Interaction between gravitational waves and plasma waves in the Vlasov description

G. Brodin, M. Forsberg, M. Marklund and D. Eriksson
Department of Physics, Umeå University, SE-901 87 Umeå, Sweden
(Received 6 August 2013)

Abstract. The nonlinear interaction between electromagnetic, electrostatic and gravitational waves in a Vlasov plasma is reconsidered. By using an orthonormal tetrad description the three-wave coupling coefficients are computed. Comparing with previous results, it is found that the present theory leads to algebraic expressions that are much reduced, as compared to those computed using a coordinate frame formalism. Furthermore, here we calculate the back-reaction on the gravitational waves, and a simple energy conservation law is deduced in the limit of a cold plasma.

PACS: 04.30.Nk, 52.35.Bj, 95.30.Sf

1. Introduction

Much work has been devoted to special relativistic effects of plasma [1], largely stimulated by the rapid progress in high power laser technology [2]. Several studies of plasma in a general relativistic context have also been made, see e.g. [3,5,11,13], considering for example plasma as in strongly curved space-time close to pulsars [14], multi-uid plasma effects in general relativity [15,17], dynamo effects in strong gravity [18], the effect of two-temperature systems on scalar perturbations [19], viscous heating of accretion discs due to gravitational wave dissipation [20], or considering gravitational wave (GW) propagation in a plasma medium, in particular nonlinear interactions in e.g. dusty plasma [21,22] or MHD plasma [23,27]. GWs are currently opening up a promising new window for astronomy and astrophysics, e.g. astrosismology [28,29], and the interaction between GWs and electromagnetic fields has been proposed as a possible means to detect GWs [30,34]. Moreover, the nonlinear interaction of a curved spacetime with and electromagnetic field can yield a multitude of interesting astrophysical and cosmological effects [35,38]. In a magnetized plasma, a basic effect is the linear coupling between electromagnetic (EM) waves and GWs that occurs for propagation across a static magnetic field [5]. This linear mechanism leads to the excitation of magnetic hydromagnetic waves in a plasma [11,13]. Naturally, linear coupling mechanisms is not sufficient if one is interested in the possibility of converting GW energy to frequencies different from that of the original source. Numerous examples of such mechanisms exist, see Refs. [6,10].
G. Brodin, M. Forsberg, M. Marklund and D. Eriksson
plasm as, involving e.g. frequency up-conversion due to non-linear wave steepening
\[39\] or various three-wave couplings between GW s and electromagnetic waves, e.g.
\[40,41\]. Wave coupling mechanisms involving GW s are studied for several different
reasons. In some cases, the emphasis is on the basic theory \[42{45}\]. In other works,
the focus is on GW detectors \[46{48}\], on cosmology \[49{51}\], or on astrophysical
applications such as binary mergers \[52\], gamma ray bursts \[53\], pulsars \[54\] or
supernovas \[55\].

In the present paper we will reconsider the problem of three-wave interacting
between electrostatic (ES), electromagnetic (EM) and GW in a plasma, using a
collision-free kinetic description, i.e. the Vlasov equation \[40\]. In contrast to previous
authors we will use a tetrad formalism \[56\], rather than a coordinate frame formalism,
since the former formalism has been shown to significantly reduce the
algebraic complexity. In particular, the coordinate frame formalism applied on the
present problem produces very cumbersome algebraic expressions for the coupling
coefficients \[40\], and as a result it was impossible to see if the growth rates for
parametric processes were positive in general (when damping was omitted), which
is related to the full limit of the so-called Manley-Rowe relations \[57\]. The coeffi-
cients derived using the present tetrad formalism are shown to agree with previous
works in the limit of a cold plasma \[40\]. For the case of a finite temperature, the
coefficients found from the present formalism are algebraically much simpler than
previous results. However, due to the complexity of the previously computed coeffi-
cients, a comparison cannot be easily made for the general case. Finally, in the
present paper we also include the back-reaction on the GW, in contrast to previous
works. This allows us to discuss the energy conservation properties, and an energy
conservation law is presented in the low temperature limit.

2. Basic equations in the tetrad formalism

We consider the interaction between weak gravitational waves and a collisionless
plasma in an external magnetic field. Since we consider nonempty space the back-
ground space-time is necessarily curved. However, if the wavelength of the gravita-
tional waves and the interaction region is small relative to the background curvature
we may take the background to be flat and static (the lowest order version of the
high-frequency approximation), and consider the perturbed energy-momentum
tensors corresponding to the perturbations of the electromagnetic and material fields.

For simplicity, the unperturbed plasma is assumed to be static, isotropic and
homogeneous. Linearized, the Einstein field equations (EFE) take the form

\[h_{ab} = 2 T_{ab} + \frac{1}{2} T_{ab} \] \quad (2.1)

provided the gauge condition \(h_{ab,} = 0 \) is fulfilled, which is equivalent to state that
only tensorial perturbations are present. Here \(c^2 \equiv \frac{\partial^2}{\partial t^2} \), \(h_{ab} \) is the small deviation from the Minkowski background metric, i.e. \(g_{ab} = g_{ab} = h_{ab}, \quad 8 \pi \mathcal{G} = c^4 \),

\(T_{ab} \) is the part of the energy-momentum tensor containing an all-electromagnetic
and material field perturbations associated with the gravitational waves and

\(T = T_{ab} \). In the following it is understood that we neglect contributions of second
order and higher in \(h_{ab} \). In our notations \(a; b c; d e f = 0; 1; 2; 3 \) and \(i j k; \ldots = 1; 2; 3 \)
and the metric has the signature \((- ++ +).\)

In vacuum, a linearized gravitational wave can be transformed into the transverse
Interaction between gravitational waves and plasma waves

and traceless (TT) gauge. Then we have the following line element and corresponding orthonormal affine base
\[ds^2 = \delta_{ij} dx^i dx^j + 2h_{ij} dx^i dx^j; \]
where \(z \) and \(h \) are tetrads in the particular case (propagation in an isotropic plasma) that we are considering. The difference to the vacuum case will be that \(z = \psi h(t) \) where \(v_{ph} \) is the phase velocity of the gravitational wave. Note, however, that the theory will be limited to the case \(v_{ph} c \), due to the omission of background curvature effects. From now on we will refer to tetrad components rather than coordinate components.

We follow the covariant approach presented in [56] for splitting the electromagnetic fields in a \(1 + 3 \) fashion. Suppose an observer moves with 4-velocity \(u^a \). This observer will measure the electric and magnetic fields \(E_a = F_{ab}u^b \) and \(B_a = \frac{1}{2\epsilon_0}\epsilon^{abc}F_{bc} \), respectively, where \(F_{ab} \) is the electromagnetic field tensor and \(\epsilon^{abc} \) is the volume element on hyper-surfaces orthogonal to \(u^a \). It is convenient to introduce a 3-vector notation \(E = (E^1; E^2; E^3) \) etc. and \(r ; e \) from now on we will assume that \(u^0 = c \) is the only nonzero component of \(u^a \). As has been presented in e.g. Refs. [58,59] the Maxwell equations contain terms coupling the electromagnetic field to the gravitational radiation field, including terms that are linear in \(h \), and \(h \), but omitting terms that are quadratic and of higher order. Maxwell's equations are written as
\[r \cdot B = \epsilon_0\mu_0 \partial_t E; \]
\[\partial_t B = r \cdot E ; \]
\[r \cdot B = 0 ; \]
\[r \cdot E = \frac{c}{\mu_0} ; \]
where
\[j^e = \frac{1}{2\epsilon_0} (E_x \partial_y - E_y \partial_x) \eta^e = (E^1; E^2; E^3) \eta^e; \]
\[j^b = \frac{1}{2\epsilon_0} (E_y \partial_x - E_x \partial_y) \eta^b = (E^1; E^2; E^3) \eta^b; \]
are effective currents due to the GWs, see e.g. Ref. [45]), and the dot denotes derivatives with respect to the argument. The physical-current- and charge-density are denoted \(j^e \) and \(\rho \), respectively. Note that the absence of a GW source term \(s \) in Eqs. (2.7) and (2.8) is valid only within the given approximation, as can be seen from e.g. Ref. [45], where source terms that are fully nonlinear in the GW -amplitude are included. In addition to the explicit source term \(s \) in (2.9)-(2.10), naturally the
gravitational effects that is associated with the tetrad (2.3)-(2.4) must also be kept in mind.

Next we turn our attention to the particle description. The equation of motion for a particle of mass m and charge q in an electromagnetic and gravitational wave field is

$$\frac{dp}{dt} = q \mathbf{E} + (m) \mathbf{p} \times \mathbf{B} - G$$

(2.11)

where $p = \frac{1}{1 + \mathbf{p}^2/(m c)^2}$ and the four-momenta is $p^a = m \, dx^a/dt$. The gravitational force like term $G^i_{ab} p^a p^b = m$, where G^i_{ab} are the Riemann curvature coefficients, becomes

$$G_1 = \frac{i}{2} (v_{ph} \, \mathbf{p} = m) \, h_1 \, p_1 + h_2 \, p_2$$

(2.12)

$$G_2 = \frac{i}{2} (v_{ph} \, \mathbf{p} = m) \, h_1 \, p_2 + h_2 \, p_1$$

(2.13)

$$G_3 = \frac{i}{2} (m) \, h_1 \, (p_1^2 - p_2^2) + 2 h_2 \, p_1 p_2$$

(2.14)

for weak gravitational waves propagating in the z-direction in Minkowski space, where v_{ph} is the phase velocity of the gravitational wave, which we at this point allow to deviate slightly from c.

Next we apply kinetic plasma theory, representing each particle species by a distribution function f governed by the Vlasov equation. In tetrad form the Vlasov equation reads [59]

$$L f = 0$$

where the Liouville operator is

$$L = \partial_t + (c \mathbf{p})^i \partial_e_i + F^i_{EM} \partial_{p^i} \, \mathbf{E} = F^i_{EM} \mathbf{E} \partial_{p^i}$$

and the electromagnetic force responsible for geodesic deviation is $F^i_{EM} \, \mathbf{E} = F^i_{EM} \mathbf{E} \partial_{p^i}$. In vector notation the Vlasov equation reads

$$\partial_t f + \frac{\mathbf{p}}{m} \cdot \partial_{\mathbf{p}} f + q \mathbf{E} + \frac{\mathbf{p} \times \mathbf{B}}{m} - G \, \mathbf{p} \cdot \mathbf{E} = 0$$

(2.15)

where $\mathbf{p} = (p_x, p_y, p_z)$. In the absence of gravitational waves, the Vlasov equation has the following spatially homogeneous (thermodynamic) equilibrium solution, the Synge-Juttner distribution, e.g. [40],

$$f_{S,J} = \frac{n_0}{4 \, (m c)^3 K_2(\rho)}$$

(2.16)

where n_0 is the spatial particle number density, $m^2 = k_B T$, k_B is the Boltzmann constant, T the temperature and $K_2(\cdot)$ is a modified Bessel function of second kind.

3. Wave-wave interaction

Next we let all quantities consist of a superposition of three waves of different kinds. Firstly we have a gravitational wave (frequency and wavevector (ω_g, \mathbf{k}_g)), next an electromagnetic wave $(\omega_{em}, \mathbf{k}_{em})$, and finally an electrostatic wave (Langmuir wave) $(\omega_{es}, \mathbf{k}_{es})$. Since we are dealing with high-frequency waves, the mass and charge will in what follows refer to electrons. The three waves are assumed to obey the following matching conditions

$$\omega_g = \omega_{em} + \omega_{es}$$

(3.1)
and

$$k_g = k_g e_3 = k_{em} + k_{es}$$ \hspace{1cm} (3.2)$$

Since there is no external magnetic field within our model, the gravitational wave does not induce an electric field at the frequency and wavevector (k_g, \mathbf{k}). Furthermore, the metric perturbations at the combinations $(k_g, k_{1, 2})$ can be neglected, as a consequence of the high-frequency approximation.

As a prerequisite to the nonlinear calculations we first consider linear theory. Linearizing the Vlasov equation, in the absence of EM waves, the perturbed distribution function of the GW is given by.

$$f_g = \frac{2i\rho_0 G_m \mathbf{f}_{g, j}}{\mathbf{F}_g}$$ \hspace{1cm} (3.3)$$

where we have introduced the notation $f_g = k_g q_0 = p_0$. Noting that the different GW polarizations obey

$$\frac{k_g^2}{\mathbf{k}^2} c^2 \mathbf{h} = 2 \mathbf{T}_{1, 2} = 2 \frac{\mathbf{p}_0}{m} f_g d^3 p$$ \hspace{1cm} (3.4)$$

and

$$\frac{k_g^2}{\mathbf{k}^2} c^2 \mathbf{h}_i = 2 (\mathbf{T}_{1, 1, 2}) = 2 \frac{\mathbf{p}_0}{m} f_g d^3 p$$ \hspace{1cm} (3.5)$$

we deduce the same dispersion relation for both GW polarizations, namely

$$\mathbf{D}_g (k_g) = \frac{k_g^2}{\mathbf{k}^2} c^2 2 \frac{\mathbf{p}_0}{m} f_g d^3 p = 0$$ \hspace{1cm} (3.6)$$

where we here and from now on use the normalization $f_g d^3 p = 1$ of the unperturbed distribution. In the high-frequency approximation, the last term of (3.6) is a small correction, comparable to the contribution from the background curvature [5], and thus we may use the approximation $\mathbf{D}_g = \frac{k_g^2}{\mathbf{k}^2} c^2$. Similarly, from the linearized Vlasov equation (without gravitational fields), together with Maxwell's equations we deduce the dispersion relation for electromagnetic waves

$$\mathbf{D}_{em} (\mathbf{k}_{em}) = \frac{k_{em}^2}{\mathbf{k}_{em}^2} c^2 + \frac{i}{\mathbf{k}_{em}} 2 \frac{\mathbf{p}_0^2}{m} \frac{\mathbf{f}_{g, j}}{\mathbf{F}_g} d^3 p = 0$$ \hspace{1cm} (3.7)$$

and for electrostatic waves

$$\mathbf{D}_{es} (\mathbf{k}_{es}) = \frac{2m \frac{i}{\mathbf{k}_{es}^2}}{\mathbf{k}_{es}^2} \frac{\mathbf{f}_{g, j}}{\mathbf{F}_g} d^3 p = 0$$ \hspace{1cm} (3.8)$$

where $i = \sqrt{-1}$ is the electron plasma frequency. When nonlinear interactions are taken into account, the wave amplitudes will be time-dependent. We note that as far as the linear terms are concerned, the only modification needed is the simple substitution $\mathbf{D}_{es} \mathbf{E}_{es} = (\mathbf{D}_{es} - \mathbf{f}_{es}) \mathbf{E}_{es} = \mathbf{f}_{es}$, where the tilde denotes the weakly time-dependent amplitude, and similarly for the other waves [57]. Next, for definiteness, we assume the wave-vectors to span the plane perpendicular to e_2. Furthermore, we note that for symmetry reasons, the h_2-polarization in this geometry couples to the EM wave polarized with the electric field along e_2 (nonlinearly combined with the electrostatic wave), whereas the h_1-polarization couples to the EM waves with magnetic field along e_2. These two cases are similar, and from now
The coupling coefficients expression for \(\text{kept nonlinear terms and a weakly time-dependent amplitude. Substituting the expression for } f_q \text{ from the Vlasov equation, but now with second order nonlinear terms included, we obtain}

\[
\frac{\partial \mathbf{E}}{\partial t} = 2 \mu \sum C_g \mathbf{E}_{\text{em}} \mathbf{E}_{\text{em}}
\]

where the coupling coefficient \(C_g \) is

\[
C_g = \frac{k_{es} \mathbf{E}_{\text{em}} \mathbf{E}_{\text{em}}}{k_{es} \mathbf{E}_{\text{em}} \mathbf{E}_{\text{em}}} \left(\frac{\partial f_{s,j}}{\partial \mathbf{p}} \right) \frac{4p! \mathbf{g}_{\mathbf{r}_{\text{em}}} \mathbf{E}_{\text{em}} \mathbf{E}_{\text{em}}}{\partial \mathbf{p}^j} \left(\frac{\partial f_{s,j}}{\partial \mathbf{p}^j} \right) \mathbf{E}_{\text{em}} \mathbf{E}_{\text{em}}
\]

To find the EM-wave evolution, we now include all resonant nonlinear source terms for the EM-wave (e.g., active gravitational currents, nonlinear terms involving the gravitational force, and nonlinearities coming directly from the tetrads), and solve for \(\partial \mathbf{E}_{\text{em}} = \partial t \), in which case we obtain

\[
\frac{\partial \mathbf{E}_{\text{em}}}{\partial t} = \sum C_{\text{em}} \mathbf{E}_{\text{em}} \mathbf{E}_{\text{em}}
\]

Finally, the calculation is completed by doing a similar calculation for the electrostatic wave evolution, and the result is

\[
\frac{\partial \mathbf{E}_{\text{es}}}{\partial t} = \sum C_{\text{es}} \mathbf{E}_{\text{es}} \mathbf{E}_{\text{es}}
\]

The coupling coefficients \(C_{\text{es}} \) and \(C_{\text{em}} \) (although not \(C_g \)) have been calculated in Ref. [40], using a coordinate frame formalism. As can be seen, the previously computed coupling coefficients are algebraically much more complicated, and thus a comparison is difficult in general. For the special case where the perturbation of \(f_{s,j} \) approaches zero, the coefficients simplify a lot, and we obtain

\[
C_{\text{es}} = \frac{k_{es} \mathbf{E}_{\text{em}} \mathbf{E}_{\text{em}}}{k_{es} \mathbf{E}_{\text{em}} \mathbf{E}_{\text{em}}}
\]

6G. Brodin, M. Forsberg, M. Marklund and D. Eriksson
Interaction between gravitational waves and plasma waves

which agrees with Ref. [40]). Furthermore, we found that in our case that also the gravitational case coupling coefficient is similar, and we can define the common coupling coefficient \(C_{cs} = C_{em} = C_g \). As a result of the agreement of the coupling coefficients, the energy change of each of the waves in the cold limit can be written

\[
\frac{dW_g}{dt} = \frac{1}{g} V; \tag{3.16}
\]

\[
\frac{dW_{es}}{dt} = \frac{1}{es} V \tag{3.17}
\]

and

\[
\frac{dW_{em}}{dt} = \frac{1}{em} V \tag{3.18}
\]

where the energy density of each wave is

\[
W_g = \frac{1}{g} \int \mathfrak{f}^2 \, d\mathfrak{f}; \tag{3.19}
\]

\[
W_{es} = \frac{1}{es} \int \mathfrak{f} \mathfrak{f} \left(\mathfrak{f} \cdot \mathfrak{e}_{es} \right) \, d\mathfrak{f}; \tag{3.20}
\]

\[
W_{em} = \frac{1}{em} \int \mathfrak{f} \mathfrak{f} \left(\mathfrak{f} \cdot \mathfrak{e}_{em} \right) \, d\mathfrak{f} \tag{3.21}
\]

and

\[
V = \frac{1}{c \sqrt{h}} \mathfrak{e}_{em} \mathfrak{e}_{cs} \mathfrak{e}_{es} + c\mathfrak{r}; \tag{3.22}
\]

where \(c\mathfrak{r} \) denotes complex conjugate. The equations (3.16)-(3.18) together with (3.1) thus show that the three-wave interaction process conserves the total wave-energy.

4. Summary and conclusion

In the present paper we have reconsidered the process of three-wave interaction between gravitational-, electromagnetic- and electrostatic waves in a collision-free plasma. Using an orthonormal tetrad description, the algebraic complexity of the coupling coefficients is much reduced, as compared to previous authors [40]. Two of the coupling coefficients (for the electrostatic and the electromagnetic wave) can be shown to agree with previous results in the cold limit. The third coupling coefficient (for the GW) has not been calculated before. Inclusion of the back-reaction on the GW makes it possible to deduce and energy conservation law (Eqs (3.16)-(3.18) together with (3.1)) in the cold limit. The energy conservation law is a natural consequence of the Manley-Rowe relations [57], which makes the same coupling appear in all three coupled equations (c.f. \(C_{cs} = C_{em} = C_g \)). However, this relation was only verified in the cold limit. Although the present coupling coefficients were not explicitly calculated, it has proved to be difficult to deduce whether the coupling coefficients are symmetric (i.e. fulfilling the Manley-Rowe relations), for the general case of a finite temperature. An interesting question, that remains for future research, is thus to decide whether this is due to some principal lack of a canonical Hamiltonian structure (that is the basic source of symmetric coupling coefficients, see e.g. [60]) of the Einstein-Maxwell-Vlasov system, or if the difficulties are merely due to the algebraical complexity.

Acknowledgments

This research was partially supported by the Swedish Research Council and the Swedish Graduate School of Space Technology.
References

Interaction between gravitational waves and plasma waves

[48] R. Ballantini et al., Class. Quantum Grav. 20, 3505 (2003).