, however, something else is going on, then the vacuum "has a preferred frame: the rest frame of the cosmological microwave background (CMB).

If, moreover, dark energy couples somehow to standard-mass particles, then there may be testable (apparent) violations of Lorentz invariance. For example, if DE is coupled to the pseudoscalar FF of electromagnetism [7], there may be a \(\cos \) oscillographic birefringence that rotates the linear polarization of cosmological photons; CMB searches for such a rotation [8] constrain this rotation to be less than a few degrees [9].

Here we explore DE-induced Lorentz/CPT-violating effects in the neutrino sector. We show that the form of a Lorentz-violating coupling between neutrinos and dark energy is highly restricted under fairly general assumptions. The coupling engenders an additional source for neutrino mixing (e.g., Ref. [10]), resulting in neutrino oscillations with a different energy dependence than vacuum oscillations and different oscillation probabilities for neutrinos and antineutrinos. While similar Lorentz/CPT-violating oscillations have been considered before [11, 12, 13], we emphasize here that cosmic acceleration dictates a specific form for such effects.

Data from Super-Kamiokande and K2K [14] and AMANDA/InoCube [15] already tightly constrain CPT-violating parameters for \(-m^2\) mixing and those from solar-neutrino experiments and KamLAND [16] do so for \(-\bar{m}^2\) mixing. However, the effects of DE-induced CPT violation become more significant at higher energies [17]. Here we show that next-generation measurements of ultra-high-energy neutrinos produced by spallation of ultra-high-energy cosmic rays will increase the sensitivity to CPT-violating oscillations by seven orders of magnitude. We also show that these CPT-violating couplings may lead to novel effects in the zenith-angle dependence for atmospheric neutrinos in the \(100 \text{ GeV}\) range.

While such CPT-violating effects, if detected, could be attributed simply to intrinsic CPT violation in fundamental physics, not related to DE, a DE-neutrino coupling further predicts a directional effect: the neutrino mixing parameters depend on the neutrino propagation direction relative to the peculiar velocity with respect to the CMB rest frame. While this signature will likely remain elusive even to next-generation experiments, it would, if detected, be a "smoking gun" for DE beyond a...
cosmological constant. It is therefore worth considering as a long-range target for future neutrino experiments. It may also be worthwhile to consider current data in cases an im plausible law of D E-neutrino coupling different from that we consider here leads to different energy dependence for these directional e effects. We therefore work out explicitly the directional dependence to aid experimentalists who may wish to look for such correlations in current data.

Below, we rst derive in Sec. II the form of the Lorentz/CPT violation allowed by a DE-neutrino coupling and discuss the resulting neutrino-oscillation physics. In Sec. III we apply the formalism to cosmogenic ultra-high-energy neutrinos, and obtain projected sensitivities of future detectors to these e effects in oscillations. In Sec. IV we discuss met-induced e effects for a oscillations in high-energy atmpheric neutrinos in the presence of Lorentz-invariance violating m kinics. Concrete formulas for the directional dependence on oscillation probabilities are given in Sec. V. Finally, we discuss some theoretical implications in Sec. VI and summarize and conclude in Sec. VII.

II. THE DARK-ENERGY (NEUTRINO COUPLING

A. General Formalism

Following Ref. [13], the neutrino elds are denoted by D Dirac spinors \(\psi \); \(\psi^\dagger \), and their charge conjugates by \(\psi^c \); \(\psi^c \), where \(\psi^c \) is the charge-conjugated spinor, and \(\psi^c \) is the charge-conjugation matrix. The 2N elds (where N is the number of avors) and their conjugates are arranged in a single object \(A \) where \(A \) ranges over \(\psi; \psi^c; \psi^c; \psi^c \).

With a canonical kinetic term in the neutrino Lagrangian, the most general Lorentz/CPT-violating D Dirac equation is\(^2\)

\[
(i \not D_M) A = 0;
\]

where

\[
M_{AB} = m_{AB} + \not s_{AB} + s_{AB} + \not s_{AB} + \frac{1}{2} H_{AB} ;
\]

\(M_{AB} \) is the mass term s aturated by the four-\(M \) s and \(H_{AB} \) is the charge-conjugation matrix. The 2N elds (where N is the number of avors) and their conjugates are arranged in a single object \(A \) where \(A \) ranges over \(\psi; \psi^c; \psi^c; \psi^c \).

The usual mass term s are \(m + \not s_{AB} + m_{AB} + m_{AB} P_L + m_{AB} P_R \), where \(m_{AB} = (m_{AB})^2 = m + \not s_{AB} + P_L = (1 + s_{AB})^2 \), and \(2 \) Additional possibilities arise with a non-canonical kinetic term; we comment briefly on possible consequences below.

The 2N mass matri x \(m_{AB} \) is written in terms of \(N \) \(2 \times 2 \) matri ces \(L, R, \) and \(D, \) through

\[
m_{AB} = \begin{pmatrix} L & D \\ D^T & R \end{pmatrix} ;
\]

Here, \(R \) and \(L \) are the right- and left-handed M apara neutrino masses (\(L = 0 \) is required if electroweak gauge invariance is preserved), and \(D \) is the D Dirac mass matri x. The \(R \) and \(L \) matri ces are required to be symmetric, and \(R, L, \) and \(D \) can most generally be complex.

B. Dark-energy-induced Lorentz violation

Lorentz violation in Eq. (4) is parametrized by the four-\(\not s \) \(a, b, \) and the antisymmetric tensor \(H \). The parameters \(a \) and \(b \) are both CPT and Lorentz violating, while \(H \) is Lorentz violating but CPT conserving. While these parameters are non-zero for the most general Lorentz/CPT-violating D Dirac equation (4), the allowable forms for \(a, b, \) and \(H \) are highly restricted if the Lorentz/CPT violation is induced by coupling to dark energy.

The smallness of the CM B quadrupole moments and that the 3-dimensional hypersurfaces of constant DE density must be closely aligned with those of constant CM B temperature [18]. The preferred frame associated with the cosmic expansion is then parametrized by a unit four-vector \(L \) which is orthogonal to surfaces of constant CM B temperature; i.e., in the CM B rest frame, it is \(L = (1;0;0;0) \). The symmetry of the problem thus dictates that \(a / 1 = b / 1 \). The tensor \(H \) is antisymmetric, and there is no way to construct a antisymmetric tensor \(H \) from a single four-vector; we thus expect \(H = 0 \) for DE-neutrino coupling.

Furthermore, since neutrinos are produced and interact in weak eigenstates, it is only the combination \((a_0)_{ab} + (b_0)_{ab} \) that is relevant for neutrino phenomenology. Thus, the Lorentz/CPT-violation induced in neutrino physics can be parametrized entirely by a single four-vector-valued \((a_L)_{ab} / 1 \) matri x in the avor space.

C. Neutrino Oscillations

The propagation of the avor eigenstates is then described by an effective Hamiltonian

\[
\left(\begin{array}{cc} p_{ab} + (m^2)_{ab} = 2p & (a_L)_{ab}p = p \\ 0 & p_{ab} + (m^2)_{ab} = 2p \end{array} \right) ;
\]

\(p_{ab} \) are the mixing parameters and \((a_L)_{ab} \) is the mixing matrix.
where the avor indices \(a \) and \(b \) run over the avor eigen-
states \(e, \nu \), and \(e', \nu' \). Here, \(p \) and \(\bar{p} \) with \(p \) the neutrino mass ennum, and \(m^2 \) is the usual
mass m atrix, with \(D_+ \) and \(D_- \) the usual

Equation 1 has several implications: (i) Since the
m atrix is block-diagonal, there is no m ixing between neu-
trinos and antineutrinos (as may arise in more general
Lorentz-violating scenarios [13]). (ii) Since \(a \) and \(e \) are
opposite in sign in the neutrino and antineutrino en-
tries in the Hamiltonian, a nonzero \(a \) implies (apparent)
CPT violation, i.e., the propagation of neutrinos and an-
te neutrinos are the same. Thus, for example, if the
anomalous LSND results had stood, the CPT-violating
explanations (e.g., Ref. [19]) for them [20] may have im-
plicated DE-neutrino coupling. (iii) The mixing induced by
DE-neutrino coupling is energy independent (like in the
\(M^2 \) kheev-Sm nov-W olf e ns t e i n, or M SW , ex-
et [21]), as opposed to vacuum m ixing, which declines as \(E^2 \). Thus,
these \(a \) cts will become increasingly visible at higher
energies. The detailed form of CPT violation implied by
this \(a \) ct is also thus di erent than that obtained with di erent \(m^2 \) for neutrinos and antineutrinos. (iv)
There may also be novele cts for neutrinos propagating
through m atter, an \(a \) ct we discuss further in Sec. IV
below.

Finally, (v) the neutrino oscillations induced by DE-
neutrino coupling are frame dependent. If the observer
is in the rest frame of the CM B, then \((a_e) P / E \),
neutrino oscillations are independent of the neutrino
frame. However, the Solar System m oves with respect
to the CM B rest frame with a velocity \(v \) \(\approx \) \(370 \) km \(\cdot \) \(s^{-1} \). DE-induced neutrino oscillations will therefore depend
on \((a_e) P / E (1 - v \cdot \beta) \), where \(\beta \) is the neutrino-
propagation direction and \(v \) is our peculiar velocity with
respect to the CM B rest frame. There will thus be an
annual m odulation in solar-neutrino oscillations, a diurnal
m odulation in laboratory neutrino-m ixing experiments,
and a direction dependence in oscillations of cosmogenic
neutrinos.

Since neutrino m ixing arises only as a consequence of
the traceless part of the propagation Hamiltonian, the
DE-neutrino coupling must (like the vacuum m ass m atrix)
be CPT-violating if neutrino oscillations are to be ex-
ted.

\[\frac{d}{dt} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{2} \begin{pmatrix} m_e^2 \cos^2 \nu & m_e \left(1 - v \cdot \beta \right) \cos^2 \delta \\ m_e \left(1 - v \cdot \beta \right) \sin^2 \delta & m_\nu \sin^2 \nu \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \quad \text{Eq. (4)} \]

where \(m_e \) is an effective m ass parameter, and \(\delta \) and
\(a \) and \(b \) are the m ass and relative phase in the DE-neutrino
m ixing m atrix, respectively. There is also the usual
vacuum m ass di erence (squared) \(m^2 \) and the vacuum
m ixing angle \(\nu \). The analogous propagation equations
for antineutrinos are the same as Eq. (4) with the re-
placements \(m_e \rightarrow m_\nu \) and \(\delta \rightarrow -\delta \), the changes in
sign a manifestation of CPT violation.

Recall that if the propagation Hamiltonian is of the
form,

\[h = M \begin{pmatrix} \cos \nu & \sin \nu \\ -\sin \nu & \cos \nu \end{pmatrix} \quad \text{Eq. (5)} \]

then the probability for one species of neutrino to convert
to a di erent neutrino after a distance \(L \) is

\[P_{(a \rightarrow b)} = \sin^2 2 \nu \sin^2 (\nu L) \quad \text{Eq. (6)} \]

Here we have neglected the CP-violating phase in Eq. (6)
because it does not a ect the oscillation probability. The
propagation Hamiltonian in Eq. (5) can be written in the
form of Eq. (6) with the following relations [22]:

\[M^2 = \frac{m^2}{4m^2} + \frac{m_e^2 (1 - v \cdot \beta)^2}{4} + \frac{m_\nu^2}{4E} \quad \text{Eq. (7)} \]

\[\sin^2 2 \nu = \frac{1}{M^2} \left(\frac{m^2}{4m^2} + \frac{m_e^2 (1 - v \cdot \beta)^2}{4} + \frac{m_\nu^2}{4E} \right)^2 \quad \text{Eq. (8)} \]

Note that this time \(\sin^2 2 \nu \) does indeed depend on \(\delta \), as it
is not the overall phase, but the relative one, that can-
not be rotated away by rede nition of wave functions.
The oscillation length is then $L_{osc} = \frac{M}{2} \sqrt{1 - \sin^2 2 \theta}$. In the absence of DE-neutrino coupling, we recover the standard oscillation length $L_{osc} = \frac{4}{\sqrt{2}} E = \frac{2}{c^2} m^2 \sin^2 2 \theta$, where the oscillation length is $L_{osc} = \frac{2}{m_e} \sqrt{1 - \sin^2 \phi}$. If $m_e = \frac{2}{2} E^2$, then the oscillation length is $L_{osc} = \frac{2}{m_e} \sqrt{1 - \sin^2 \phi}$.

In general, m_e can be either positive or negative. However, from the symmetry of the Hamiltonian, the relevant parameter space can be limited to $m_e > 0$, $0 < d = 4$, and $0 \leq e^2 < 1$.

Thus far, no deviations from standard three-avor neutrino oscillations have been discovered in experimental data (except LSND [24]), and this yields constraints on CPT-violating parameters, especially for m_e. By analyzing solar-neutrino and KamLAND data, Ref. [14] obtained an upper limit of $m_e < 3 \times 10^{-23} \text{ GeV}$, whereas the cosmic-ray neutrino and accelerator data provide an upper limit for $m_e < 5 \times 10^{-23} \text{ GeV}$ [24].

III. ULTRA-HIGH-ENERGY NEUTRINOS

A. Prediction

Given that DE-induced neutrino mixing becomes increasingly important, relative to vacuum mixing, at high energies, the DE-neutrino coupling can be probed with ultra-high-energy cosmic-ray neutrinos. These neutrinos are produced by the interaction of ultra-high-energy cosmic-ray protons with CMB photons [23]:

$$
p = n^+ \bar{n}^+ \bar{n}^e = (10)
$$

The fact that the Greisen-Zatsepin-Kuzmin in cuto [24] has now been observed by the Hires [25] and Auger [26] collaborations implies that this interaction must be occurring. And so, there must be a population of cosmic-ray neutrinos with energies $10^{17} - 10^{20} \text{ eV}$, as is always the case here. Therefore, any oscillatory features in neutrino mixing will be washed out; the probability for conversion of a cosmic-ray neutrino from its production avor to another avor en route from the source is then simply $\sin^2 2 \theta = 2$. Cosmic-ray neutrinos mostly originate from pion decays, with the characteristic avor ratio $e_2 \approx 1.29$. The result of standard vacuum mixing would be a 1:1:1 ratio at the Earth of $e_2 : e_1 : e_3 \approx 1:1:1$. While possible corrections to this avor ratio can be induced by small three-avor oscillation effects or other new physics, here we concentrate on exploring the consequences of the DE-induced mixing.

For the sake of simplicity, we focus on m_e mixing (and their antiparticles). In the absence of DE-neutrino interaction, these two avors are maximally mixed, i.e., $e_1 = 4$, and thus even if only one of the two avors is produced at the source, an equal number of antineutrinos is generated by m mixing. However, this can be altered if there is a DE-neutrino interaction. The ux of and at the detector is related to the ux at the source through,

$$
N = \frac{Z_{E_{\text{max}}}}{Z_{E_{\text{min}}}} \frac{dE}{E} (E) (E);
$$

where (E) is the detector exposure to neutrinos in units of cm2 s sr, and it generally depends on neutrino energy. Here we assume $\theta_{\text{tot}} = 0 = K E^2$ with a normalization constant K, $E_{\text{min}} = 2 \times 10^7 \text{ eV}$, and $E_{\text{max}} = 2 \times 10^9 \text{ eV}$. This provides a good approximation for the spectrum of cosmic-ray neutrinos (e.g., Ref. [23]). For simplicity, we further assume that the detector exposure is independent of energy; the Auge r exposure indeed depends on neutrino energy only weakly [23]. Therefore, the total number of neutrino events is given by

$$
N_{\text{tot}} = K \frac{E_{\text{min}}}{E_{\text{max}}};
$$

and the number of events is given by

$$
N = \frac{Z_{E_{\text{max}}}}{Z_{E_{\text{min}}}} \frac{dE}{E} \frac{1}{2} \sin^2 2 \theta (E);
$$

$$
\frac{K}{2} \frac{E_{\text{min}}}{E_{\text{max}}} \frac{dE}{E} E^2 \sin^2 2 \theta;
$$

$$
\frac{N_{\text{tot}}}{2} \frac{E_{\text{min}}}{E_{\text{max}}} \frac{dE}{E} E^2 \sin^2 2 \theta;
$$

where we used Eq. [14] in the last equality.
To investigate the sensitivity of a given experiment, we assume a null detection of new physics; i.e., the result of N is consistent with the standard expectation $N^{\text{tot}}=2$ within statistical errors (we do not take systematic uncertainties into account). This will reject a certain range of parameter space for $(m_e, \sin^2 2 \theta_d)$. More specifically, to obtain 95% C.L., we can express N in terms of these parameters, we solve

$$N > \frac{N^{\text{tot}}}{2} = \frac{2}{10^5} \frac{N^{\text{tot}}}{2}.$$

for m_e and θ_d, using Eq. (15) for the left-hand side. In Fig. 1, we show the sensitivity of detectors that are expected to collect 12 and 100 neutrino events (total) and that also have an identification capability. If the true values of m_e and $\sin^2 2 \theta_d$ are above these curves, then we will see an anomalous suppression of u_x com pared with the standard mixing scenario. We also show the current upper limit on m_e obtained from the combined analysis of Super-K and K2K data performed in Ref. [14]. One can see from this Figure that by detecting cosmic neutrinos and by studying their flavor content, one can largely improve the current sensitivity to m_e and θ_d, quantifying further the suggestion of Ref. [17]. We also note that a weaker sensitivity, albeit still much better than the current sensitivity, may be achieved with neutrinos of slightly lower energies [32].

IV. MATTER EFFECTS IN ATMOSPHERIC NEUTRINO OSCILLATIONS IN THE PRESENCE OF A DARK-ENERGY COUPLING

We now turn our attention to Lorentz/CPT-violating effects in electron-neutrino oscillations, showing here that novel effects may arise with DE-neutrino coupling as neutrinos propagate through the Earth. These effects may allow us to access with atmospheric neutrinos regions of the DE-neutrino (coupling parameter space) significantly below those currently probed. In this section, we consider two- and three-flavor oscillations.

As neutrinos travel through matter, there is an additional contribution to oscillations from the matter potential $\Delta E = G_F N_e$, where G_F and N_e are, respectively, the Fermi constant and electron density relevant when electron neutrinos are involved. Recalling that the matter potential is $\Delta E = 10^{-22}$ GeV, the vacuum mixing term \(m^2 \sim 2 \pi \) is small for neutrino energies $\sim 10^6$ eV. The mixing matrix Eq. (5) then becomes for $e^+ e^-$ mixing (neglecting the overall factor of 1/2, the directional dependence, and the phase),

$$m_e \cos^2 \theta_2 + \frac{1}{2} \Delta E N_e \sin^2 2 \theta_2$$

Note that here, both the Dirac and the matter potential change sign for antineutrinos, unlike the usual MSW effect, in which the vacuum term does not change sign. Unlike MSW mixing, there is essentially no energy dependence, at sufficiently high energies, in this mixing matrix.

To see where DE-induced mixing may be significant, recall that the value of the matter potential is $\Delta E = 10^{-14}$ GeV. The Earth core has average density $\rho_{\text{core}} = 11.143$ cm$^{-3}$ and electron fraction $Y_e^{\text{core}} = 0.666$, while the mantle has average density $\rho_{\text{mantle}} = 4.869$ cm$^{-3}$ and $Y_e^{\text{mantle}} = 0.494$, with the surface layer of the Earth having density as low as 2.6 g cm$^{-3}$. The matter potential is thus around 10^{-13} eV, so the effects of DE-induced mixing may be manifest for some $\sim 10^{-22}$ GeV, well below current upper limits. In the absence of DE, as discussed in Ref. [14], it is possible to obtain a resonance when all mixing angles are maximal

$$\frac{m^2}{2E} \cos^2 \theta_2 + m_e \cos^2 \theta_2 = 0.$$

Here, in the presence of matter and at high energies, a resonance can occur for a small mixing angle θ_2, when

$$m_e \cos^2 \theta_2 = \frac{1}{2} \Delta E N_e.$$

The presence of a resonance is thus entirely determined by the densities encountered along the path and the DE.

3 The current Auger exposure is 10^{16} cm2 s sr, and an optimistic estimate for the flux of cosmic neutrinos is close to the Waxman-Bahcall bound B_2, E^2 (E) 10^5 GeV cm2 s$^{-1}$ sr$^{-1}$. Therefore, from Eq. (14), we expect $N^{\text{tot}} = 1$, which is still consistent with no detection by Auger.
coulomb parameters, with no (or very weak) energy dependence at high energies.

To illustrate the possibilities, we integrate the neutrino-propagation equation (including the small vacuum-m mixing term) to calculate the $\nu_{\mu} \to \nu_{\tau}$ transition probability as a function of (cosine of) the zenith angle for atmospheric neutrinos propagating through the Earth. We use the density profile of the Earth as given by the PREM model \[33\]. Figure 2 shows the results for two-avor oscillations for different values of m_ν for $d = 4$. When $m_\nu = 2G\mathbf{N}_\nu$, the oscillation probability is determined almost entirely by the DE term; there are regular large-amplitude variations of the oscillation probability as a function of zenith angle. A small decrease to values comparable to $2G\mathbf{N}_\nu$, the oscillation probability decreases, and the oscillation length is seen to differ for trajectories that do (cos $\theta = 0.8$) and do not (cos $\theta = 0.2$) pass through the core.

In Fig. 3 we show the oscillation probabilities for $m_\nu = 5 \times 10^{-3}$ GeV for three-avor mixing in the Lorentz-violating sector. The case where $d = 0$ and $d = 0$ also corresponds to an effective two-avor scenario, just like the previous results. It leads, however, to a very different behavior due to the different contributions of the standard neutrino oscillations. The case where $d = d = 4$ corresponds to a full three-avor oscillation scenario. We have also studied the e's for other values of the mixing angles and the same features remain present. A non-zero value of $\frac{d}{2}$ for standard neutrino oscillations leads to similar features in the zenith-angle distribution. However, the effects are extremely small at the high energies considered here, orders of magnitude below those coming from the Lorentz-invariance-violating terms.

V. DIRECTIONAL DEPENDENCE

While detection of CPT/Lorentz-violating e's would be spectacular, it would imply new physics regardless of whether it is DE-related or not: the real "smoking gun" for a DE effect would be the directional dependence, $/ (1 \rightarrow 2)$, of neutrino-oscillation parameters. Given that our peculiar velocity with respect to the CMB rest frame is 10^3 times the speed of light, the magnitude of this effect is going to be suppressed relative to other effects, discussed above, of a DE-neutrino interaction. Statistics well beyond the reach of current and forthcoming neutrino experiments will be required to detect this effect. Still, it is worth keeping in mind for future generations of experiments.

It may also be worth searching for such a directional dependence in current data, just in case there is a DE-neutrino coupling that is manifest in ways different than we have foreseen here. For example, if DE sources produce Lorentz violation through a modification of the kinetic term in the Dirac equation, the energy dependence of the mixing induced by Lorentz/CPT-violation could be different \[13\]. We therefore work out in this Section expressions for the factor $\nu_{\mu} \rightarrow \nu_{\tau}$ to aid experimentalists who may wish to look for directional-dependent e's in their neutrino (or other) data.

To proceed, we first set our coordinate system. We set the origin at the center of Earth and align the z axis along the rotational axis of Earth, so that the north pole has positive z coordinate. We set the x axis along the direction to the Sun at vernal equinox. Since the Sun moves eastbound, its position at sum m er solstice aligns with the y-axis. We can thus represent the seasonal shift by an azimuth angle λ, where $\lambda = 0$, $= 90$, and $= 180$ for vernal equinox, summer solstice, autumn equinox, and winter solstice, respectively. Note also that the orbital plane of the Sun is inclined from the x-y plane by $\alpha = 23.5^\circ$.

The Sun is moving with respect to the CMB rest frame with a speed of $v = 369 \text{ km s}^{-1}$ towards the direction $= 168^\circ$, $= 722^\circ$}, where is right ascension and is declination of the celes-
tial coordinates \[24\]. In our coordinates, the velocity of the Sun is \(v = v (\cos \theta; \cos \phi; \sin \phi)\) = (358;76;1; 46;4) km s\(^{-1}\). The Earth is moving around the Sun with average orbital speed of \(v = 29;8\) km s\(^{-1}\). Thus, the velocity of the Earth with respect to the CM B rest frame is

\[
\begin{align*}
\mathbf{v} &= \mathbf{v} + \mathbf{V} @ \cos \theta \cos \phi \sin \phi \cos \phi \sin \phi @ 0 \sin \phi \\
&= \mathbf{V} @ 358 + 29;8 \sin \phi @ 76;1 + 27;3 \cos \phi @ 46;4
\end{align*}
\]

\(\text{km s}^{-1}\) (20)

Thus, the velocity of the Earth with respect to the CM B rest frame is

\[
\mathbf{v} = \mathbf{v} + \mathbf{V} @ \cos \theta \cos \phi \sin \phi \cos \phi \sin \phi @ 0 \sin \phi
\]

\(\text{km s}^{-1}\)

We neglect the contribution from the rotation of Earth (. 0;5 km sec\(^{-1}\)) to our velocity with respect to the CM B rest frame.

Now we evaluate the direction of the neutrino beam \(\beta\). We suppose that the beam runs from some point \(A\) on the Earth's surface to another point \(B\) on its surface (or vice versa). It should be straightforward to generalize the arguments below so that extraterrestrial neutrino production can be taken into account. We set the origin of time coordinate T to "noon" (i.e., when the Sun reaches highest) at the point \(A\). Therefore, the positions of \(A\) and \(B\) in our coordinate are

\[
\begin{align*}
x_A &= R @ \cos \phi \cos \phi \sin \phi \cos \phi \sin \phi \sin \phi \sin \phi @ 0 \sin \phi \sin \phi \\
x_B &= R @ \cos \phi \cos \phi \sin \phi \cos \phi \sin \phi \sin \phi \sin \phi @ 0 \sin \phi \sin \phi
\end{align*}
\]

(21)

(22)

where \(R\) is the radius of the Earth, \(T\) is the rotational frequency (24 days), \(T_A\) is the time at the position \(A\) relative to noon, \(T_B\) is the geometric latitude of the points \(A\) and \(B\), and \(x_A, x_B\) is the difference between the geometric longitude. The quantity \(x_A\) appears in \(x_B\) because we measure the time \(x_B\) (for both \(A\) and \(B\)) with respect to noon of the point \(A\), so the time difference is given by the latitude difference (note also that the longitude increases to the west). The direction of the neutrino beam \(\beta\) is then proportional to \(x_B\) with proper normalization as

\[
\beta = \frac{1}{2(1 - \cos A \cos B - \cos \phi \cos \phi \sin \phi \cos \phi \sin \phi \sin \phi \sin \phi)}
\]

Therefore, by combining Eqs. (20) and (23), we obtain the directional factor \(\beta\). Since it is a scalar quantity, the final result does not depend on the choice of the coordinate system.

VI. THEORETICAL IMPLICATIONS

Before closing, we discuss, for illustration, the implications of a measurement of a particular value of the Lorentz-invariance (violating effective mass parameter) in terms of a specific model of DE-neutrino coupling.

Perhaps the simplest interaction of this kind has the form

\[
\mathcal{L}_{\text{int}} = \frac{\theta}{M} (1 - s) ;
\]

(24)

where \(\theta\) is a quintessence field, \(b\) is a coupling-constant matrix, and \(M\) is some mass scale. Thus, \(\mathcal{L}_{\text{int}}\) is a Lorentz-violating term in the kinetic term of a scalar field that couples to other fields. For quintessence, one expects \(M_P H_0 (1+w)^{1/2}\) (e.g., Ref. [3]), where \(M_P\) is the Planck energy scale. In this case, the mass scale \(M\) corresponding to a given \(m_e\) is

\[
M = 10^6 (1 + \frac{1}{10^6}) \frac{1 + w}{0.01} \frac{m_e}{10^{-3}} \text{GeV} ;
\]

(25)

to the mass scale that controls the DE-neutrino interaction. The ultra-high-energy oscillation effects we have discussed thus probe up to mass scales \(M = 10^6\) GeV. The \(e^-\) oscillations induced by the matter effects we discussed up to mass scales \(M = 100\) MeV.

VII. CONCLUSIONS

We studied the implications of an interaction between dark energy and neutrinos for neutrino oscillations. The most general Lorentz/CPT-violating term induced by dark energy (DE) takes the form \((a_1) (1 - s)\), where \(a_1\) is a four-vector normal to the CM B rest frame. This introduces a new source for neutrino oscillations that are energy independent and different for neutrinos and antineutrinos. Furthermore, the motion of the Earth with respect to the CM B rest frame induces a directional dependence in the oscillation probabilities.
The current best limits to the DE-neutrino coupling we considered are obtained from astrophysical and accelerator-neutrino experiments for $\nu - m$ mixing, and from solar and reactor experiments for $e - m$ mixing. However, the higher the neutrino energy, the more prominent the effect of the DE-neutrino interaction. We therefore considered in this paper cosmic origin ultra-high-energy (energies of $10^{17} - 10^{21}$ eV) neutrinos produced by the interaction of ultra-high-energy cosmic rays with CM B photons. We showed that future experiments targeting these neutrinos will improve the sensitivity to a DE-neutrino interaction by seven orders of magnitude, down to $m = 10^{-30}$ G eV compared with the current upper bound $m = 5 \times 10^{-23}$ G eV (Fig. 1). This corresponds to a sensitivity to an energy scale as large as 10^{16} G eV for the DE-neutrino interaction. We then showed that the interplay of $D E - m$ and matter-induced neutrino m mixing could induce a novel zenith-angle dependence for e oscillations in astrophysical neutrinos. This effect may extend the sensitivity to Lorentz/CPT-violating parameters in the ν by roughly three orders of magnitude.

The real smoking gun of a DE-neutrino interaction (as opposed to some other origin for Lorentz/CPT violation) would be a directional dependence of the oscillation probabilities. The notion that Lorentz violation may give rise to a directional dependence is not new (e.g., Ref. [33]) and searches for directional dependence in neutrino experiments have already been carried out (e.g., Ref. [34]), but prior work has considered Lorentz-violating parameters introduced in an ad hoc manner and/or tested for direction-dependent e mixing in a Sun-centered inertial frame. We envisage here that cosmological acceleration suggests that we seek a specific form of Lorentz violation, that where the preferred frame is aligned with the CM B rest frame. Even though such a signal is expected to be small, it is still worth seeking in existing and future experimental data.

We have not discussed specific models for a DE-neutrino interaction, beyond an illustrative toy model, but it may be interesting to do so (see also Ref. [38]). The theoretical situation to expect such a coupling in an ad hoc manner is slim. However, we are at the stage where one in our understanding of $D E$ and such a coupling is less likely to be expected, perhaps, than any of the many other manifestations of new cosmic acceleration physics that have been considered. Discovery of Lorentz/CPT-violating effects would be extremely important, even if not attributable directly to dark energy. A directional dependence, if discovered, would be absolutely remarkable, as it would provide one of clear evidence that there is more to cosmic acceleration than simply a cosmological constant.

Acknowledgments

We thank Alexander Friedland and Stephon Alexander for useful discussions, and we acknowledge the hospitality of the Aspen Center for Physics. This work was supported by the Sheen Faichikl Foundation (SA), DOE DE-FG03-92-ER40701 (MK), and NSF grant PHY-0555368 (M).
