D ISCOVERY OF THE COLDEST IMAGED COMPANION OF A SUN-LIKE STAR

Accepted for publication in ApJ Letters

ABSTRACT

We present the discovery of a brown dwarf or possible planet at a projected separation of $1.9^{+0.0}_{-0.0} \pm 0.0$ AU of GJ 758, placing it between the separations at which substellar companions are expected to form by core accretion (5 AU) or direct gravitational collapse (typically 100 AU). The object was discovered by direct imaging of the thermal glow with Subaru/HICO at 10.4 μm and a temperature of 550 (640) K. GJ 758 B constitutes one of the few known T-type brown dwarf companions, and the closest ever to be imaged in them all light around a sun-like star. Its orbit is likely eccentric and of a size comparable to Pluto’s orbit, possibly as a result of gravitational scattering or outward migration. A candidate second companion is detected at $1.2^{+0.0}_{-0.0}$ AU at one epoch.

Subject headings: planetary systems, brown dwarfs, high angular resolution

1. INTRODUCTION

While the extrasolar planets and brown dwarf companions currently known from direct imaging mark significant discoveries, it is important to note that none of these systems present scenarios analogous to a Solar-like system. A host of all aged substellar companions either feature extreme orbital separations (hundreds of AU, e.g. Luhman et al. 2003; Kalas et al. 2008), star-like rather than planet-like temperatures (e.g. Marois et al. 2008), or host stars at the extreme ends of the mass spectrum (A- and late M-type, e.g. Kalas et al. 2008; Chauvin et al. 2005). The closest match is probably G1229 B, a brown dwarf orbiting an M star at 40 AU (Nakajima et al. 1995). This shows how a remakable gap still exists between recent direct-imaging discoveries and the exploration of Sun-like systems.

In this work, we present the discovery of a substellar companion with a mass of 10^{+10}_{-10} M_Jup, a temperature of 550 (640) K, and a projected separation of $1.9^{+0.0}_{-0.0} \pm 0.0$ AU. The estimated core mass is 10^{+40}_{-10} M_Jup, overlapping with our own Solar System’s outer planet orbits, along with the Sun-like parent star, in a superior laboratory for advancing our conventional wisdom of planet or brown dwarf formation amongst solar-like systems.

2. OBSERVATIONS AND DATA REDUCTION

GJ 758 is a G9-type star, located at a distance of 15.5 pc (Gray et al. 2003; Perlemann & ESA 1993). Its mass and radius are about 0.97 M_☉ and 0.88 R_☉, respectively (Takeda et al. 2003). Owing to its proximity and solar-like characteristics, it has been surveyed for planetary companions with the radial velocity technique (e.g. Ghez et al. 2004), but no such companions have yet been reported. Furthermore, it has been studied in search of infrared excess indicating the presence of a circumstellar debris disk, but with null results (e.g. Kospi et al. 2009).

We first detected GJ 758 B with the HICO high-contrast imaging instrument (Hodapp et al. 2003) in angular differential imaging mode on Subaru telescope on May 3, 2009, with a field of view of 20" and a pixel scale of 9.5 μm. The images were taken in pupil-stabilized mode in the near infrared (J band, 1.6 μm), where substellar objects are expected to be bright with thermal radiation (Baraffe et al. 2003; Burrows et al. 2003). The star is known to have nine exoplanets (Carson et al. 2009). Data reduction of the 10 exposures of 15 s revealed a hitherto unknown tenth object in close separation with 5.0 confidence. A follow-up observation of 46 exposures of 9.7 s was obtained at the next commissioning run on August 6, 2009, in which the object was successfully rediscovered with 8.5 confidence. The time between the epochs was long enough to confirm motion in proper motion with GJ 758 and thus to establish a gravitationally bound system. Furthermore, the higher quality of the second observation revealed another faint signal of 5 σ at an even smaller separation, whose nature remains unknown until its physical existence and proper motions can be proven with a follow-up detection at a later epoch. Both runs had excellent weather conditions (0.5" natural seeing in H band).

We used a locally optimized combination of imaging algorithm (LOC, Lafrenière et al. 2007) to maximize the efficiency of the angular differential imaging technique (AD, Marois et al. 2008). The signal-to-noise ratio derived from the null images are shown in Fig. 4.

3. RESULTS

3.1. Proper motion analysis

Located only 15.5 pc away from the Sun, GJ 758 B exhibits strong parallactic and proper motion, providing a powerful tool to distinguish physical companions to the
target star from unrelated background stars. In a time series of images centered on GJ 758, a companion should remain bound to its host while the background stars drift along the predicted background trajectory in unison.

Since the detections of GJ 758 B are only separated by three months, the parallactic and proper motions are of order 0.1" (10 H/3 mas). The 7 background stars visible at both epochs were used to re-tune the distortion correction of the images. As illustrated in Figure 2, this yields a tight cluster of proper motion vectors for the background stars, with a standard deviation on the order of the pixel scale. GJ 758 B, on the other hand, is found to share com m on proper motion with its host star, commending that they form a gravitationally bound system. The companion’s observed motion deviates from the proper motion distribution of the background stars by 10°, thus a chance alignment can be excluded.

![Figure 2](image)

Figure 2.1 Proper motion analysis of GJ 758’s exo objects. The circles show the change in the positions relative to GJ 758 in the May and August images for all 8 objects visible in both images. One-pixel error bars are drawn. The curved arrow designates the predicted parallactic and proper motion for a background star of GJ 758 between those epochs. GJ 758 B demarcates com m on proper motion with its host star as well as some orbital motion (dotted arrow), whereas the other objects conform with the behavior expected from background stars. The size of the PSF resolution element and the detector pixels is provided for reference.

The precision of the distortion correction is 0.6 pixels in the central region, of the same order as the estimated precision of the centroiding of 5 sources. We therefore adopt a 1 pixel = 9.5 mas error bar for our astrometric measurements of GJ 758 B. The tightly constrained spread of the 7 background stars, which suffer from greater residual distortion (1.3 pixels over the whole detector) and their own proper motion (typical value 0.5 pixels in 3 months), proves this a valid assumption.

GJ 758 B is thus measured to move by (7.6 9.5 24.0 9.5) mas along the (RA, Dec) axes relative to GJ 758 between the two epochs. This represents the orbital motion of the companion around its host. No proper motion test is available for the possible second companion since it is detected only in one epoch.

3.2. System age

The age of the star is an important quantity to derive characteristics for the companion, including its mass and temperature. However, since GJ 758 is an exo main-sequence solar-like star with no known connection to any moving stellar association, the age is very difficult to constrain. The isochronal analysis of Takeda et al. (2003) places the object at an age of 0.7 Gyr, with an upper limit of 3.8 Gyr at 68% confidence. The super-solar metallicity of GJ 758 ([Fe/H] = 0.14 Holmberg et al. 2003) or [Fe/H] = 0.22 Kosuga et al. 2009) might support such a relatively young age compared to the Sun, but may also just reflect a locally metal-rich natal environment. However, the activity-rotation-age calibration in Mamajek & Hillenbrand (2008) yields an age of 6.2 Gyr given the rotational period of 39.0 days (Wright et al. 2004) and chromospheric activity log R' _HK = 5.06 (Unruh et al. 1991). The higher activity log R' _HK = 4.94 given in Wright et al. (2004) even results in 8.7 Gyr. The difference is due to monitoring during different parts of the stellar activity cycle. The discrepancy with respect to the isochronal dating could
Table 1

<table>
<thead>
<tr>
<th></th>
<th>GJ 758 B</th>
<th>GJ 758 C *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phot. ezy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>App. H mаг.</td>
<td>19.26</td>
<td>18.47</td>
</tr>
<tr>
<td>Abs. H mаг.</td>
<td>18.30</td>
<td>17.51</td>
</tr>
<tr>
<td>Contrast (m ag)</td>
<td>14.51</td>
<td>13.72</td>
</tr>
<tr>
<td>(10 ⁶)</td>
<td>1.57</td>
<td>3.24</td>
</tr>
<tr>
<td>A star on M ay 3, 2009:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proj. sep. (")</td>
<td>1.879</td>
<td>1.188</td>
</tr>
<tr>
<td>Proj. sep. (AU)</td>
<td>29.12</td>
<td>20.48</td>
</tr>
<tr>
<td>Position angle (°)</td>
<td>197.37</td>
<td>115.15</td>
</tr>
<tr>
<td>A star on August 6, 2009:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proj. sep. (")</td>
<td>1.858</td>
<td>1.221</td>
</tr>
<tr>
<td>Proj. sep. (AU)</td>
<td>28.80</td>
<td>20.42</td>
</tr>
<tr>
<td>Position angle (°)</td>
<td>198.18</td>
<td>115.19</td>
</tr>
</tbody>
</table>

Notes. The conversions from ux to mass and active tem perature are based on the COND models by Baraffe et al. (2003).

Probably be explained with long-term activity cycles (e.g. Janson et al. 2008) for what concerns chromospheric activity, but the rotation is harder to explain in this context. The age from rotation alone, according to the calibration in Barnes (2007), is 5.5 Gyr.

Hence, the different age indicators for GJ 758 are discrepant. Taken together, for the purpose of our analysis, we conservatively chose the rotation-activity age estimate with the higher activity measurement of 6.2 Gyr as the baseline case for physical interpretation. For the error bars, we considered the full non-overlapping range of 0.7 to 8.73 Gyr.

3.3. Physical properties of GJ 758 B

The photometric GJ 758 B and the candidate second companion are listed in Table 1. These values are based on the August 2009 data, since GJ 758 B is blended with a positive radial background structure in the May 2009 data (see Fig. 3). The mass and active temperature are derived on the basis of the COND models by Baraffe et al. (2003) only used in publications on substellar companions (Marois et al. 2003; Chauvin et al. 2003). A sample of system ages is assumed, covering the range of 0.7 (8.7 Gyr discussed in the target properties section.

Flux measurements were performed in all circular apertures of 5 pixels in diameter. The loss of flux due to angular smearing in the pupil-stabilized exposures or partial subtraction in the A/D data reduction was carefully assessed and corrected.

For the baseline age of 6.2 Gyr, GJ 758 B is found to have a mass of 34.3 Jupiter masses (M_Jup) and an effective temperature of 624 K. At the age of 0.7 Gyr, the mass would drop to 10.3 M_Jup, placing the companion in the planetary regime, whereas at 8.7 Gyr it would rise to 39.6 M_Jup, making the companion a low-mass brown dwarf. The active temperature, on the other hand, is only weakly dependent on the system age, ranging from 549 K to 637 K. Given this active temperature, we expect GJ 758 B to have a T9 type spectral profile (Loggett et al. 2003). This makes GJ 758 B the coolest companion to a sun-like star ever imaged (cf. 750 K for GJ 570 D orbiting a K4 triple system at 1500 AU; Burgess et al. 2003; 750 K for Wolf 940 B orbiting a M 4 star; Burleigh et al. 2009; 810 K for HD 3651 B orbiting a more sun-like K0 star; Luhman et al. 2007). The temperature range overlaps with those of the latest-type ed dwarfs (Bolmont et al. 2008; Burleigh et al. 2009; Wright et al. 2007), making GJ 758 B a candidate for the coolest body outside the Solar System ever identified. If the second detected object is assumed to be a real companion, its mass estimate goes from 11.7 M_Jup (also in the planetary regime) to 46.5 M_Jup and its active temperature from 613 K to 733 K.

All of these temperature are low enough to allow a strong presence of methane in the atmosphere, which can be confirmed with narrow-band di erential imaging in the near-infrared methane absorption bands. The current data set, taken entirely in the broadband H filter, cannot exclude the possibility of a brown dwarf companion in place of a brown dwarf planet. However, the mass contrast and the mass in the expected age range of 8.7 Gyr makes this highly unlikely. In order for the theoretical progenitor star to live through its main-sequence lifetime, evolve into a white dwarf, and cool down to the observed H-band luminosity within 8.7 Gyr, both the lifetime of the star and the cooling time scale would have to be on the short end of the scale, implying both a high progenitor mass (2 M_⊙) and a high survivability white dwarf mass (1 M_⊙), two independently unlikely assumptions (Fontaine et al. 2003; Holberg & Bergeron 2003).

4. Discussion

Although the relative error on the measured orbital motion of GJ 758 B is large, the data su cient to gauge the parametric space of possible orbits and derive a "best guess" set of orbital parameters. A custom Monte Carlo simulation is used for this purpose. The code generates a large number of orbital trajectories with random values for eccentricity e, inclination i, argument of perihelion , longitude of the ascending node , and a 3D orbit in a 10 Gyr. The distributions are assumed to be at, except for the inclination, where larger angles are favored proportionately to sin i to represent their higher geometric likelihood. The ellipse is then scaled such that to match the m i point between the two known companion positions within the error; this sets the value of the semi-major axis. Next, the physical vectors of each orbit, projected into the plane of the galaxy, and compared to the m averaged orbital motion. If it is within the error bars, the orbital solution is considered valid, which holds for about 6% of all orbits. Finally, the ensemble of valid orbits is weighted according to the ratio of mean and current orbital velocity, v_c/v_0, to represent the statistical likelihood of residing the companion in its current position.

The results are presented in Table 2 and Figure 3. Most notably, the estimated eccentricity is very high (e = 0.691) and constrained. No orbital solutions below e < 0.25 match the observations within the ex-
TABLE 2
Estimated orbital parameters of GJ 758 B.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weighted Median</th>
<th>68% Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiaxial axis (AU)</td>
<td>54.5</td>
<td>33.9 (118.0)</td>
</tr>
<tr>
<td>Eccentricity e</td>
<td>0.691</td>
<td>0.497 (0.866)</td>
</tr>
<tr>
<td>Inclination (°)</td>
<td>46.5</td>
<td>24.0 (67.4)</td>
</tr>
<tr>
<td>Period P (yr)</td>
<td>291</td>
<td>170 (658)</td>
</tr>
</tbody>
</table>

5. Conclusions

We present the discovery of a substellar companion to the star GJ 758 at a separation of 1.06 by angular differential imaging in H-band with Subaru/HIDAO. The companion is on proper motion with its host star is dem onstrated. We estimate parameters of 10.3 (39.6) M_Jup for the mass and 549 (637) K for the temperature. We classify it as a brown dwarf/massive planet/massive brown dwarf. A candidate secondary companion was detected at a separation of 1.2 (0), which could represent a massive brown dwarf/massive planet/massive brown dwarf/massive brown dwarf.

This unique discovery opens up new avenues for investigating the formation and evolution of brown dwarf/massive planets and brown dwarfs.

We thank David Lafreniere for generously providing us with the source code for his LOCI algorithm, and the Subaru AO 188 commissioning team for enabling and supporting our ADIMode observations. This work is partly supported by a grant-in-Aid for Science Research in a Priority Area from MEXT, Japan, and the U.S. National Science Foundation under Award No. AST-0901967. This publication makes use of the SIMBAD and NED databases.

Facilities: Subaru (HIDAO, AO 188)

REFERENCES

Thalmann et al.
Perryman, M. A. C., & ESA 1997, ESA Special Publication 1200