Identified high-\(p_T\) spectra in Cu + Cu collisions at \(P_{\text{SN}} = 200\) GeV

We report new results on identified (anti)proton and charged pion spectra at large transverse momentum \(p_T \), from Cu+Cu collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-\(p_T \) and the anomalous baryon to meson enhancement at intermediate transverse momentum. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Composite analysis of all available 200 GeV data indicates that...
Differential studies of identified particle production in nucleus-nucleus collisions provide an experimenter with ways to probe the different stages of the collision evolution and explore the properties of the created medium. Spectral m eson events at high transverse momentum are of special interest, for the following reasons. In elementary collisions, hard partonic scatterings are known to produce jets of pions originating from the fragmentation of a high- \(p_T \) quark or gluon. The spectral distributions of particles in transverse momentum from such interactions are measured experimentally and are reasonably well understood in terms of Next-to-Leading Order (NLO) pQCD calculations \[1\]. These hard scatterings occur in heavy-ion collisions as well, but their resulting distributions are found to be modulated due to interactions with the medium and the resulting energy loss. Thus, understanding m eon interactions to the high-\(p_T \) particle distributions is an important step towards understanding the partonic energy loss m echanism within the medium \[2\].

To study the effects of parton-medium interaction on particle production in heavy-ion collisions we compare the production cross-sections measured in AA to the equivalent m eson events in pp collisions. Following the expectation that the parton production in heavy-ion collisions at high-\(p_T \) is determined by the number of binary nucleon-nucleon inelastic collisions we define the nuclear m eon cation factor, \(R_{AA} \), as the ratio (Eq. \[4\]) of particle yields measured in AA to the cross-sections measured in pp collisions scaled by the corresponding number of independent nucleon-nucleon collisions \(N_{AA}^{pp} \). We obtain \(N_{AA}^{pp} \) from a Monte Carlo Glauber model calculation \[5\]. For the unmodified parton production in AA collisions \(R_{AA} \) is exactly unity, whilst \(R_{AA} < 1 \) indicates suppression and \(R_{AA} > 1 \) enhancement.

\[
R_{AA} = \frac{N_{AA}^{inc}}{N_{pp}^{inc}} \frac{d^2N_{AA}}{d^2p_T} = dy dy_{pp},
\]

where \(N_{AA}^{inc} \) is the number of binary nucleon-nucleon collisions, \(N_{pp}^{inc} \) is the number of binary nucleon-nucleon collisions, and \(d^2N_{AA} \) and \(d^2N_{pp} \) are the inclusive cross-sections.

The \(R_{AA} \) m easured in d+Au and peripheral A+Au collisions exhibits an enhanced particle production which is believed to occur due to multiple nucleon scatterings within the colliding nuclei. This \(\text{initial} \) state e e is known as the Cronin e e \[1\]. M eanwhile, in central A+Au collisions, \(R_{AA} \) at high-\(p_T \) indicates that the particle production is strongly suppressed (by about a factor of 5) \[2\]. This \(\text{final} \) state e e has been attributed to the partonic energy loss in an opaque colored m edium \[5\]. However, neither of the two e e is su ciently understood and both require further experimental and theoretical study. The differential analysis presented here explores the system size e e on parton propagation through the medium to further evaluate the m echanisms of parton-medium interactions.

To provide additional constraints and systematics understanding of the m eson events in very light (d+Au) and heavy (A+Au) collision systems we present the key studies at the intermediate (Cu+Cu) system at the same incident energy \(E_{CN} = 200 \text{ GeV} \), bridging the gap between the two extremes. These m eson events may provide quantitative understanding of the partonic energy loss and its system size dependence. In addition, it is expected that the identified particle m eson events provide information on color-charge e e within the m echanism of jet quenching. A thorough experimental discriminination between quark and gluon jet fragmentation on event-by-event basis is crucial, it can be addressed statistically by exclusive analysis of proton (or baryon) and pion (m eson) production. We are utilizing the idea that the baryon to m eson ratio is found higher in quark jets compared to quark jets \[6\]. Identified proton and pion m eson events from pp collisions concur with this picture \[7\], as well as direct m eson events of baryon and m eson production in quark and gluon jets \[8\]. Thus, identified particle m eson events at high-\(p_T \) can then be used to analyze quark and quark propagation through the medium and to probe the color-charge differences of energy loss \[2,7,11,12\].

Additionally, systematic studies of identified particle production in Cu+Cu can shed new light on the anomalous enhancement of baryons with respect to m esons observed at intermediate transverse m ena \(2 < p_T < 6 \text{ GeV}/c \) in Au+Au collisions. This enhancement is not consistent with the extrapolated values from the m eson events in pp collisions and cannot be explained by cold nuclear m atter e e. At present, the preferred baryon m edium production is that realized with the jet fragmentation \[6\], which m ean and a shift of baryon yields to higher m ena relative to m eson yields \[13\]. The secondary m edium evokes an interplay of the ow e e in the radially expanding medium with the jet fragmentation \[14\].

In this paper identified (anti)proton and charged pion spectra are systematically explored with regard to the system size with the smaller Cu+Cu collisions at \(E_{CN} = 200 \text{ GeV} \). The centrality dependence of high-\(p_T \) hadron production and the \(p_T \) dependence of baryon m eson ratios in Cu+Cu data are compared to the Au+Au system as well as to pp collisions at the same energy. This allows gaining a greater understanding of peripheral collisions. The size of Cu nuclei is ideally suited to explore the turn-on of the high-\(p_T \) suppression bridging the gap between pp, d+Au and peripheral A+Au data in terms of system size and nuclear m atter.

The Cu+Cu data used in this analysis were recorded by the STAR experiment during Run 5 at RHIC.
the minimum bias trigger was based on the combined signals from the Beam-Beam Counters at forward rapidity (33 < y < 52) and the Zero-Degree Calorimeters, located at 18 m from the nominal interaction point [15]. In total, 23 million events were in this data set. Based on the charged track multiplicity recorded in the Time Projection Chamber (TPC) and Glauber MC model calculations, the data are divided into four centrality bins corresponding to 0-10%, 10-20%, 20-40% and 40-60% of fractional cross-section (= \text{geom}) bins. In order to remove as many background tracks as possible, tracks which intersect the measured collision vertex within 1 cm (distance of closest approach) were retained with a minimum range of 25 (out of 45) TPC trajectory points from each track.

Within the STAR experiment, particle identification at low-\(p_T \) is attained by use of the ionization energy loss (dE = dx) in the TPC [16]. For low-momentum entum particles, below 1 GeV/c, a clear mass separation is observed allowing the identification of \(\pi \), K and antiprotons. In the intermediate-\(p_T \) region (1 < \(p_T < 3 \text{ GeV/c} \)) the TPC is no longer directly usable by itself, as all particles, independent of mass, are minimum ionization. For the purpose of this paper we identify pions, kaons, protons and antiprotons at higher momentum (\(p_T > 3 \text{ GeV/c} \)) on a statistical basis utilizing the relativistic rise of the ionization energy loss in the TPC. For a given slice in transverse momentum, a distinctly non-single-Gaussian shape is observed, discussed in detail in [17], representing the normalized deviations from different energy loss trends of \(\pi, K \) and protons. The quantity used to express the energy loss is a normalized distribution, \(n \) defined in Eq. (2), which accounts for the theoretical expectation (B, known as a Bessel parameterization) and the resolution of the TPC for pions (\(\pi \)).

\[
n = \log((dE = dx)/(B)) = 2
\]

The resultant distribution in each transverse momentum range is with a Gaussian function (one per particle-species/charge). The Gaussian widths are considered to be the same, independent of particle type, and single-Gaussian centroids are defined by the theoretical expectations constrained by the identified proton and pion measurements from topologically reconstructed weakly decaying particle yields [17]. Further details of the particle identification technique can be found in Refs. [16,17].

Raw data yields are corrected for single-track efficiencies evaluated via Monte Carlo tracks embedded into real data events. We define single-track efficiency as the fraction of Monte Carlo tracks embedded into real Cu+Cu events that have been reconstructed. The efficiencies are derived for each di-\(p_T \) event multiplicity bin and particle species. For high-\(p_T \) tracks (\(p_T > 2 \text{ GeV/c} \)) in 200 GeV Cu+Cu events, the efficiency is
found to be 85% on average, with a weak (<10%) centrality and p_T dependence. In the analysis, pion and (anti)proton abundances are extracted from the n distribution using the newly calibrated centroid positions. The derived kaon yields are then smoothed to reduce statistical fluctuations, using a Levy 1^1 t. These assumptions on the kaon spectra are then used to determine the pion and proton yields. The systematics uncertainties from this procedure, on the spectra, are 2-10% for pions and 5-11% for protons, decreasing smoothly with p_T in the measured range. An analysis of the transverse momenta is limited only by the availability of the data. The corrections of uncertainties to the earlier evaluation from Au+Au data analysis 3^3. Systematic uncertainties from other possible sources such as the mom entum resolution (studied by emittance) and the uncertainty in the determination of the centroid position (within the particle identity calibration procedure) are negligible. The calculated transverse mom enta for π^+ and (anti)protons at $\sqrt{s}_{NN} = 200$ GeV are shown in Fig.1 (a) and (b) respectively. The reach in transverse mom entum is limited only by the available statistics. Additional p_T reach for pion identification is due to a larger separation from the kaon peak ($\chi^2 < 2$, $p_k < 1$).

Figure 2 shows p_T and p_T ratios in Cu+Cu data at $\sqrt{s}_{NN} = 200$ GeV for the four centrality bins. The data show no systematic trends versus centrality within uncertainties, and a weak (if any) decreasing p_T with transverse momentum (as observed in Au+Au collisions3^3). Thus, to improve the statistical uncertainties in the following discussion, data are averaged over particle charge.

The spectral data alone can convey only a limited message. To delve into properties of the resultant data, ratios are taken. The p_T such ratio is termed the nuclear modification factor (R_{AA}), defined in Eq. 4. We find that the pion spectra are suppressed in the most central (head-on) Cu+Cu data at $\sqrt{s}_{NN} = 200$ GeV (Fig. 4). For the peripheral (glancing) collisions, an enhancement is observed. To expose the features of the modification of the hadron spectra in Cu+Cu and Au+Au collisions, we study R_{AA} as a function of the number of participants in the collisions. For both system sizes R_{AA} is evaluated within several fractional cross-section bins and as a function of the number of participants. Figure 4 (a) shows the results of this comparison analysis using the most central 0-12% (open squares) and 12-30% (open circles) Au+Au data. For the most central events the suppression level is found to be different between the system sizes. The resultant spectra from Au+Au collisions are more suppressed than in Cu+Cu data. According to the Gluon calculation the m_T-central (20-40%) Cu+Cu collisions (closed circles) and m_T-peripheral (40-60%) Au+Au data (open circles) have similar number of participating nucleons (see Appendix A for details). For this selection of centralities within the two systems we find that the numerical values of R_{AA} agree within the uncertainties. This agreement suggests a correlation of the suppression with the initial volume of the collision system.

In Fig. 2 (b) we present the p_T averaged R_{AA} for pions ($p_T < 8$ GeV/c) as a function of the number of participating nucleons calculated for both Cu+Cu and Au+Au collisions. The agreement between Au+Au (open circles) and Cu+Cu (closed circles) is striking and demonstrates that the nuclear modification factor for pions is a smooth function of the number of participating nucleons (independent of the collision system).

Similarly, we explore the systematics of baryon production in Cu+Cu and Au+Au systems by comparing the R_{AA} for protons and antiprotons. Figure 5 (a) shows the R_{AA} distributions averaged over p_T and p_T for central bins of Cu+Cu events. The data at hand do not differentiate collision volume (N_{part}) or fractional cross-section effects are driving the high-p_T suppression for baryons due to the larger systematics uncertainties for (anti)protons measured. Nevertheless, we observe that protons production in the peripheral Cu+Cu events is consistent with binary scaling expectations, and the suppression is setting in as one progresses from the peripheral to central events. An overall similar centrality dependence was observed between the Au+Au and Cu+Cu data at the same energy (see Fig. 4 (b)), albeit Cu+Cu integrated R_{AA} values seem lower than the respective Au+Au data points. We emphasize that the systematics errors are uncorrelated between the system sizes, and both measurements are similar within the experimental uncertainties.

The similarity between the different system sizes at the same number of participants is also evident in other aspects of the data at lower p_T. The smooth dependence of the nuclear modification factor could be interpreted as a consequence of medium-induced energy loss of partons traversing the hot and dense medium. For the smaller system sizes, either peripheral Au+Au or Cu+Cu data, the path length traversed is smaller (on average) than for the larger system (central Au+Au). As observed in the data, a smaller energy loss is thus predicted.

Another dramatic effect observed in Au+Au data is the relative enhancement of protons to pions in the intermediate-p_T region as compared to pp and e^+e^- collisions3^3 as well as for other baryon to meson ratios1^2. This enhancement is found to be strongly dependent on the centrality of the collision, as illustrated in Fig. 5. The most peripheral Au+Au data is shown to exhibit little or no enhancement in this ratio, with respect to pp collisions at the same energy. A similar increasing
FIG. 2: Anti-particle to particle ratios, as a function of transverse momentum for pions (a) and protons (b). Data for the four centrality classes show little centrality dependence. Errors are statistical only.

FIG. 3: (Color online) (a) Nuclear modification factor, R_{AA}, for charged pions ($\pi^+ + \pi^-$) in Cu+Cu (filled symbols) and Au+Au (open symbols) collisions at $\sqrt{s_{NN}} = 200$ GeV. Error bands are shown for most peripheral and most central Cu+Cu data to represent evolution of the systematics uncertainties for this dataset. Error boxes at $R_{AA} = 1$ represent Cu+Cu scale uncertainties due to the number of collisions and from pp spectra normalization. (b) Integrated pion R_{AA} over the range 5$<p_T<$ 8 GeV/c versus N_{part}. The bands represent the systematic uncertainty on ratios. An additional scale error due to pp normalization (14%) is not shown.

trend of favorable baryon production with centrality is observed in the Cu+Cu collision system. The peak of the enhancement is observed in the region $p_T \sim 2$ GeV/c in Au+Au at a slightly lower transverse momentum than the range measured in this analysis. A higher transverse momentum the enhancement over pp collisions diminishes to the level expected from vacuum fragmentation.

The baryon to meson ratio ($p+p=(\pi^+ + \pi^-)$ in Cu+Cu and Au+Au collisions shows similar trends for an equivalent number of participating nucleons. To further quantify this observation Fig. (b) shows the proton to pion ratio (for hadrons with 3$<p_T<$ 4 GeV/c) measured in
Cu+Cu and Au+Au collisions as a function of N\text{part}. We find that this ratio is also sensitive to the initial volume of the collision system and exhibits the same quantitative N\text{part} dependence irrespective of the collision system.

As discussed earlier, it is found that in the kinematic range of our measurement baryons are produced predominantly from gluon fragmentation [20]. It is thus expected that an increase in the baryon to meson ratio in the intermediate- to high-p\text{T} range would be related to gluon sources. To explain the presented data, one could consider, for example, that a gluon jet could be more easily propagated through the medium than a
quark jet, leading to an increase in the number of protons in the interim edielate-p_T region. This, however, contradicts theoretical predictions where an opposite effect was expected. A plausibly, more gluon jets could be initially produced, or induced (for example, in the radiative energy loss scenario), for the more central data. The latter appears to be the more plausible, as the highest p_T data exhibits little or no enhancement over the pp data, indicating a similar energy loss for gluons and quarks (see Fig. 5). A tentative explanation is that the phenomena observed in the data have also been developed. For example, the recombination/fragmentation picture of them all/shower partons has had success in describing this in Au+Au data. Further information on the relative energy loss of quark and gluon jets can be extracted from the data by comparing the nuclear modification factors of protons and pions (Figs. 5 and 6). At high-p_T (above 5 GeV/c), however, the two suppression factors are found to be the same within the systematic uncertainties, suggesting a similar energy loss of quark and gluon jets in Cu+Cu collisions.

In conclusion, new results on high-p_T identified pion and proton spectra are presented for several centrality bins in Cu+Cu collisions at $p_{TN} = 200$ GeV. The data are found to exhibit similar systematics trends over a wide range of transverse momentum as Au+Au collisions at the same energy with a similar number of participants. The suppression pattern observed versus the number of participants in Au+Au data is followed by the Cu+Cu data to a large degree. The participant coverage in these Cu+Cu collisions is in a region where the suppression effects are turning on. A detailed study of the proton to pion ratio reveals similar systematics tendencies to that found in Au+Au data. Specifically, the increase in proton yields at high-p_T transverse momentum persists for the much smaller Cu+Cu system.

Further studies have shown similar suppression for protons and pions at high-p_T. With the context of the connection between the detected pions and protons and quark and gluon jets suggested in the introduction, these results indicate similar partonic energy loss for both gluons and quarks. The amount of energy loss suffered by the partons is found to be N_{part} dependent. Within the experimental uncertainties, the suppression for different collision species is found to be invariant for the same number of participants.

Acknowledgments

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the ONR and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sand Foundation, the DFG cluster of excellence ‘Origin and Structure of the Universe’, CNRS/IN2P3, STFC and EPSRC of the United Kingdom, FAPESP CNPq of Brazil, Ministry of Ed. and Sci. of the Russian Federation, NNSFC, CAS, MOST, and MOE of China, GA and SMST of the Czech Republic, FOM and NOW of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Sci. and Higher Ed., Korea Research Foundation, Ministry of Sci., Ed. and Sports of the Rep. of Croatia, Russian Ministry of Sci. and Tech., and ROSATOM of Russia.
APPENDIX A: MONTE CARLO GLAUBER MODEL RESULTS FOR THE CENTRALITY BINS USED IN THE PAPER

TABLE I: Number of participants N_{part} and number of binary collisions N_{bin} from the Monte Carlo Glauker model calculations for different centrality bins of minimum bias Cu+Cu collisions at 200 GeV.

<table>
<thead>
<tr>
<th>Centrality bin</th>
<th>N_{part}</th>
<th>N_{bin}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10%</td>
<td>$99.8^{+1.6}_{-1.0}$</td>
<td>$188.8^{+15.4}_{-13.4}$</td>
</tr>
<tr>
<td>10-20%</td>
<td>$74.2^{+1.3}_{-1.0}$</td>
<td>$123.8^{+9.4}_{-8.3}$</td>
</tr>
<tr>
<td>20-40%</td>
<td>$45.9^{+0.8}_{-0.6}$</td>
<td>$62.9^{+4.2}_{-3.7}$</td>
</tr>
<tr>
<td>40-60%</td>
<td>$21.5^{+0.5}_{-0.3}$</td>
<td>$22.7^{+1.2}_{-1.1}$</td>
</tr>
</tbody>
</table>

TABLE II: Number of participants N_{part} and number of binary collisions N_{bin} from the Monte Carlo Glauker model calculations for different centrality bins of minimum bias Au+Au collisions at 200 GeV.

<table>
<thead>
<tr>
<th>Centrality bin</th>
<th>N_{part}</th>
<th>N_{bin}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-20%</td>
<td>$234^{+8.3}_{-9.1}$</td>
<td>$591^{+51.9}_{-59.9}$</td>
</tr>
<tr>
<td>20-40%</td>
<td>$141^{+9.0}_{-9.1}$</td>
<td>$294^{+40.6}_{-39.9}$</td>
</tr>
<tr>
<td>40-60%</td>
<td>$62.4^{+8.1}_{-10.4}$</td>
<td>$93.5^{+17.5}_{-23.1}$</td>
</tr>
<tr>
<td>60-80%</td>
<td>$20.9^{+5.1}_{-6.5}$</td>
<td>$21.2^{+6.5}_{-7.9}$</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40-80%</td>
<td>$41.5^{+6.9}_{-6.6}$</td>
<td>$57.1^{+13.7}_{-13.3}$</td>
</tr>
</tbody>
</table>

TABLE III: Number of participants N_{part} and number of binary collisions N_{bin} from the Monte Carlo Glauker model calculations for 200 GeV central triggered Au+Au collisions.

<table>
<thead>
<tr>
<th>Centrality bin</th>
<th>N_{part}</th>
<th>N_{bin}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12%</td>
<td>$315^{+5.6}_{-4.5}$</td>
<td>$900^{+71.6}_{-63.7}$</td>
</tr>
</tbody>
</table>