On the Relation between Rigging Inner Product and Master Constraint
Direct Integral Decomposition

Muxin Han¹,³*, Thomas Thiemann¹,²,³†

¹ MPI f. Gravitationsphysik, Albert-Einstein-Institut,
Am Mühlenberg 1, 14476 Potsdam, Germany

² Perimeter Institute for Theoretical Physics,
31 Caroline Street N, Waterloo, ON N2L 2Y5, Canada

³ Institut f. Theoretische Physik III, Universität Erlangen-Nürnberg
Staudtstraße 7, 91058 Erlangen, Germany

Abstract

Canonical quantisation of constrained systems with first class constraints via Dirac’s operator constraint method proceeds by the theory of Rigged Hilbert spaces, sometimes also called Refined Algebraic Quantisation (RAQ). This method can work when the constraints form a Lie algebra. When the constraints only close with nontrivial structure functions, the Rigging map can no longer be defined.

To overcome this obstacle, the Master Constraint Method has been proposed which replaces the individual constraints by a weighted sum of absolute squares of the constraints. Now the direct integral decomposition methods (DID), which are closely related to Rigged Hilbert spaces, become available and have been successfully tested in various situations.

It is relatively straightforward to relate the Rigging Inner Product to the path integral that one obtains via reduced phase space methods. However, for the Master Constraint this is not at all obvious. In this paper we find sufficient conditions under which such a relation can be established. Key to our analysis is the possibility to pass to equivalent, Abelian constraints, at least locally in phase space. Then the Master Constraint DID for those Abelian constraints can be directly related to the Rigging Map and therefore has a path integral formulation.

*mhan@aei.mpg.de
†thiemann@aei.mpg.de, tthiemann@perimeterinstitute.ca, thiemann@theorie3.physik.uni-erlangen.de
Contents

1 Introduction ... 3

2 Group averaging rigging inner product and direct integral decomposition 7

3 The consistency between the group averaging approaches with Abelianized constraints and master constraint 13
 3.1 A finite number of Abelianized constraints 13
 3.2 An infinite number of Abelianized constraints 18

4 Conclusion and discussion 21
1 Introduction

The quantization of a constrained system is of profound interest, because the fundamental interactions in the physical world are described by theories with gauge symmetries. The case of General Relativity is especially interesting and challenging, because its Hamiltonian is a linear combination of the first-class constraints, which means that the dynamics of GR is determined by the constraints and their gauge transformations.

There are many different approaches to quantize a constrained system (see [2]), one of which is canonical quantization which uses the operator formalism. A traditional way to perform canonical quantization for a constrained system is Dirac quantization [3]. In Dirac quantization we first perform the quantization procedure disregarding the constraints and define a certain kinematical Hilbert space H_{Kin}, which provides a representation of the elementary variables and their canonical commutation relations. Then we quantize the classical first-class constraints C_I as densely defined and closable operators \hat{C}_I on the kinematical Hilbert space H_{Kin}. Once such a construction is finished, we should define the Quantum Constraint Equation

$$\hat{C}_I \Psi = 0 \quad (1.1)$$

and solve it in general. The space of solutions equipped with a physical inner product defines the physical Hilbert space. Such a prescription is no problem when we consider the simplest case that there is only one single constraint \hat{C}, and that \hat{C} is a self-adjoint operator with only pure point spectrum. It is because in this case, we only need to solve the eigenvalue equation $\hat{C} \Psi = 0$ corresponding to the zero eigenvalue, and the space of solutions is a subspace of the kinematical Hilbert space. Therefore the physical inner product is the same as the kinematical inner product without ambiguity. The physical Hilbert space H_{Phys} is identified as Hilbert subspace of the kinematical Hilbert space H_{Kin} corresponding to the constraint kernel. However, the above naive prescription of Dirac quantization often fails to specify the physical Hilbert space for more complicated constrained systems. The complications may come from the following sources:

- The constrained system may possess several constraints C_I $I \in I$ where I is a (finite or infinite) index set. If we can represent all the constraints as operators \hat{C}_I, it is in general hard to solve all the constraints together and find the common solution spaces.

- The first-class constraints C_I form a constraint algebra with the Poisson commutation relation

$$\{C_I, C_J\} = f_{IJ}^{\,K} C_K \quad (1.2)$$

where in general $f_{IJ}^{\,K}$ may be a function depending on the phase space variables ($f_{IJ}^{\,K}$ is called a structure function). The quantization of the constraints in this case may suffer from quantum anomalies, which results in the physical Hilbert space to have less degrees of freedom than the classical theory.

- Even when we don’t have the above problems, e.g. even when we consider just a single self-adjoint constraint operator \hat{C}, there is still the problem about how to specify the physical inner product for the solution space. The issue arises because the spectrum of the constraint operator \hat{C} in general is not only pure point, but can also have a continuous part. If zero is contained in the continuous spectrum, the solutions of the quantum constraint equation Eq.(1.1) are in general not contained in the kinematical Hilbert space H_{Kin}. Thus the inner product of H_{Kin} is not available for the definition of the physical inner product, because the solution space of the quantum constraint equation is not a subspace of the kinematical Hilbert space anymore.

In this paper we consider two approaches that have been proposed to refine Dirac’s quantization procedure and in order to (partially) solve the above problems:

The first one is the so called, Refined Algebraic Quantization (RAQ) [4] programme. The RAQ prescription relaxes the condition that the solution of the constraint equations belongs to the kinematical Hilbert space. Solutions to the constraints are now elements of the algebraic dual $\mathfrak{D}^*_{\text{Kin}}$, that is, distributions on a dense domain $\mathfrak{D}_{\text{Kin}} \subset H_{\text{Kin}}$, which is supposed to be invariant under all the \hat{C}_I and \hat{C}_I^\dagger (the constraint operator may not necessarily be self-adjoint). So what we are looking are states $\Psi \in \mathfrak{D}^*$ such that:

$$\Psi \left[\hat{C}_I^\dagger f \right] := \hat{C}_I^\dagger \Psi \left[f \right] = 0, \quad \forall f \in \mathfrak{D} \quad (1.3)$$
The space of solutions is denoted by $\mathfrak{D}_{\text{phys}}^*$. The physical Hilbert space will be a subspace of $\mathfrak{D}_{\text{phys}}^*$. Eventually, $\mathfrak{D}_{\text{phys}}^*$ will be the algebraic dual of a dense domain $\mathfrak{D}_{\text{phys}} \subset \mathcal{H}_{\text{phys}}$, which is invariant under the algebra of operators corresponding to Dirac observables. Hence we obtain a Gel’fand triple:

\[
\mathfrak{D}_{\text{phys}} \hookrightarrow \mathcal{H}_{\text{phys}} \hookrightarrow \mathfrak{D}_{\text{phys}}^*
\]

A systematic construction of the physical Hilbert space is available if we have an anti-linear rigging map:

\[
\eta : \mathcal{D}_{\text{Kin}} \rightarrow \mathfrak{D}_{\text{phys}}^*, \ f \mapsto \eta(f)
\]

such that $\eta(f')|f]$ is a positive semi-definite sesquilinear form on \mathcal{D}_{Kin} and such that for all the Dirac observables \hat{O} on the kinematical Hilbert space, we have $\hat{O}'\eta(f) = \eta(\hat{O}f)$. If the quantum constraint algebra is generated by self-adjoint constraints \hat{C}_I and their commutator algebra is a Lie algebra i.e. the structure functions are constant, then we can try to heuristically define the rigging map via the group averaging procedure:

\[
\eta(f) := \int d\mu(t) < e^{i\hat{C}_I(t)} f, . >
\]

where $d\mu$ is an invariant measure on the gauge group generated by the constraints, e.g. if the gauge group is a locally compact Lie group, $d\mu$ can be chosen as the Haar measure. If we have obtained a rigging map η, the physical inner product is defined by the rigging inner product

\[
\langle \eta(f)|\eta(f')\rangle_{\text{phys}} := \eta(f')|f], \ \forall f, f' \in \mathcal{D}_{\text{Kin}}.
\]

Then a null space $\mathcal{R} \subset \mathfrak{D}_{\text{phys}}^*$ is defined by $\{\eta(f) \in \mathfrak{D}_{\text{phys}}^*: ||\eta(f)||_{\text{phys}} = 0\}$. Therefore

\[
\mathfrak{D}_{\text{phys}} := \eta(\mathcal{D}_{\text{Kin}})/\mathcal{R}
\]

The physical Hilbert space $\mathcal{H}_{\text{phys}}$ is defined by the completion of $\mathfrak{D}_{\text{phys}}^*$ with respect to the physical inner product. The above prescription of RAQ provides an effective way to obtain the physical Hilbert space by quantizing a general first-class constrained system, whose constraint algebra has a Lie algebra structure and the quantum gauge transformations form a group such that group averaging can be applied. However, this prescription is not applicable to a constraint algebra with structure functions.

The new idea put forward in [1] is to exploit the Abelianization theorem [2] in order to adapt RAQ to the case with non trivial structure functions. The Abelianization theorem states that in general, all the first-class constraints can be abelianized at least locally in the phase space, i.e. there exists a family of constraints \hat{C}_I (locally) equivalent to the original family of constraints, such that $[\hat{C}_I, \hat{C}_J] = 0$. If the Abelianized constraints \hat{C}_I can be quantized as self-adjoint operators without anomalies, that is, $[\hat{C}_I, \hat{C}_J] = 0$, we obtain a quantum constraint algebra with Lie algebra structure and the quantum gauge transformations generated by them form an Abelian group. Thus we can use the group averaging technique to construct the rigging map and the physical Hilbert space as sketched above.

Another proposal is the Master Constraint Programme (MCP) [5] and Direct Integral Decomposition (DID) [6, 7]. The MCP modifies the prescription of Dirac quantization by introducing a so called, Master Constraint, which is classically defined by

\[
\mathbb{M} := \sum_{I,J \in \mathcal{I}} K^{IJ} \hat{C}_I \hat{C}_J
\]

for some real valued positive matrix K^{IJ} which could even be a non trivial function on phase space. Classically one has $\mathbb{M} = 0$ if and only if $\hat{C}_I = 0$ for all $I \in \mathcal{I}$. Also the Dirac observables can be defined purely in terms of \mathbb{M} [5]. Thus \mathbb{M} is a classically equivalent starting point in order to encode the full set of constraints \hat{C}_I. It is therefore conceivable that the quantized master constraint $\hat{\mathbb{M}}$ can be used as an alternative tool in order to determine the physical Hilbert space in the situation that group averaging with respect to the individual constraints is available and that it extends RAQ to the situation with non trivial structure functions. This expectation has been verified in many non trivial examples [6, 7].

An immediate technical advantage of the master constraint over the individual constraints is that, as a positive operator, the master constraint $\hat{\mathbb{M}}$ can be defined as a self-adjoint operator on \mathcal{H}_{Kin} by employing the preferred Friedrich’s self-joint extension [19]. Moreover, if the kinematical Hilbert space is separable, the physical Hilbert space can be obtained via spectral theory, specifically Direct Integral Decomposition (DID). We first recall the general definition of the DID representation of the Hilbert space.
Definition 1.1. Let \((X, \mathcal{B}, \mu)\) be a separable topological measure space such that \(X\) is \(\sigma\)-finite with respect to \(\mu\) and let \(x \mapsto \mathcal{H}_x\) be an assignment of separable Hilbert spaces such that the function \(x \mapsto N(x)\), where \(N(x)\) is the countable dimension of \(\mathcal{H}_x\), is measurable. It follows that the sets \(X_N = \{ x \in X; N(x) = N \}\), where \(N\) denotes any countable cardinality, are measurable. Since Hilbert spaces whose dimensions have the same cardinality are unitarily equivalent we may identify all the \(\mathcal{H}_x\), \(N(x) = N\) with a single \(\mathcal{H}_N = \mathbb{C}^N\) with standard inner product. We now consider maps

\[
\psi : X \to \prod_{x \in X} \mathcal{H}_x; \quad x \mapsto (\psi(x))_{x \in X}
\]

subject to the following two constraints:

1. The maps \(x \mapsto \langle \psi(x), \psi(x) \rangle_{\mathcal{H}_x}\) are measurable for all \(x \in X_N\) and all \(\psi \in \mathcal{H}_N\).
2. If

\[
< \psi_1, \psi_2 > := \sum_N \int_{X_N} d\mu(x) \langle \psi_1(x), \psi_2(x) \rangle_{\mathcal{H}_x}
\]

then \(\langle \psi, \psi \rangle > \infty\).

The completion of the space of maps (1.10) in the inner product (1.11) is called the direct integral of the \(\mathcal{H}_x\) with respect to \(\mu\) and one writes

\[
\mathcal{H}^0_{\mu,N} = \int_X d\mu(x) \mathcal{H}_x, \quad < \xi_1, \xi_2 > := \int_X d\mu(x) < \xi_1(x), \xi_2(x) >_{\mathcal{H}_x}
\]

Here in our case, the spectral theorem for the self-adjoint master constraint \(\hat{M}\) provides a natural DID representation of the kinematical Hilbert space \(\mathcal{H}_{Kin}\), where the topological measure space is the spectrum of the master constraint operator \(\hat{M}\) and \(d\mu\) is the spectral measure. Then the physical Hilbert space is defined by the fiber Hilbert space \(\mathcal{H}_{phys}^0\).

Notice that heuristically DID is nothing else than group averaging for a single self – adjoint constraint operator \(\hat{M}\). The other advantage of the Master Constraint Programme is that there are no problems with anomalies as far as \(\hat{M}\) itself is concerned since trivially \([\hat{M}, \hat{M}] = 0\). Of course, if the individual constraints that constitute \(\hat{M}\) are anomalous then \(\hat{M}\) is expected to have trivial kernel and in this case one proposal is to subtract the corresponding spectral gap from \(\hat{M}\), see [5] for details.

The master constraint rigging map is then heuristically defined for any kinematical state \(f \in \mathcal{D}_{Kin}\) via

\[
\tilde{\eta}(f) := \int dt < e^{it\hat{M}} f, . >
\]

which also gives the physical inner product as a rigging inner product, and further gives the physical Hilbert space \(\mathcal{H}_{phys}\).

Now we have three different approaches towards the physical Hilbert space of a general first-class constraint system. They are:

1. The Direct Integral Decomposition (DID) using the master constraint,
2. The Refined Algebraic Quantization (RAQ) and the group averaging using the master constraint,
3. The Refined Algebraic Quantization (RAQ) and the group averaging using a set of Abelianized constraints.

The immediate question to ask is: Are these three approaches equivalent? If not, which one gives the correct physical Hilbert space? For the examples discussed in [7] it turned out that the DID approach using the master constraint always gave satisfactory results and to some extent is less ambiguous than the RAQ prescription. Moreover, in [6] it was shown that RAQ with group averaging is in general inequivalent with DID, especially when zero is an eigenvalue embedded in the continuous spectrum in which case RAQ with group averaging sometimes leads to unsatisfactory results.

The purpose of the present paper is to analyze in more detail the relations between the three prescriptions for the physical Hilbert space. It turns out that although the group averaging in the form of Eq.(1.13) is inconsistent with the DID definition of the physical Hilbert space, a certain modification of the group averaging prescription Eq.(1.13)\footnote{Such a definition of the physical Hilbert space is in general ambiguous, there are some more physical prescriptions necessary to remove these ambiguities [6]. We will come back to this point in Section 2.} does lead to consistency with the
DID definition. More precisely, under certain technical assumptions, the modified group averaging technique captures precisely the absolutely continuous sector of the DID physical Hilbert space. The technical assumptions for establishing the consistency are fulfilled by all the physical models tested in [7].

On the other hand, a similar modification of the group averaging prescription can also be done for the group averaging of the Abelianized constraints. It turns out again that under certain technical assumptions, the modified group averaging using the set of Abelianized constraints leads to the same result as the modified group averaging using a single master constraint for those Abelianized constraints. To summarize, under some assumptions which we spell out in detail in the course of this paper, the above three approaches for the physical Hilbert space are consistent among each other.

Our motivation for studying this questions arose from an important open question in Loop Quantum Gravity (LQG) [8, 9]. LQG is a specific incarnation of the programme of canonical quantisation applied to General Relativity. It is a canonical quantum theory in terms of operators and Hilbert spaces. On the other hand, path integral techniques have been applied to LQG based on the kinematical Hilbert space underlying the canonical theory and resulted in what is called spin foam models [10]. While the two theories should both be quantisations of GR, the relation between the two is not at all obvious because in spin foam models one only uses the kinematical structure of LQG, the information about the quantum dynamics of the canonical theory [11] is not obviously implemented in spin foam models which are formulated as (simplicity) constrained BF theories [12, 13]. In order to compare the canonical and spin foam approach it is natural to try to give a systematic path integral derivation of spin foam models starting from the canonical theory, which so far is missing entirely.

Now it is rather well known how to relate the group averaging map for the individual constraints to the established reduced phase space path integral [2], at least at a heuristic level. However, the constraints of GR are not of the kind to which group averaging techniques apply, since (in)famously they only close with non trivial structure functions which causes all sorts of technical problems (see e.g. the extensive discussion in [14]). It is for that reason that the Master Constraint Programme was invented. However, the Master Constraint group averaging map is not obviously related to the path integral formulation of the individual constraints. The missing link between the path integral formulation and the Master constraint programme can be found by considering the intermediate step of group averaging the Abelianized constraints and the Master constraint for those Abelianized constraints. In [1] we have sketched how one can directly relate the group averaging maps $\eta, \tilde{\eta}$ for these Abelianised constraints and therefore has access to a path integral formulation directly from the Master constraint. In this paper we wish to study this relation mathematically more carefully.

One can rightfully ask whether all of this has any practical use as far as Quantum Gravity is concerned because the Abelianisation of constraints in field theories usually can be performed only at the price of giving up spatial locality. For instance, in pure gravity one can form four algebraically independent scalars out of the 3D Riemann curvature and higher derivatives or polynomials thereof. In order to Abelianise the Hamiltonian and spatial diffeomorphism constraints of GR one needs to find a canonical transformation mapping to those scalars as configuration coordinates on phase space. It is clear that this involves inverting Laplacians. One then solves the constraints for the conjugate momenta of those scalars which provides the Abelianised constraints. This procedure is practically useless. The idea therefore is to use suitable matter in order to avoid non locality which can be done [15, 16, 17] and in principle, at least at a heuristic level, leads to a spin foam model, albeit necessarily with matter.

The present paper is organized as the follows:

In section 2, we define a modified group averaging using a single self-adjoint master constraint operator, and prove under which circumstances such a group averaging gives the absolutely continuous sector of the DID physical Hilbert space.

In section 3 we define the modified group averaging using a set of self-adjoint Abelianized constraints, and study the relation between this group averaging and the group averaging using the master constraint. Finally we prove that under some technical assumptions, the two approaches lead to the same result.

In section 4 we summarize and conclude.
2 Group averaging rigging inner product and direct integral decomposition

We first consider the master constraint programme. Recall that given the self-adjoint master constraint operator \hat{M}, we can formally write down the quantum master constraint equation by

$$\hat{M}\Psi = 0$$ (2.1)

The space of solutions for this equation combined with a certain physical inner product is called the physical Hilbert space $\mathcal{H}_{\text{phys}}$. However, the equation Eq.(2.1) is only formal because zero is generically contained in the continuous spectrum of the master constraint operator, so that the solution state Ψ does not live in the kinematical Hilbert space anymore. In order to rigorously define the space of solutions and to specify the physical inner product, we should in principle employ the direct integral decomposition (DID) for the master constraint operator \hat{M}. Whenever the master constraint operator \hat{M} can be quantized as a self-adjoint operator, the physical Hilbert space $\mathcal{H}_{\text{phys}}$ is well-defined in principle (modulo measure theoretic subtleties which require further physical input but do not present mathematically obstacles).

In [6], the programme of direct integral decomposition (DID) is introduced in order to rigorously define the physical Hilbert space for a general constraint system. It proceeds as the follows:

1. Given a kinematical Hilbert space \mathcal{H}_{kin} and a self-adjoint master constraint operator $\hat{M} = K^{IJ}C_I^J$, we have to first of all split the kinematical Hilbert space into three mutually orthogonal sectors $\mathcal{H}_{\text{kin}} = \mathcal{H}_{\text{pp}} \oplus \mathcal{H}_{\text{ac}} \oplus \mathcal{H}_{\text{cs}}$ with respect to the three different possible spectral types of the master constraint operator \hat{M}.

2. We make the direct integral decomposition of each \mathcal{H}^*, $* = \text{pp, ac, cs}$ with respect to the spectrum of the master constraint operator \hat{M} restricted in each sector, i.e.

$$\mathcal{H}^* = \int_0^\infty d\mu^*(\lambda)\mathcal{H}^*_\lambda$$

3. Finally, we define the physical Hilbert space to be a direct sum of three fiber Hilbert spaces at $\lambda = 0$ with respect to the three kinds of spectral types, i.e. $\mathcal{H}_{\text{phys}} = \mathcal{H}^*_{\lambda=0} \oplus \mathcal{H}^*_\lambda \oplus \mathcal{H}^*_{\lambda}$

Note that in step 2. we have assumed that all the ambiguities outlined in [6] have been solved by considering some physical criterion e.g. the physical Hilbert space should admit sufficiently many semiclassical states, and it should represent the algebra of Dirac observables as an algebra of self-adjoint operators. With this assumption, the procedure of the DID programme gives a proper definition of the physical Hilbert space for a general constraint system. In many models simpler than GR, such a programme gives satisfactory results [7].

However, if we want to practically obtain the physical Hilbert space of LQG and get detailed knowledge about the structure of this physical Hilbert space, then DID is not a suitable procedure. The reason is the following: the whole procedure of DID depends on the precise knowledge of the spectral structure for the master constraint operator. For the case of LQG or AQG with a complicated master constraint operator \hat{M}, the spectrum of \hat{M} is largely unknown so that the DID programme is too hard to apply practically. Therefore, for practical purposes, we have to employ a technique such that the final structure of physical Hilbert space $\mathcal{H}_{\text{phys}} = \mathcal{H}^*_{\lambda=0} \oplus \mathcal{H}^*_{\lambda} \oplus \mathcal{H}^*_{\lambda}$ is obtained without much of the knowledge for the spectrum of the master constraint operator. Fortunately, we have a single constraint in the quantum theory, whose "gauge transformations" that it generates form a one-parameter group. Therefore we can employ an alternative, (modified) group averaging technique to obtain the physical inner product as outlined in the introduction.

Definition 2.1. For each state ψ in a dense subset \mathcal{D} of \mathcal{H}_{kin}, a linear functional $\eta_\Omega(\psi)$ in the algebraic dual of \mathcal{D} is defined by

$$\eta_\Omega(\psi)[\phi] := \lim_{\epsilon \to 0} \int_0^\infty d\mu \langle \psi | e^{i\mu(M-\epsilon)}|\phi\rangle_{\text{kin}}$$

for $\forall \psi \in \mathcal{D}$ and where $\Omega \in \mathcal{H}_{\text{kin}}$ is a once and for all fixed reference vector which corresponds to a choice of normalization. The inner product on the linear span of the $\eta_\Omega(\psi)$ is defined by $\langle \eta(\psi) | \eta(\phi) \rangle_\Omega := \eta_\Omega(\psi)[\phi]$. The resulting Hilbert space is denoted by \mathcal{H}_Ω.

\(^1\)These are only gauge transformations in the mathematical sense. The Hamiltonian vector field of the classical Master constraint vanishes on the constraint surface.
The reason for taking the limit $\epsilon \to 0$ in this definition is in order to establish the connection between the group averaging Hilbert space \mathcal{H}_Ω and one of the sectors in the physical Hilbert space as defined via DID above. This will become clear below.

Here we explicitly construct the direct integral decomposition for \mathbf{M}. We denote by $E(\lambda)$ the projection valued measure associated with \mathbf{M}, which is a map from the natural Borel σ-algebra on \mathbb{R} into the set of projection operators on \mathcal{H}_{Kin}. Thus we have a spectral measure for any unit vector $\Omega \in \mathcal{H}_{Kin}$ defined by

$$\mu_\Omega(B) = \langle \Omega | E(B) | \Omega \rangle_{Kin}$$

for any measurable set B in \mathbb{R}.

Thus the kinematical Hilbert space \mathcal{H}_{Kin} can be decomposed into $\mathcal{H}^{pp} \oplus \mathcal{H}^{ac} \oplus \mathcal{H}^{cs}$, where $\mathcal{H}^* = \{ \Omega \in \mathcal{H}_{Kin} | \mu_\Omega = \mu_\Omega^*, \, \mu^* = pp, \, ac, \, cs \}$. In each of \mathcal{H}^*, the projection valued measure of $\mathbf{M}_{\mathcal{H}}$ is denoted by $E^*(\lambda)$. Given $\psi_\epsilon \in \mathcal{H}^*$ and a smooth function with compact support $f \in C_c^\infty(\mathbb{R})$, one can construct a C^∞-vector for $\mathbf{M}_{\mathcal{H}^*}$ by

$$\Omega_f^\psi := \int_\mathbb{R} dt \, f(t)e^{i\Omega_\epsilon t}$$

and $i\mathbf{M} \Omega_f^\psi = -\Omega_f^\psi$. The span of these C^∞-vectors as ψ^* and f vary is dense in \mathcal{H}^*.

Suppose we pick a C^∞-vector Ω_1^*, then we obtain a subspace \mathcal{H}_1^* by the closed linear span of the vectors $p^*(\mathbf{M})\Omega_1^*$ where $p^*(\mathbf{M})$ denotes a polynomial of \mathbf{M}. If $\mathcal{H}_1^* \neq \mathcal{H}^*$, we can pick another C^∞-vector $\Omega_2^* \in \mathcal{H}_1^\perp$ and construct another subspace $\mathcal{H}_2^* \subset \mathcal{H}_1^\perp$ in the same way. Iterating this procedure, we arrive at an at most countable direct sum by the separability of \mathcal{H}^*

$$\mathcal{H}^* = \oplus_{m=1}^\infty \mathcal{H}_m^*$$

in which a dense set of vectors can be given in the form $(p_m^*(\mathbf{M})\Omega_1^*)^\infty$ where each p_m^* is a polynomial of \mathbf{M} and each Ω_1^* is a C^∞-vector for \mathbf{M}.

For any measurable set B in \mathbb{R}, we consider the spectral measure

$$\mu^*_m(B) = \langle \Omega_1^* | E^*(B) | \Omega_1^* \rangle$$

If we choose a probability spectral measure $\mu^* = \sum_{m=1}^\infty c_m \mu^*_m$ (with the maxmality feature: for any $\psi \in \mathcal{H}^*$ the associated spectral measure $\mu^*_\psi(B) = \langle \psi | E^*(B) | \psi \rangle$ is absolutely continuous with respect to μ^* (e.g. if $c_m > 0$ for all m),

$$d\mu^*_m(\lambda) = \rho^*_m(\lambda) d\mu^*(\lambda)$$

and each ρ^*_m is a nonnegative $L^1(\mathbb{R}, \mu^*)$ function. We will assume that each ρ^*_m has a representative which is continuous at $\lambda = 0$ [6, 7].

We define the function $N^* : \mathbb{R} \to \mathbb{N}$ by $N^*(\lambda) = M$ provided that λ lies in precisely M of the $S_{\rho^*_m} = \{ \lambda \in \mathbb{R} | \rho^*_m(\lambda) > 0 \}$. We also denote by X^*_M the pre-image $X^*_M = \{ \lambda \in \mathbb{R} | N^*(\lambda) = M \}$. $\{M\}$ under N^*.

For any two vectors $\psi_\epsilon = (p_m^*(\mathbf{M})\Omega_1^*)_m$ and $\psi'_\epsilon = (p_m^*(\mathbf{M})\Omega_1^*)_m$

$$\langle \psi_\epsilon | \psi'_\epsilon \rangle^* = \sum_{m=1}^\infty \langle \Omega_1^* | p_m^*(\mathbf{M})^{\dagger} p_m^*(\mathbf{M}) \Omega_1^* \rangle^*$$

$$= \sum_{m=1}^\infty \int_\mathbb{R} d\mu^*_m(\lambda) \, p_m^*(\lambda) \, p'_m(\lambda)$$

$$= \sum_{m=1}^\infty \int_\mathbb{R} d\mu^*_m(\lambda) \sum_{l=1}^{N^*_m(\lambda)} \rho^*_m(\lambda) \, p_m^*(\lambda) \, p'_m(\lambda)$$

$$= \sum_{M=1}^\infty \int_{X^*_M} d\mu^*_m(\lambda) \sum_{l=1}^{N^*_m(\lambda)} \rho^*_m(\lambda) \, p_m^*(\lambda) \, p'_m(\lambda)$$

where $\rho^*_m(\lambda) = 0$ at λ. Therefore we arrive at a direct integral representation, i.e.

$$\mathcal{H}^* = \mathcal{H}^{\infty, \infty} = \int_\mathbb{R} d\mu^*(\lambda) \mathcal{H}_\lambda^*$$

$$\langle \psi_\epsilon | \psi'_\epsilon \rangle^* = \sum_{M=1}^\infty \int_{X^*_M} d\mu^*_m(\lambda) \langle \psi_\epsilon(\lambda) | \psi'_\epsilon(\lambda) \rangle^*$$

(2.2)
where

\[\psi_s(\lambda) = \sum_{k=1}^{N_s} \sqrt{P_{m_k}(\lambda)} p_{m_k}^s(\lambda) e_k(\lambda) \]

\[\langle \psi_s(\lambda)|\psi'_s(\lambda)\rangle^*_\lambda = \sum_{k=1}^{N_s} \sqrt{P_{m_k}(\lambda)} p_{m_k}^s(\lambda) p_{m_k}^{'s}(\lambda) \]

\(\{e_k(\lambda)\}_{k=1}^{N_s}\) is an orthonormal basis in \(\mathcal{H}_\lambda^s \cong \mathbb{C}^{N_s}\). Then we have the following theorem:

Theorem 2.1. We suppose zero is not a limit point in \(\sigma^{pp}(\mathbb{M})\) and that \(\sigma^{ac}(\mathbb{M}) = 0\). In addition, if we have any one of the following conditions

1. there exists \(\delta > 0\) such that each \(\mu_{mm}^{ac}\) \((d\mu_{mm}^{ac} = \mu_{mm}^{ac} d\lambda)\) is continuous on the closed interval \([0, \delta]\).
2. there exists \(\delta > 0\) such that each \(\rho_{mm}^{ac}\) is continuous at \(\lambda = 0\) and is differentiable on the open interval \((0, \delta)\).
3. there exists \(\delta > 0\) such that \(N_{ac}\) is constant on the neighborhood \([0, \delta]\).

Then there exists a dense domain \(\mathcal{D}\) in \(\mathcal{H}_{Kin}\), such that for some choice of reference vector \(\Omega\) the group averaging Hilbert space \(\mathcal{H}_\Omega^ac\) is unitarily equivalent to the absolutely continuous sector of \(\mathcal{H}_{Kin,0}^ac\).

Proof: First of all, for any two states \(\psi_s, \phi_s \in \mathcal{H}^s\) \((s = pp, ac)\), we consider the integral,

\[
\int_{\mathbb{R}} \text{d}(\psi_s| e^{i\eta(M-\epsilon)}|\phi_s)^* \]

\[= \int_{\mathbb{R}} \text{d}t \int_{\sigma(M)} \text{d}u(t) e^{i\eta(\lambda - \epsilon)} \langle \psi_s(\lambda)|\phi_s(\lambda)\rangle^*_\lambda \]

\[= \lim_{g \to 0} \int_{\mathbb{R}} \text{d}t \int_{\sigma(M)} \text{d}u(t) e^{i\eta(\lambda - \epsilon - |\eta|)} \langle \psi_s(\lambda)|\phi_s(\lambda)\rangle^*_\lambda. \quad (2.3)\]

This equation is justified by the Lebesgue monotone convergence theorem \([18]\), because \(\{e^{-|\eta|}\}_\epsilon\) is an monotone increasing family for each \(t \in \mathbb{R}\) when \(g \to 0\), and the other part of the function in the integrand can be uniquely split into the form \(u_+ (\lambda) - u_- (\lambda) + iv_+ (\lambda) - iv_- (\lambda)\) where \(u_\pm\) and \(v_\pm\) are nonnegative measurable functions.

The integrals \(\int_{\mathbb{R}} \text{d}t\) and \(\int_{\sigma(M)} \text{d}u(t)\) in the above equation can be interchanged by Fubini’s theorem \([18]\), since the integrand \(e^{i\eta(\lambda - \epsilon - |\eta|)} \langle \psi_s(\lambda)|\phi_s(\lambda)\rangle^*_\lambda\) is measurable on \(\mathbb{R}^2\) and \(\int_{\mathbb{R}} \text{d}t \int_{\sigma(M)} \text{d}u(t) u_\pm (\lambda) e^{-|\eta|} < \infty\) (also for \(v_\pm\)). Therefore

\[
\int_{\mathbb{R}} \text{d}(\psi_s| e^{i\eta(M-\epsilon)}|\phi_s)^* \]

\[= \lim_{g \to 0} \int_{\sigma(M)} \text{d}u(t) \langle \psi_s(\lambda)|\phi_s(\lambda)\rangle^*_\lambda \int_{\mathbb{R}} \text{d}t e^{i\eta(\lambda - \epsilon - |\eta|)} \]

\[= \lim_{g \to 0} 2 \int_{\sigma(M)} \text{d}u(t) \langle \psi_s(\lambda)|\phi_s(\lambda)\rangle^*_\lambda \frac{g}{\sqrt{\epsilon^2 + (\lambda - \epsilon)^2}} \]

We first consider the pure point spectrum \(s = pp\). By the assumption that zero is not a limit point in \(\sigma^{pp}(\mathbb{M})\), for sufficiently small \(\epsilon\) we have \(\lambda - \epsilon \neq 0\) for all \(\lambda \in \sigma^{pp}(\mathbb{M})\). Then, the function \(\int_{\mathbb{R}} \frac{2g}{\lambda^2 + (\lambda - \epsilon)^2} \text{d}t\) is bounded in the limit \(g \to 0\). Therefore the above integral vanishes as one sees by applying the Lebesgue dominated convergence theorem. Hence for any three states \(\psi, \phi, \Omega \in \mathcal{H}_{Kin}\)

\[
\langle \eta(\psi)|\eta(\phi)\rangle^\Omega = \lim_{\epsilon \to 0} \int_{\mathbb{R}} \text{d}(\phi| e^{i\eta(M-\epsilon)}|\phi)^{ac} \int_{\mathbb{R}} \text{d}(\Omega| e^{i\eta(M-\epsilon)}|\Omega)^{ac} \]

so we only need to consider the absolutely continuous spectrum in what follows.

Furthermore, we have already seen that

\[
\langle \psi_{ac}|\psi_{ac}\rangle^{ac} = \sum_{m=1}^{\infty} \int_{\mathbb{R}} \text{d}\mu_{mm}^{ac}(\lambda) p_{mm}^{ac}(\lambda) p_{mm}^{ac}(\lambda) \]

\[^3\text{The physical interpretation of the continuous singular spectrum is typically obscure and there exists a wide literature on sufficient conditions for its absence [19].}\]
for $\psi_{ac} = \sum_{m=1}^{\infty} p^{ac}_{m}(M)\Omega^{ac}_{m}$ and $\psi'_{ac} = \sum_{m=1}^{\infty} p^{ac}_{m}(M)\Omega^{ac}_{m}$ where p^{ac}_{m} and p^{ac}_{n} are measurable functions. From this we can select a dense domain S in \mathcal{H}^{ac} by considering those $\psi_{ac} \in S$, $\psi_{ac} = \sum_{m=1}^{\infty} p^{ac}_{m}(M)\Omega^{ac}_{m}$ with only finitely many of the p^{ac}_{m} nonvanishing and such that each $p^{ac}_{m} \in C_{c}^{(\mathbb{R})}$ (the set of complex valued functions of compact support).

Choosing in (2.3) $\psi_{ac} = \sum_{m=1}^{\infty} p^{ac}_{m}(M)\Omega^{ac}_{m}$ and $\psi'_{ac} = \sum_{m=1}^{\infty} p^{ac}_{m}(M)\Omega^{ac}_{m}$ in S

\[
\int_{\mathbb{R}} d\langle \psi_{ac}' | e^{\rho^{ac}(M-e)} | \psi_{ac} \rangle^{ac} = \int_{\mathbb{R}} d\sum_{m=1}^{\infty} \int_{\mathbb{R}} d\mu^{ac}_{m}(\lambda) \ e^{i(\lambda - \epsilon) p^{ac}_{m}(\lambda)} p^{ac}_{m}(\lambda) = \lim_{\epsilon \to 0} \int_{\mathbb{R}} d\sum_{m=1}^{\infty} \int_{\mathbb{R}} d\mu^{ac}_{m}(\lambda) \ e^{i(\lambda - \epsilon) - |\epsilon| p^{ac}_{m}(\lambda)} p^{ac}_{m}(\lambda) = \lim_{\epsilon \to 0} \int_{\mathbb{R}} d\sum_{m=1}^{\infty} \int_{\mathbb{R}} d\mu^{ac}_{m}(\lambda) \ p^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) = \frac{2g}{g^{2} + (\lambda - \epsilon)^{2}}
\]

Note that the above sum over m is actually a finite sum which is why we were allowed to interchange it with the integral.

i.
Suppose condition 1 holds: there exists $\delta > 0$ such that each μ^{ac}_{m} ($d\mu^{ac}_{m} = \mu^{ac}_{m} d\lambda$) is continuous on the closed interval $[0, \delta]$. Then the function $\mu^{ac}_{m} p^{ac}_{m}$ is continuous on the closed interval $[0, \delta]$ thus is also bounded on $[0, \delta]$. So if we choose $0 < \epsilon < \delta$ then

\[
\int_{\mathbb{R}} d\langle \psi_{ac}' | e^{\rho^{ac}(M-e)} | \psi_{ac} \rangle^{ac} = 2\pi \sum_{m=1}^{\infty} \mu^{ac}_{m}(\epsilon) p^{ac}_{m}(\epsilon) p^{ac}_{m}(\epsilon).
\]

Hence for any three states $\psi, \phi, \Omega \in \mathcal{D} := \mathcal{H}^{pp} \oplus S$ ($\Omega_{ac} = \sum_{m=1}^{\infty} f^{ac}_{m}(M)\Omega^{ac}_{m}$)

\[
\langle \eta(\psi) | \eta(\phi) \rangle_{\Omega} = \lim_{\epsilon \to 0} \int_{\mathbb{R}} d\langle \Omega_{ac} | e^{i\rho^{ac}(M-e)} | \Omega_{ac} \rangle^{ac} = \lim_{\epsilon \to 0} \frac{2\pi}{2\pi} \sum_{m=1}^{\infty} \mu^{ac}_{m}(\epsilon) p^{ac}_{m}(\epsilon) p^{ac}_{m}(\epsilon) = \frac{\langle \psi_{ac}(0) | \psi'_{ac}(0) \rangle^{ac}_{\Omega_{ac} = \Omega_{ac}}}{\langle \Omega_{ac} | \Omega_{ac} \rangle_{\Omega_{ac} = \Omega_{ac}}}
\]

by using $\mu^{ac}_{m}(0) = \mu^{ac}_{m}(0) \rho^{ac}_{m}(0)$ as follows from $d\mu^{ac}_{m} = \mu^{ac}_{m} d\lambda = \rho^{ac}_{m} d\mu^{ac}_{m} = \rho^{ac}_{m} \mu^{ac}_{m} d\lambda$ and $\mu^{ac}_{m}(0) > 0$ w.l.g.

ii.
Suppose that condition 2 holds: there exists $\delta > 0$ such that each ρ^{ac}_{m} is continuous at $\lambda = 0$ and is differentiable on the open interval $(0, \delta)$. We choose $0 < \epsilon < \eta < \delta$ and calculate

\[
\lim_{\epsilon \to 0} \int_{0}^{\eta} d\mu^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) = \frac{2g}{g^{2} + (\lambda - \epsilon)^{2}}
\]

\[
\lim_{\epsilon \to 0} \int_{0}^{\eta} d\mu^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) = \frac{2g}{g^{2} + (\lambda - \epsilon)^{2}}
\]

\[
\lim_{\epsilon \to 0} \int_{0}^{\eta} d\mu^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) = \frac{2g}{g^{2} + (\lambda - \epsilon)^{2}}
\]

\[
\lim_{\epsilon \to 0} \int_{0}^{\eta} d\mu^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) p^{ac}_{m}(\lambda) = \frac{2g}{g^{2} + (\lambda - \epsilon)^{2}}
\]

In the second step we have split the integral over $\lambda \in \mathbb{R}$ into $[0, \eta]$ and (η, ∞). The function $g/(g^{2} + (\lambda - \epsilon)^{2})$ at $\lambda > \eta$ is bounded from above by $g/(g^{2} + (\lambda - \epsilon)^{2})$. Therefore the integral restricted to (η, ∞) is bounded by $2 \| \psi_{ac} \| \| \psi'_{ac} \| g/(g^{2} + (\lambda - \epsilon)^{2})$ which obviously vanishes as $g \to 0$. Now consider the last line in (2.4) which consists of two terms. In the integrand of the first term, $|\frac{2g(\lambda - \epsilon)}{g^{2} + (\lambda - \epsilon)^{2}}| \leq 1$ and $\rho^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda) \rho^{ac}_{m}(\lambda)$ is also bounded on $[0, \eta]$ since ρ^{ac}_{m} is differentiable in at $\lambda = \epsilon$. Therefore the integrand in the first term is bounded by a finite constant. Thus by Lebesgue dominated convergence theorem we can apply the limit
For any positive integer \(n\), let \(\psi, \phi, \Omega \in \mathcal{D} = \mathcal{H}^{ac} \oplus \mathcal{S}\) we arrive at the same result as above (with \(\Omega_{ac} = \sum_{m=1}^{\infty} f_m^{ac}(M)\Omega_{ac}^{(m)}\))

\[
\langle \eta(\psi) \eta(\phi) \rangle_{\Omega} = \lim_{\epsilon \to 0} \int_{\mathbb{R}} \mu_{ac}(\lambda) \int_{\mathbb{R}} \mu_{ac}(\lambda') \sum_{m=1}^{\infty} f_m^{ac}(\lambda) p_m^{ac}(\epsilon) p_m^{ac}(\epsilon')
\]

\[
\Omega_{ac}(0) \Omega_{ac}(0)\]

iii.

Now consider condition 3: there exists \(\delta > 0\) such that \(N_{ac}\) is constant on the open interval \([0, \delta]\). In this case we need some additional tools:

First, we define a vector space \(\mathcal{V}\) which consists of certain families smooth complex functions of compact support,

\[
\mathcal{V} := \left\{ \{f_n\}_{n=1}^{\infty} \mid f_n \neq 0 \text{ only for a finite number of } n, \ f_n \in C_\infty^c(\mathbb{R}) \ \forall n \right\}
\]

where \(C_\infty^c(\mathbb{R})\) is the set of smooth complex valued function of compact support on \(\mathbb{R}\). Then we choose an orthonormal basis for each fiber Hilbert space \(\mathcal{H}_{ac}^{f}\). Consider the functions \(e_n\) with \(e_n(\lambda) \in \mathcal{H}_{ac}^{f}\) and \(e_n(\lambda) = 0\) for \(n > N_{ac}(\lambda)\) such that \(\langle e_n(\lambda) | e_m(\lambda) \rangle_{ac}^{(f)} = \delta_{n,m}\) for \(m, n \leq N_{ac}(\lambda)\) and zero otherwise. The \(\{e_n(\lambda)\}_{|a|,|b|,|c|} = n!\) provide an orthonormal basis in \(\mathcal{H}_{ac}^{f}\). We define a linear map \(t\) from the vector space \(\mathcal{V}\) to \(\mathcal{H}_{ac}\) by

\[
i : \mathcal{V} \rightarrow \mathcal{H}_{ac}
\]

\[
\{f_n\}_{n=1}^{\infty} \mapsto t(\{f_n\}_{n=1}^{\infty}) := \left\{ \sum_{n=1}^{N_{ac}(\lambda)} f_n(\lambda) e_n(\lambda) \right\} = \{\psi_{ac}(\lambda)\}_{\lambda}
\]

where \(\psi_{ac} \in \mathcal{H}_{ac}\) since its \(\mathcal{H}_{ac}\)-norm is bounded

\[
(||\psi_{ac}||_{ac}^2) = \int_{\mathbb{R}} \mu_{ac}(\lambda) \int_{\mathbb{R}} \mu_{ac}(\lambda') \sum_{n=1}^{N_{ac}(\lambda)} f_n(\lambda) \geq 0 < \infty
\]

by the assumption that \(f_n \neq 0\) only for a finite number of \(n\), and \(f_n \in C_\infty^c(\mathbb{R}) \ \forall n\). The image of this map \(t(\mathcal{V})\) is denoted by \(\mathcal{S}\), so that for any two states \(\psi_{ac} = t(\{f_n\}_{n=1}^{\infty})\), \(\phi_{ac} = t(\{f_n\}_{n=1}^{\infty})\) in \(\mathcal{S}\), their fiber inner product \(\langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle_{ac}^{(f)} = \sum_{n=1}^{N_{ac}(\lambda)} f_n(\lambda) f_n^*(\lambda)\) is a bounded function of compact support (i.e. its real part and imaginary part are bounded from above and below). Moreover the assumption that there exists a neighborhood \([0, \delta]\) on which \(N_{ac}\) is a constant implies that \(\langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle_{ac}^{(f)} = \sum_{n=1}^{N_{ac}(\lambda)} f_n(\lambda) f_n^*(\lambda)\) is smooth on \([0, \delta]\) by the finiteness of the families \(\{f_n\}_{n=1}^{\infty}\) and \(\{f_n\}_{n=1}^{\infty}\).

We must show that the subset \(\mathcal{S}\) is dense in \(\mathcal{H}_{ac}\): Suppose there is another state \(\phi_{ac} \in \mathcal{H}_{ac}\) orthogonal to all the states in \(\mathcal{S}\), i.e. for any \(\psi_{ac} = t(\{f_n\}_{n=1}^{\infty}) \in \mathcal{S}\),

\[
0 = \langle \psi | \phi \rangle_{ac}^{(f)} = \int_{\mathbb{R}} \mu_{ac}(\lambda) \int_{\mathbb{R}} \mu_{ac}(\lambda') \sum_{n=1}^{N_{ac}(\lambda)} f_n(\lambda) f_n^*(\lambda') \sum_{n=1}^{N_{ac}(\lambda')} f_n(\lambda') f_n^*(\lambda) = 0
\]

\[
\forall \{f_n\}_{n=1}^{\infty} \in \mathcal{V}.
\]

For any positive integer \(m_0\), we can choose the family \(\{f_n\}_{n=1}^{\infty} \in \mathcal{V}\) such that all \(f_n\) vanish except \(f_{m_0}\). Therefore

\[
\int_{\mathbb{R}} \mu_{ac}(\lambda) f_{m_0}(\lambda) \langle \phi_{m_0}(\lambda) | \phi_{ac}(\lambda) \rangle_{ac}^{(f)} = 0 \quad \forall f_{m_0} \in C_\infty^c(\mathbb{R})
\]
Note that the function \((e_{n_0}(\lambda)|\psi_{ac}(\lambda))^{ac}\) has support \(\{\lambda \in \sigma(M) | N^{ac}(\lambda) \geq n_0\}\). Since \(C_c^\infty(\mathbb{R})\) is dense in \(L^2(\mathbb{R}, \mu^{ac})\), the above result implies that \((e_{n_0}(\lambda)|\psi_{ac}(\lambda))^{ac}\) vanishes \(\mu^{ac}\)-a.e., which means that \(\psi_{ac} = 0\) in \(\mathcal{H}^{ac}\). So we have proved that \(\mathcal{S}\) is dense in \(\mathcal{H}^{ac}\).

For any two states \(\psi_{ac}, \phi_{ac} \in \mathcal{S}\), we first consider the integral for the absolutely continuous sector \((0 < \epsilon < \delta)\),

\[
\int_\mathbb{R} dt \int_{\sigma(M)} d\mu^{ac}(\lambda) \ e^{i(\lambda - \epsilon)} \langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda} \\
= \lim_{g \to 0} \int_\mathbb{R} dt \int_{\sigma(M)} d\mu^{ac}(\lambda) \ \langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda} \int_\mathbb{R} d\epsilon e^{i(\lambda - \epsilon)} |g| \\
= \lim_{g \to 0} 2 \int_{\sigma(M)} d\mu^{ac}(\lambda) \ \langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda} \int_\mathbb{R} d\epsilon \frac{g}{g^2 + (\lambda - \epsilon)^2} \\
= \lim_{g \to 0} 2 \int_{\sigma(M)} d\mu^{ac}(\lambda) \ \left[\langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda} - \langle \psi_{ac}(\epsilon) | \phi_{ac}(\epsilon) \rangle^{ac}_{\epsilon} \right] \frac{g}{g^2 + (\lambda - \epsilon)^2} \\
+ 2 \lim_{g \to 0} \int_{\sigma(M)} d\mu^{ac}(\lambda) \ \frac{g}{g^2 + (\lambda - \epsilon)^2} \langle \psi_{ac}(\epsilon) | \phi_{ac}(\epsilon) \rangle^{ac}_{\epsilon}. \tag{2.5}
\]

The first term in the last line of Eq. (2.5) can be computed as follows

\[
\lim_{g \to 0} 2 \int_{\sigma(M)} d\mu^{ac}(\lambda) \ \left[\langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda} - \langle \psi_{ac}(\epsilon) | \phi_{ac}(\epsilon) \rangle^{ac}_{\epsilon} \right] = 2 \lim_{g \to 0} \int_{\sigma(M)} d\mu^{ac}(\lambda) \ \frac{g}{g^2 + (\lambda - \epsilon)^2} \langle \psi_{ac}(\epsilon) | \phi_{ac}(\epsilon) \rangle^{ac}_{\epsilon}. \tag{2.6}
\]

Here in the integrand, \(\frac{g}{g^2 + (\lambda - \epsilon)^2} \leq \frac{1}{2}\) and \(\frac{g}{g^2 + (\lambda - \epsilon)^2} \) is also bounded since \(\langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda}\) is differentiable at \(\lambda = \epsilon\). Therefore the above integrand is bounded by an integrable function which is a finite constant times \(\mu^{ac}\) (recall that \(\mu^{ac}\) is a probability measure). Thus by Lebesgue dominated convergence theorem we can apply the limit directly to the integrand, which shows that Eq. (2.6) vanishes in the limit. Therefore, we obtain that

\[
\int_\mathbb{R} dt \int_{\sigma(M)} d\mu^{ac}(\lambda) \ e^{i(\lambda - \epsilon)} \langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda} = 2 \lim_{g \to 0} \int_{\sigma(M)} d\mu^{ac}(\lambda) \ \frac{g}{g^2 + (\lambda - \epsilon)^2} \langle \psi_{ac}(\epsilon) | \phi_{ac}(\epsilon) \rangle^{ac}_{\epsilon}.
\]

Finally we obtain the same result as above:

\[
\langle \eta(\psi) | \eta(\phi) \rangle^\Omega = \lim_{\epsilon \to 0} \int_\mathbb{R} dt \int_{\sigma(M)} d\mu^{ac}(\lambda) \ e^{i(\lambda - \epsilon)} \langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda} \\
= \lim_{\epsilon \to 0} \int_\mathbb{R} dt \int_{\sigma(M)} d\mu^{ac}(\lambda) \ e^{i(\lambda - \epsilon)} \langle \psi_{ac}(\lambda) | \phi_{ac}(\lambda) \rangle^{ac}_{\lambda} \\
= \lim_{\epsilon \to 0} \lim_{g \to 0} \int_{\sigma(M)} d\mu^{ac}(\lambda) \ \frac{g}{g^2 + (\lambda - \epsilon)^2} \langle \psi_{ac}(\epsilon) | \phi_{ac}(\epsilon) \rangle^{ac}_{\epsilon} \\
= \frac{\langle \psi_{ac}(0) | \phi_{ac}(0) \rangle^{ac}_{0}}{\langle \Omega_{ac}(0) | \Omega_{ac}(0) \rangle_{0}^{ac}}.
\]

Finally, notice that for any state \(\psi_{ac} \in \mathcal{S}\), \(\psi_{ac}(0)\) is a finite linear span of the \(e_n(0)\). The linear span of such \(\psi_{ac}(0)\) is dense in the Hilbert space \(\mathcal{H}_{\epsilon=0}^{ac}\). Thus we obtain an isometric or conformal bijection between \(\mathcal{H}_{\epsilon=0}^{ac}\) and \(\mathcal{H}_{\Omega}\) depending on the choice of \(\Omega\). Thus for suitable \(\Omega\) these two Hilbert spaces are unitarily equivalent.

Now we can see that the reason of taking the limit \(\epsilon \to 0\) in Definition 2.1 is to make the desired connection between the group averaging Hilbert space \(\mathcal{H}_{\Omega}\) and the absolutely continuous sector \(\mathcal{H}_{\epsilon=0}^{ac}\) in the physical Hilbert space. For the pure point sector \(\mathcal{H}_{\epsilon=0}^{pp}\), one should rather solve the eigenvalue equation Eq. (2.1) in the kinematical Hilbert space \(\mathcal{H}_{K^{in}}\). For the case of LQG, many eigenstates in \(\mathcal{H}_{K^{in}}\) have been found, which correspond to a degenerate geometry, e.g. the spin-networks with valence less than 4.

It is remarkable that all the physical models gravity tested in [7] satisfy all the assumptions in Theorem 2.1. This means that the group averaging technique in Definition 2.1 gives correct physical Hilbert space (the absolutely continuous sector) for all those physical models.
3 The consistency between the group averaging approaches with Abelianized constraints and master constraint

3.1 A finite number of Abelianized constraints

Now we consider the Dirac quantization for the given system. Suppose we have a gauge system with a finite collection of irreducible first class constraints $C_I (I = 1, 2, \cdots, N, N$ is finite), then one can always locally (in phase space) abelianize these constraints to obtain $\tilde{C}_I = I_{II} C_I$, such that $(C_I, \tilde{C}_J) = 0$. If we quantize these abelianized constraints as self-adjoint operators with $[\tilde{C}_I, \tilde{C}_J] = 0$ on \mathcal{H}_{Kin}, a group averaging approach can be defined due to the Abelian Lie algebra structure of the constraint algebra. For each state ψ in a dense subset \mathcal{D} of \mathcal{H}_{Kin}, a linear functional $\eta_\Omega(\psi)$ in the algebraic dual of \mathcal{D} can be defined such that $\forall \psi \in \mathcal{D}$

$$\eta_\Omega(\psi)[\phi] := \lim_{\epsilon \to 0} \int_\mathbb{R} \prod_{I=1}^N d \xi_I \langle \psi | \prod_{I=1}^N e^{i \epsilon (\tilde{C}_I - \phi)} | \Omega \rangle_{Kin}$$

where $\Omega \in \mathcal{H}_{Kin}$ is a reference vector. Therefore we can define the group averaging inner product on the linear span of $\eta_\Omega(\psi)$ via $(\eta(\psi))|\eta(\phi))_\Omega := \eta_\Omega(\psi)[\phi]$. The resulting Hilbert space is denoted by \mathcal{H}_Ω.

On the other hand, one can also define a single master constraint operator $M := K_{II} \tilde{C}_I \tilde{C}_J$ where K_{II} is a positive definite c-number matrix. Therefore a group averaging approach can also be defined for the master constraint: For each state ψ in the same dense subset \mathcal{D} of \mathcal{H}_{Kin}, a linear functional $\bar{\eta}_\Omega(\psi)$ in the algebraic dual of \mathcal{D} can be defined such that $\forall \psi \in \mathcal{D}$

$$\bar{\eta}_\Omega(\psi)[\phi] := \lim_{\epsilon \to 0} \int_\mathbb{R} \prod_{I=1}^N d \xi_I \langle \psi | e^{i \epsilon (M - \phi)} | \Omega \rangle_{Kin}$$

where $\Omega \in \mathcal{H}_{Kin}$ is the reference vector. Therefore we can define another group averaging inner product on the linear space of $\bar{\eta}_\Omega(\psi)$ via $(\bar{\eta}(\psi))|\bar{\eta}(\phi))_\Omega := \bar{\eta}_\Omega(\psi)[\phi]$. The resulting Hilbert space is denoted by \mathcal{H}_Ω. It is expected that there is consistency between these two approaches, since both maps should “project” onto the same (generalised) kernel. This is what we will establish in what follows.

As a preparation, we construct the direct integral decomposition with respect to the constraints C_I. Given this Abelian constraint operator algebra, each of these self-adjoint constraints $C_I (I = 1, \cdots, N)$ is associated with a projection valued measure E_I, and $[E_I, E_J] = 0$ by commutativity. Then one can define a new projection value measure $E = \prod_{I=1}^N E_I$, which is a map from the natural Borel σ-algebra on \mathbb{R}^N into the set of projection operators on \mathcal{H}_{Kin}. Thus we have a spectral measure for any unit vector $\Omega \in \mathcal{H}_{Kin}$ defined by

$$\mu_\Omega(B) = \langle \Omega | E(B) | \Omega \rangle_{Kin}$$

for any measurable set B in \mathbb{R}^N.

Thus the kinematical Hilbert space \mathcal{H}_{Kin} can be decomposed into $\mathcal{H}^c \oplus \mathcal{H}^{ac} \oplus \mathcal{H}^c$, where $\mathcal{H}^c = \{ \Omega \in \mathcal{H}_{Kin} | \mu_\Omega = \mu_\Omega^* = pp, ac, cs \}$. In each of \mathcal{H}^c, the projection valued measure of $\{ \mathcal{C}_I | \mathcal{H}^c \}$ is denoted by $E^c(\mathcal{C})$. Given $\psi \in \mathcal{H}^c$ and a smooth function with compact support $f \in C^\infty_c(\mathbb{R}^N)$, one can construct a C^∞-vector for $[\mathcal{C}_I | \mathcal{H}^c]$ by

$$\Omega^c_f \psi := \int_{\mathbb{R}^N} d^N \xi \int_{\mathbb{R}^N} d^N \hat{\psi}(\xi) \prod_{I=1}^N e^{i \xi_I C_I} \psi_s$$

and $i \mathcal{C}_I \Omega^c_f = -\Omega^c_f$. Moreover the span of this kind of C^∞-vectors as ψ and f vary is dense in \mathcal{H}^c.

Suppose we pick a C^∞-vector Ω_1, then we obtain a subspace \mathcal{H}_{1}^c by the linear span of $q(\tilde{C}_I) \Omega_1$ and completion, where $q(\tilde{C}_I)$ denotes a polynomial of \tilde{C}_I. If $\mathcal{H}_{1}^c \neq \mathcal{H}^c$, we can pick up another C^∞-vector $\Omega_2 \in \mathcal{H}_{1}^c \pm$ and construct another subspace $\mathcal{H}_2 \subset \mathcal{H}_{1}^c \pm$ in the same way. Iterating this procedure, we arrive at an at most countably infinite direct sum by the separability of \mathcal{H}^c

$$\mathcal{H}^c = \oplus_{m=1}^{\infty} \mathcal{H}_m$$

in which a dense set of vectors can be given in the form $\{ q_m(\tilde{C}_I) \Omega_m \}_{m=1}^{\infty}$, where each q_m is a polynomial of \tilde{C}_I and each Ω_m is a C^∞-vectors for $\{ \mathcal{C}_I \}$.

13
For any measurable set \(B \) in \(\mathbb{R}^N \), we consider the spectral measure
\[
\mu_{\Omega_m}^*(B) = \langle \Omega_m | E^*(B) | \Omega_m \rangle^*
\]
If we choose a probability spectral measure \(\mu^* = \sum_{m=1}^{\infty} c_m \mu_{\Omega_m}^* \) (\(\sum_{m=1}^{\infty} c_m = 1 \)) with the maximality feature: for any \(\psi \in \mathcal{H}^* \) the associated spectral measure \(\mu_{\Omega_m}^*(B) = \langle \psi | E^*(B) | \psi \rangle^* \) is absolutely continuous with respect to \(\mu^* \), we have
\[
d\mu_{\Omega_m}^*(\tilde{x}) = \rho_{\Omega_m}^*(\tilde{x}) d\mu^*(\tilde{x})
\]
We define the function \(N^*: \mathbb{R}^N \to \mathbb{N} \) by \(N^*(\tilde{x}) = M \) provided that \(\tilde{x} \) lies in precisely \(M \) of the \(S_{\rho_{\Omega_m}^*} = [\tilde{x}] \rho_{\Omega_m}^* > 0 \). Here \(X^*_M \) denotes its pre-image \(X^*_M = \{ \tilde{x} \in \mathbb{R}^N | N^*(\tilde{x}) = M \} \) of \(\{M\} \).

For any two vectors \(\psi_1 = [q_{m_1}((\tilde{C}_1))\Omega_m]_{m_1} \) and \(\psi_2 = [q_{m_2}((\tilde{C}_1))\Omega_m]_{m_2} \)
\[
\langle \psi_1, \psi_2 \rangle^* = \sum_{m=1}^{\infty} \langle \Omega_m | q_{m_1}((\tilde{C}_1)) q_{m_2}((\tilde{C}_1)) | \Omega_m \rangle^* = \sum_{m=1}^{\infty} \int_{\mathbb{R}^N} d\mu_{\Omega_m}^*(\tilde{x}) \overline{q_{m_1}(\tilde{x})} q_{m_2}(\tilde{x})
\]
\[
= \sum_{m=1}^{\infty} \int_{X^*_M} d\mu_{\Omega_m}^*(\tilde{x}) \sum_{k=1}^{N^*(\tilde{x})} \rho_{\Omega_m \psi_k}^*(\tilde{x}) \overline{q_{m_1}(\tilde{x})} q_{m_2}(\tilde{x})
\]
where \(\rho_{\Omega_m \psi_k}^*(\tilde{x}) \neq 0 \) at \(\tilde{x} \). Therefore we arrive at a direct integral representation, i.e.
\[
\mathcal{H}^* = \mathcal{H}_{\alpha}^{\ast \psi_{N^*}, \mathcal{H}_{\alpha}} = \int_{\mathbb{R}^N} d\mu_{\psi_{N^*}}^*(\tilde{x}) \mathcal{H}_{\alpha}^*,
\]
\[
\langle \psi_1, \psi_2 \rangle^* = \sum_{M=1}^{\infty} \int_{X^*_M} d\mu_{\psi_{N^*}}^*(\tilde{x}) \langle \psi_1(\tilde{x}) | \psi_2(\tilde{x}) \rangle^*_\alpha \tag{3.1}
\]
where
\[
\psi_1(\tilde{x}) = \sum_{k=1}^{N^*(\tilde{x})} \sqrt{\rho_{\Omega_m \psi_k}^*(\tilde{x})} \overline{q_{m_1}(\tilde{x})} \psi_k(\tilde{x})
\]
\[
\langle \psi_1(\tilde{x}) | \psi_2(\tilde{x}) \rangle^*_\alpha = \sum_{k=1}^{N^*(\tilde{x})} \rho_{\Omega_m \psi_k}^*(\tilde{x}) \overline{q_{m_1}(\tilde{x})} q_{m_2}(\tilde{x})
\]
\(\{ e_{\xi}(\tilde{x}) \}_{\xi=1}^{N^*(\tilde{x})} \) is an orthonormal basis in \(\mathcal{H}_{\alpha}^* \approx C^{N^*(\tilde{x})} \).

We are now in the position to prove a result about the relation between the two group averaging approaches (we denote by \(\Sigma^* \subset \mathbb{R}^N \) the \(\ast \)-spectrum of the algebra \([\tilde{C}_1]_\ast\):)

Theorem 3.1. We suppose \(\sigma_{c^*}(\tilde{C}_1) = 0, \tilde{\chi} = 0 \) is not contained in \(\Sigma^* \) and is not a limit point in any \(\sigma_{pp}(\tilde{C}_1) \). We also assume that there exists a neighborhood \(N_0 \) of \(\tilde{x} = 0 \) such that each \(\rho_{\Omega_m}^* \) is continuous at \(\tilde{x} = 0 \) and is differentiable on \(N_0 - \{\tilde{x} = 0\} \). With these assumptions, the group averaging Hilbert spaces of these two approaches, \(\mathcal{H}_\Omega \) and \(\mathcal{H}_\Omega \), are unitarily equivalent with each other.

Proof: There exists a dense domain \(D \subset \mathcal{H}_{\Omega}, \) such that \(\mathcal{D} = \mathcal{H}_{pp} \oplus \mathcal{S} \oplus \mathcal{H}_{c^*} \) and the dense domain \(\mathcal{S} \in \mathcal{H}_{ac} \) consisting of the collection of all \(\psi_{ac} = \sum_{m=1}^{\infty} q_{m}((\tilde{C}_1))\Omega_m \) with only finitely many \(q_{m} \) nonvanishing and each \(q_{m} \) is a polynomial of \(\tilde{C}_1 \).

For any two vectors \(\psi_{ac} = [q_{m}((\tilde{C}_1))\Omega_m]_{m} \) and \(\psi_{ac}' = [q_{m}((\tilde{C}_1))\Omega_m]_{m} \) in \(\mathcal{S} \)
\[
\int_{\mathbb{R}^N} \prod_{I=1}^{N} dt(x_{ac}) \prod_{I=1}^{N} e^{i\beta((\tilde{C}_1 - \xi))|\psi_{ac}'|}_{ac}
\]
\[
= \int_{\mathbb{R}^N} \prod_{I=1}^{N} dt(x_{ac}) \sum_{m=1}^{\infty} \langle \Omega_m | q_{m}((\tilde{C}_1)) \rangle \prod_{I=1}^{N} e^{i\beta((\tilde{C}_1 - \xi))|\psi_{ac}'|}_{ac}
\]
\[
= \int_{\mathbb{R}^N} \prod_{I=1}^{N} dt(x_{ac}) \int_{\mathbb{R}^N} d\mu_{\Omega_m}^*(\tilde{x}) \prod_{I=1}^{N} e^{i\beta((\tilde{C}_1 - \xi))|\psi_{ac}'|}_{ac}
\]
Note that we can freely interchange the sum over \(m \) and the integral since only finite number of terms contribute to the sum. Then as in the previous section, we add a convergence factor and interchange the integrals

\[
\begin{align*}
\int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dt_I |\psi_{ac}|^2 \right) e^{i t_I (\hat{C}_I - \delta_I)} |\psi'_{ac}|^2 \gamma_{ac}^\dagger
\end{align*}
\]

\[
= \sum_{m=1}^{\infty} \lim_{\epsilon_I \to 0} \int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dt_I \int_{\mathbb{R}} \prod_{I=1}^N dm^{ac}_I(\bar{x}) \rho^{ac}_{\Omega_{m}}(\bar{x}) \prod_{I=1}^N e^{i t_I (x_I - \epsilon_I)} |\psi_{m}(\bar{x})|^2 \right) q_m(\bar{x}) q_m^\dagger(\bar{x})
\]

\[
= \sum_{m=1}^{\infty} \lim_{\epsilon_I \to 0} \int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dt_I \int_{\mathbb{R}} \prod_{I=1}^N dm^{ac}_I(\bar{x}) \prod_{I=1}^N e^{i t_I (x_I - \epsilon_I)} |\psi_{m}(\bar{x})|^2 \right) \frac{2g_I}{g_I^2 + (x_I - \epsilon_I)^2} \rho^{ac}_{\Omega_{m}}(\bar{x}) q_m(\bar{x}) q_m^\dagger(\bar{x})
\]

\[
= \sum_{m=1}^{\infty} \lim_{\epsilon_I \to 0} \ldots .
\]

\[
= \sum_{m=1}^{\infty} \lim_{\epsilon_I \to 0} \int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dm^{ac}_I(\bar{x}) \prod_{I=1}^N e^{i t_I (x_I - \epsilon_I)} |\psi_{m}(\bar{x})|^2 \right) \left(\sum_{m=1}^{\infty} \frac{2g_I}{g_I^2 + (x_I - \epsilon_I)^2} \rho^{ac}_{\Omega_{m}}(\bar{x}) q_m(\bar{x}) q_m^\dagger(\bar{x}) \right)
\]

\[
= \sum_{m=1}^{\infty} \lim_{\epsilon_I \to 0} \int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dm^{ac}_I(\bar{x}) \prod_{I=1}^N e^{i t_I (x_I - \epsilon_I)} |\psi_{m}(\bar{x})|^2 \right) \frac{2g_I}{g_I^2 + (x_I - \epsilon_I)^2} \rho^{ac}_{\Omega_{m}}(\bar{x}) q_m(\bar{x}) q_m^\dagger(\bar{x})
\]

\[
+ \sum_{m=1}^{\infty} \lim_{\epsilon_I \to 0} \int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dm^{ac}_I(\bar{x}) \prod_{I=1}^N e^{i t_I (x_I - \epsilon_I)} |\psi_{m}(\bar{x})|^2 \right) \sum_{m=1}^{\infty} \frac{2g_I}{g_I^2 + (x_I - \epsilon_I)^2} \rho^{ac}_{\Omega_{m}}(\bar{x}) q_m(\bar{x}) q_m^\dagger(\bar{x}) q_m^\dagger(\bar{x})
\]

Note that here we choose \(\bar{\epsilon} \) contained in a closed \(N \)-cube \(\times_{I=1}^N [-\delta_I, \delta_I] \in \mathbb{N}_0 \). Since all \(\rho^{ac}_{\Omega_{m}} \), \(q_m \) and \(q_m^\dagger \) are differentiable at \(\bar{\epsilon} \), the first term in the above result vanishes by the already familiar reasoning. Then we can iterate the same procedure for \(x_2, ..., x_N \) and obtain

\[
\int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dt_I |\psi_{ac}|^2 \right) e^{i t_I (\hat{C}_I - \delta_I)} |\psi'_{ac}|^2 \gamma_{ac}^\dagger
\]

\[
= \lim_{\epsilon_I \to 0} \int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dt_I \int_{\Sigma} \prod_{I=1}^N dm^{ac}_I(\bar{x}) \prod_{I=1}^N e^{i t_I (x_I - \epsilon_I)} |\psi_{m}(\bar{x})|^2 \right) \frac{2g_I}{g_I^2 + (x_I - \epsilon_I)^2} \rho^{ac}_{\Omega_{m}}(\bar{x}) q_m(\bar{x}) q_m^\dagger(\bar{x})
\]

Now we consider the point pure sector and continuous singular sector, respectively. Note that since \(\sigma^{cs}(\hat{C}_I) = \emptyset \), for any point \((x_1, ..., x_N) \in \mathbb{R}^N \) in the continuous singular spectrum \(\Sigma^{cs} \), there must be at least one \(x_I \) taking values in \(\sigma^{pp}(\hat{C}_I) \) but not all of them. So \(\mathcal{N}_0 \) can be chosen such that \(\mathcal{N}_0 \cap \Sigma^{cs} = \emptyset, * \equiv pp, cs \), by the assumption that \(\bar{x} = 0 \) is not contained in \(\Sigma^{cs} \) and is not a limit point in any \(\sigma^{pp}(\hat{C}_I) \). Thus for any two states \(\psi_*, \phi_* \in \mathcal{H}^*, * \equiv pp, cs \)

\[
\int \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N \left(\int_{\Sigma} \prod_{I=1}^N \left(\int_{\mathbb{R}} \prod_{I=1}^N dm^{ac}_I(\bar{x}) \prod_{I=1}^N e^{i t_I (x_I - \epsilon_I)} |\psi_{m}(\bar{x})|^2 \right) \frac{2g_I}{g_I^2 + (x_I - \epsilon_I)^2} \right) \rho^{ac}_{\Omega_{m}}(\bar{x}) q_m(\bar{x}) q_m^\dagger(\bar{x}) q_m^\dagger(\bar{x})
\]

Since for sufficiently small \(\epsilon \) we have \(x_I - \epsilon_I \neq 0 \) for all \(\bar{x} \in \Sigma^{cs} \), the function \(\frac{2g_I}{g_I^2 + (x_I - \epsilon_I)^2} \) is bounded in the limit \(g_I \to 0 \). Therefore the above integrals vanish in the limit by an appeal to Lebesgue dominated convergence theorem.
Therefore, we have obtained an isomorphism from \mathcal{H}_Ω to the fiber Hilbert space $\mathcal{H}^\text{ac}_{\epsilon=0}$ in the absolutely continuous sector for a certain choice of the reference vector Ω.

We now compare this with the group averaging for the master constraint \mathbf{M}. As before, for any two states $\psi, \phi \in \mathcal{H}$, $* = pp, ac, cs$, we compute the integral

$$\int_\Sigma \int_\Sigma d\mu^*(\tilde{x}) \ e^{i\mathbf{M}(x_1)\epsilon x_1} \langle \psi(\tilde{x})|\phi(\tilde{x})\rangle^*_\epsilon$$

$$= \lim_{\epsilon \to 0} \int_\Sigma \int_\Sigma d\mu^*(\tilde{x}) \ e^{i\mathbf{M}(x_1)\epsilon x_1} \langle \psi(\tilde{x})|\phi(\tilde{x})\rangle^*_\epsilon$$

$$= \lim_{\epsilon \to 0} \int_\Sigma \int_\Sigma d\mu^*(\tilde{x}) \ \int_\Sigma d\mu^*(\tilde{x}) \ e^{i\mathbf{M}(x_1)\epsilon x_1} \langle \psi(\tilde{x})|\phi(\tilde{x})\rangle^*_\epsilon$$

$$= \lim_{\epsilon \to 0} \int_\Sigma \int_\Sigma d\mu^*(\tilde{x}) \ g^2 + (K_{J I} x_1 x_2 - \epsilon)^2 \langle \psi(\tilde{x})|\phi(\tilde{x})\rangle^*_\epsilon$$

Here we assume that the sphere S_ϵ defined by $K_{J I} x_1 x_2 = \epsilon$ is contained in N_0. Since N_0 can be chosen such that $N_0 \cap \Sigma^* = \emptyset$, $* = pp, cs$, the integrals for both pure point sector and continuous singular sector vanish in the limit for the same reason as before. Therefore,

$$\langle \eta(\psi)|\eta(\phi)\rangle_\Omega = \lim_{\epsilon \to 0} \int_{\mathbb{R}} \frac{dt}{\mathbb{R}} \langle \psi_{ac}|e^{i\mathbf{M}\epsilon\mathbf{x}}|\phi_{ac}\rangle^{ac}_{\Omega}$$

where we have now reduced the problem to a single sector \mathcal{H}^ac on which \mathbf{M} only has absolutely continuous spectrum.

Given two vectors ψ_{ac} and ψ'_{ac} in \mathcal{S} which can be written as $\psi_{ac} = \langle q^m([\tilde{C}_I])\Omega_m | m \rangle_{lm}$ and $\psi'_{ac} = \langle q^m([\tilde{C}_I])\Omega_m | m \rangle_{lm}$, where only finitely *Of course we assume that the matrix K is not operator valued but just a positive real valued matrix.
many \(q^m \) and \(q^m \) are nonvanishing, we have

\[
\int_{\mathbb{R}} dt \langle \psi_{ac} | e^{i(t(M-\epsilon))} | \psi_{ac} \rangle \Omega
\]

\[
= \sum_{m=1}^{\infty} \int_{\mathbb{R}} dt \langle \Omega_m | q^m((\mathcal{C}_1)) \rangle e^{i(M-\epsilon)} q^m((\mathcal{C}_1)) \Omega_m \rangle
\]

\[
= \sum_{m=1}^{\infty} \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

\[
= \sum_{m=1}^{\infty} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

\[
= \sum_{m=1}^{\infty} \lim_{\epsilon \to 0} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

\[
= \lim_{\epsilon \to 0} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

where in the last step we have used the differentiability of \(\rho_{\Omega_m}^{ac} q^m \) in \(N_0 \). Since \(\sum_m \rho_{\Omega_m}^{ac} q^m \) is continuous on the compact region \(R_{[0,\epsilon]} \) and bounded on the sphere \(K_{1,1,1,1} = \epsilon \), there exist two functions \(M_1(\epsilon) := \max_{\Omega \in R_{[0,\epsilon]}} \left(\sum_m \rho_{\Omega_m}^{ac} q^m(\mathcal{C}) - \sum_m \rho_{\Omega_m}^{ac} q^m(0) \right) \)

and \(M_2(\epsilon) := \min \left(\sum_m \rho_{\Omega_m}^{ac} q^m(\mathcal{C}) - \sum_m \rho_{\Omega_m}^{ac} q^m(0) \right) \) such that \(\lim_{\epsilon \to 0} M_1(\epsilon) = 0 \), so

\[
\sum_{m=1}^{\infty} \rho_{\Omega_m}^{ac}(0) q^m(0) q^m(0) + M_2(\epsilon) \leq \sum_{m=1}^{\infty} \rho_{\Omega_m}^{ac}(\mathcal{C}) q^m(\mathcal{C}) q^m(\mathcal{C}) \leq \sum_{m=1}^{\infty} \rho_{\Omega_m}^{ac}(0) q^m(0) q^m(0) + M_1(\epsilon).
\]

Therefore

\[
\lim_{\epsilon \to 0} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

\[
\leq \lim_{\epsilon \to 0} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

\[
= \lim_{\epsilon \to 0} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

So in the limit \(\epsilon \to 0 \)

\[
\lim_{\epsilon \to 0} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

\[
= \lim_{\epsilon \to 0} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dx \rho_{\Omega_m}(x) e^{i(K_1 x x e^{\epsilon})} q^m(x) q^m(x)
\]

As a result,

\[
\langle \hat{\Phi}(\psi)|\hat{\Phi}(\psi) \rangle \Omega = \lim_{\epsilon \to 0} \int_{\mathbb{R}} dx \langle \psi_{ac} | e^{i(t(M-\epsilon))} | \psi_{ac} \rangle \Omega
\]

\[
= \langle \hat{\Phi}(\psi)|\hat{\Phi}(\psi) \rangle \Omega
\]

which means that \(\tilde{\mathcal{H}}_\Omega \) is isomorphic to \(\mathcal{H}_{\Omega_{ac}} \) for a certain choice of \(\Omega \). Thus the isomorphism between \(\mathcal{H}_\Omega \) and \(\tilde{\mathcal{H}}_\Omega \) has been established.

\(\Box \)
3.2 An infinite number of Abelianized constraints

Suppose we have a gauge system with an infinite collection of (non-Abelian) irreducible first class constraints C_I ($I \in \{1, 2, \cdots, \infty\} \equiv \mathbb{N}_0$). We can still abelianize these constraints locally by using the Abelianization theorem \[2 to obtain \(\tilde{C}_I = R_{IJ} C_J \), such that \(\{ \tilde{C}_I, \tilde{C}_J \} = 0 \) which is an infinite dimensional Abelian constraint algebra. If we quantize these abelianized constraints as self-adjoint operators with $[\tilde{C}_I, \tilde{C}_J] = 0$ on H_{Kin}, a group averaging approach can be defined by the Abelian Lie algebra structure of the constraint algebra: For each state ψ in a dense subset D of H_{Kin}, a linear functional $\eta_{2I}(\psi)$ in the algebraic dual of D can be defined formally such that $\forall \phi \in D$

\[
\eta_{2I}(\psi)[\phi] := \lim_{\epsilon \to 0} \int_0^\infty \prod_{I=1}^\infty \int_0^\infty e^{\epsilon \tilde{C}_I} \langle \phi | \prod_{I=1}^\infty e^{\epsilon \tilde{C}_I} | \phi \rangle_{Kin}
\]

where $\Omega \in H_{Kin}$ is a reference vector. Therefore we can define the group averaging inner product on the linear space of $\eta_{2I}(\psi)$ via $\langle \eta(\psi)|\eta(\phi)\rangle_{\Omega} := \eta_{2I}(\psi)[\phi]$. The resulting Hilbert space is denoted by \mathcal{H}_{Ω}.

However, the above definition is formal because $\prod_{I=1}^\infty dt_I$ is not a measure on \mathbb{R}^∞. So the above definition for the group averaging with a infinite set of Abelianized constraint is not meaningful in general. On the other hand, however, the group averaging technique with the master constraint M does not suffer from this problem. Because the master constraint operator is defined by $M := \sum_{I,J} K_{IJ} \tilde{C}_I \tilde{C}_J$ (K_{IJ} is nondegenerate), we can proceed as before: For each state ψ in the dense subset D of H_{Kin}, a linear functional $\bar{\eta}_{2I}(\psi)$ in the algebraic dual of D can be defined such that $\forall \phi \in D$

\[
\bar{\eta}_{2I}(\psi)[\phi] := \lim_{\epsilon \to 0} \int_0^\infty dt \langle \phi | e^{\epsilon M} | \phi \rangle_{Kin}
\]

where $\Omega \in H_{Kin}$ is the reference vector. Therefore we can define another group averaging inner product on the linear span of the $\bar{\eta}_{2I}(\psi)$ via $\langle \bar{\eta}(\psi)|\eta(\phi)\rangle_{\Omega} := \bar{\eta}_{2I}(\psi)[\phi]$. The resulting Hilbert space is denoted by $\mathcal{H}_{\bar{\Omega}}$.

So far we see that for the case of an infinite number of constraints, the group averaging inner product with Abelianized constraint is a priori ill-defined but the group averaging inner product with a single master constraint is well-defined as long as the Master constraint is well defined. Thus the question arises how to regularize the group averaging inner product for the infinite number of constraints such that in the limit as the regulator is removed we obtain the group averaging inner product with respect to the Master constraint.

We solve this problem as follows: Consider arbitrary finite subsets $W \subset \mathbb{N}_0$ and define (\(|W|\) is the number of elements in W) a partial group averaging for the W-dependent states ψ_W, ϕ_W and Ω_W

\[
\langle \eta_{2W}(\psi_W)|\eta_{2W}(\phi_W) \rangle_{\Omega_W} := \lim_{\epsilon \to 0} \frac{\int_{|W|} \prod_{I \in W} \int_0^\infty \prod_{I \in W} e^{\epsilon \tilde{C}_I} \langle \phi_W | \prod_{I \in W} e^{\epsilon \tilde{C}_I} | \phi_W \rangle_{Kin}}{\int_{|W|} \prod_{I \in W} \int_0^\infty \prod_{I \in W} \langle \Theta_W | \prod_{I \in W} e^{\epsilon \tilde{C}_I} | \Theta_W \rangle_{Kin}},
\]

which is well-defined since W is a finite set.

Likewise, with the chosen $W \subset \mathbb{N}_0$ one can also define the partial master constraint operator by truncating the sum $M_W := \sum_{I,J \in W} K_{IJ} \tilde{C}_I \tilde{C}_J$. Then the group averaging can also be defined for this partial master constraint:

\[
\langle \bar{\eta}_{2W}(\psi_W)|\bar{\eta}_{2W}(\phi_W) \rangle_{\Omega_W} := \lim_{\epsilon \to 0} \frac{\int_{|W|} \prod_{I \in W} \int_0^\infty \prod_{I \in W} \langle \psi_W | e^{\epsilon M} | \psi_W \rangle_{Kin}}{\int_{|W|} \prod_{I \in W} \int_0^\infty \prod_{I \in W} \langle \Theta_W | e^{\epsilon M} | \Theta_W \rangle_{Kin}},
\]

with respect to the same triple of vectors. Now, we have already seen in the previous section that under the assumptions spelled out in Theorem\[3,4\] the group averaging using the partial master constraint is consistent with the partial group averaging using the Abelianized constraints, that is

\[
\langle \bar{\eta}_{2W}(\psi_W)|\bar{\eta}_{2W}(\phi_W) \rangle_{\Omega_W} = \langle \eta_{2W}(\psi_W)|\eta_{2W}(\phi_W) \rangle_{\Omega_W}
\]

What we intend to show is that the partial group averaging with respect to the partial collection of constraints indexed by W, Eq\[3,3\] coincides with the group averaging using the master constraint Eq\[3,2\] when we take the limit $W \to \mathbb{N}_0$, i.e.

\[
\lim_{W \to \mathbb{N}_0} \langle \bar{\eta}_{2W}(\psi_W)|\bar{\eta}_{2W}(\phi_W) \rangle_{\Omega_W} = \langle \bar{\eta}(\psi)|\bar{\eta}(\phi) \rangle_{\Omega}
\]
for suitable sequences of triples \((ψ_0, φ_0, Ω_0)\) such that \((ψ_0, φ_0, Ω_0) → (ψ, φ, Ω)\) as \(W → N_0\). Due to 3.4 and if all the assumptions in Theorem 3.1 hold for all choices of \(W ∈ N_0\), the task is reduced to prove

\[
\lim_{W → N_0} \left< \bar{η}_{Ω_0, W}(ψ_W) | \bar{η}_{Ω_0, W}(φ_W) \right>_{Ω_0} = \left< \bar{η}(ψ) | \bar{η}(φ) \right>_{Ω} \tag{3.7}
\]

for suitable sequences of triples \((ψ_0, φ_0, Ω_0)\) converging strongly to \((ψ, φ, Ω)\) as \(W → N_0\). This is a simplification of the problem because now both sides of Eq. (3.7) are the group averaging with respect to the master constraints — one side with the partial master constraint and the other side with full master constraint. Moreover, by Theorem 2.1 both sides of Eq. (3.7) equal to DID physical inner product in their absolutely continuous sectors corresponding to their master constraints \(M_W\) and \(M\). So in the following we only need to show the following relation:

\[
\lim_{W → N_0} \frac{⟨ψ_W(0)|φ_W(0)⟩_{ac}^{W}}{⟨Ω_{Wac}(0)|Ω_{Wac}(0)⟩_{ac}^{W}} = \frac{⟨ψ(0)|φ(0)⟩_{ac}}{⟨Ω(0)|Ω(0)⟩_{ac}} \tag{3.8}
\]

where \(λ_W\) and \(λ\) denote the spectrum of \(M_W\) and \(M\) respectively. Note that in the following we denote the absolutely continuous sector of \(M_W\) by \(\mathcal{H}_{ac}^W\), and denote the absolutely continuous sector of \(M\) by \(\mathcal{H}_{ac}\).

In order to establish the relation Eq. (3.8), we have to make a regularity assumption on the convergence of the partial master constraint \(M_W\) to the full master constraint \(M\). We need the following theorem (See [19] for the proof):

Theorem 3.2. Let \(\{A_n\}_{n=1}^{∞}\) and \(A\) be self-adjoint operators and \(lim_{n→∞} A_n = A\) in the strong resolvent sense (or equivalently, \(lim_{n→∞} e^{itA_n} = e^{itA}\) strongly for each \(t\)), then \(lim_{n→∞} E_n(a,b) = E(a,b)\) strongly provided that \(a, b ∈ \mathbb{R}, a < b, \) and \(a, b ∈ \sigma^{pp}(A)\).

We first consider the simple case that all the partial master constraints \(M_W\) for different \(W\) only have absolutely continuous spectrum on \(\mathcal{H}_{K^in}\), i.e. \(\mathcal{H}_{ac}^W = \mathcal{H}_{K^in}\) for all \(W\). Suppose that we have convergence \(M = lim_{W→∞} M_W\) to the full master constraint in the strong resolvent sense, and that the full master constraint also only has absolutely continuous spectrum on \(\mathcal{H}_{K^in}\), i.e. \(\mathcal{H}_{ac} = \mathcal{H}_{K^in}\).

We also assume that for \(M\) there exists a minimal set of \(Ω_0 ∈ \mathcal{H}_{K^in}\) such that the Radon-Nikodym derivatives \(ρ_W\) are continuous at \(λ = 0\) from the right. For any \(ψ, \psi’\) and \(Ω\) in a dense domain \(D\) (defined by the condition that for any \(ψ, \psi’ ∈ D\), \(⟨ψ(0)|ψ’(0)⟩_{ac}\) is right continuous at \(λ = 0\)) of \(\mathcal{H}_{K^in}\), we have:

\[
lim_{λ→0^+} \frac{⟨ψ(E(0,0)|ψ’(0))⟩_{K^in}}{⟨Ω(E(0,0)|Ω(0))⟩_{K^in}} = \frac{⟨ψ(0)|ψ’(0)⟩_{ac}}{⟨Ω(0)|Ω(0)⟩_{ac}}
\]

where \(E\) is the p.v.m. of \(M\).

On the other hand, the projection valued measure for \(M_W\), \(E_W(a,b)\) equals \(E_1(R_{a,b})\) where \(R_{a,b}\) is the region between the spheres \(M_W = a\) and \(M_W = b\) in \(\mathbb{R}^{|W|}\) and \(E_W = \bigcap_{E_1 \in W} E_1\). Since \(M = lim_{W→∞} M_W\) in the strong resolvent sense and \(M\) only has absolutely continuous spectrum on \(\mathcal{H}_{K^in}\), by the above theorem we know that \(lim_{W→∞} E_W(a,b) = E(a,b)\) strongly.

Given \(W \subset N_0\), we can decompose the Hilbert space \(\mathcal{H}_{K^in}\) with respect to \(|C_1|_{\mathcal{H}^W}\)

\[
\mathcal{H}_{K^in} = \bigoplus_{m=0}^{∞} \mathcal{H}_{W,m}
\]

A dense set \(D_W\) consists of the vectors of the form \(|q^m(|C_1|_{\mathcal{H}^W}) Ω_{W,m}⟩_{m=1}^{∞}\) where \(Ω_{W,m} \in \mathcal{H}_{W,m}\) are \(C^∞\)-vectors and \(q^m\) are polynomials. Suppose we choose any three unit vectors \(ψ, \psi’, Ω\) in \(D\), as well as any three unit vectors \(ψ_W, \psi_W’, Ω_W\) in \(D_W\)

\[
\begin{align*}
\frac{⟨ψ(E(0,0)|ψ’(0))⟩_{K^in}}{⟨Ω(E(0,0)|Ω(0))⟩_{K^in}} &= \frac{⟨ψ(0)|ψ’(0)⟩_{ac}}{⟨Ω(0)|Ω(0)⟩_{ac}} \\
&= \frac{⟨ψ(E(0,0)|ψ’(0))⟩_{K^in}}{⟨Ω(E(0,0)|Ω(0))⟩_{K^in}} \tag{3.8}
\end{align*}
\]

where \(E\) is the p.v.m. of \(M\).
Since \mathcal{D}_W is dense, for given $\epsilon > 0$ and three unit vectors ψ, ψ', Ω we can find three unit vectors ψ_W, ψ'_W and Ω_W in \mathcal{D}_W such that $||\psi - \psi_W||_K, ||\psi' - \psi'_W||_K, ||\Omega - \Omega_W||_K < \epsilon$. Using the Schwarz inequality we have e.g. $|\tilde{\mu}_{\psi - \psi_W, \psi'_W}(\lambda)| \leq ||\psi - \psi_W||_K < \epsilon$ and $|\tilde{\mu}_{\psi - \psi_W, \psi'_W}(\lambda)| \leq ||\psi - \psi_W||_K < \epsilon$ for all choices of W. Next, for given $\lambda > 0$, $\epsilon > 0$ and ψ, ψ', Ω, by strong convergence of the p.v.m. $E_W \to E$ (pointwise on the spectrum) there exists a $W(\lambda, \epsilon, \psi, \psi', \Omega) \subset \mathcal{N}_0$ such that for all $W \supseteq W(\lambda, \epsilon, \psi, \psi', \Omega)$ we have $||E_W(\lambda) - E(\lambda)||_K, ||E_W(\lambda) - E(\lambda)||_K < \epsilon$. It follows e.g. $|\langle \psi | E(\lambda) - E_W(\lambda) | \psi' \rangle| < \epsilon$. Therefore

$$
\frac{|\tilde{\mu}_{\psi, \psi}(\lambda)| - |\tilde{\mu}_{\psi_W, \psi'_W}(\lambda)|}{|\tilde{\mu}_{\Omega, \Omega}(\lambda)|} < \epsilon \times \frac{|\tilde{\mu}_{\Omega, \Omega}(\lambda)| + |\tilde{\mu}_{\psi_W, \psi'_W}(\lambda)|}{|\tilde{\mu}_{\Omega, \Omega}(\lambda)|} + \frac{2|\tilde{\mu}_{\psi_W, \psi'_W}(\lambda)|}{|\tilde{\mu}_{\Omega, \Omega}(\lambda)|} < \epsilon
$$

(3.9)

where we have assumed that given $\lambda > 0$ and Ω, we have $3\epsilon < |\tilde{\mu}_{\Omega, \Omega}(\lambda)|$. So it is clear to see that given $\delta > 0$ we can choose ϵ such that Eq. (3.9) is smaller than δ.

Furthermore, both $|\tilde{\mu}_{\psi, \psi}(\lambda)|/|\tilde{\mu}_{\Omega, \Omega}(\lambda)|$ and $|\tilde{\mu}_{\psi_W, \psi_W}(\lambda)|/|\tilde{\mu}_{\Omega, \Omega}(\lambda)|$ are right continuous at $\lambda = 0$. Thus we know that for any $\epsilon > 0$ there exists a $\delta > 0$ such that for all $0 < \lambda < \delta$, $|\tilde{\mu}_{\psi, \psi}(\lambda)|/|\tilde{\mu}_{\Omega, \Omega}(\lambda)| < \epsilon/3$. From the last paragraph, we know that for any $\epsilon > 0$ there exists a $W(\lambda, \epsilon, \psi, \psi', \Omega) \subset \mathcal{N}_0$ such that for all $W \supseteq W(\lambda, \epsilon, \psi, \psi', \Omega)$, we can find the unit vectors ψ_W, ψ'_W and Ω_W in \mathcal{D}_W such that $|\tilde{\mu}_{\psi, \psi}(\lambda)|/|\tilde{\mu}_{\Omega, \Omega}(\lambda)| < \epsilon/3$. From a δ such that for all $0 < \lambda < \min(\delta, \delta_W)$, $|\tilde{\mu}_{\psi, \psi}(\lambda)|/|\tilde{\mu}_{\Omega, \Omega}(\lambda)| < \epsilon/3$. If we fix a $W \supseteq W(\lambda, \epsilon, \psi, \psi', \Omega)$ and data ψ_W, ψ'_W and Ω_W in \mathcal{D}_W, there exists a δ_W such that for all $0 < \lambda < \min(\delta, \delta_W)$, $|\tilde{\mu}_{\psi_W, \psi_W}(\lambda)|/|\tilde{\mu}_{\Omega, \Omega}(\lambda)| < \epsilon/3$. To summarize: For any $\epsilon > 0$, there exists a W and three unit vectors ψ_W, ψ'_W and Ω_W in \mathcal{D}_W such that

$$
|\tilde{\mu}_{\psi_W, \psi_W}(\lambda)|/|\tilde{\mu}_{\Omega, \Omega}(\lambda)| < \epsilon
$$

for all $0 < \lambda < \min(\delta, \delta_W)$, which means that $\tilde{\mu}_{\psi_W, \psi_W}(\lambda)$ approaches $\tilde{\mu}_{\Omega, \Omega}(\lambda)$ as closely as we want. Note that for non-unit vectors ψ, ψ', Ω we can always re-scale ψ, ψ', Ω and Ω_W such that the approximation still holds.

Next consider the case that each M_W possesses has both absolutely continuous and pure point spectrum on \mathcal{H}_K and that $M = \lim_{W \to \infty} M_W$ in the strong resolvent sense, and that M does not only has absolutely continuous spectrum but also pure point spectrum on \mathcal{H}_K. We denote by $\tilde{\mathcal{H}}_{ac}$ the absolutely continuous sector of M. On the subspace $\tilde{\mathcal{H}}_{ac}$, the restrictions $M|_{\tilde{\mathcal{H}}_{ac}} = \lim_{W \to \infty} M_W|_{\tilde{\mathcal{H}}_{ac}}$ converge also in the strong resolvent sense because by theorem 3.2 only the limit M is supposed to have no pure point spectrum (which is the case if $\tilde{\mathcal{H}}_{ac}$ by definition). Therefore $E_W(\lambda)$ converges to $E(\lambda)$ strongly on $\tilde{\mathcal{H}}_{ac}$. Due to $E(\lambda)E(\Delta) = E(\lambda)$ for any $\lambda \in [0, \delta]$ we trivially have for any $\tilde{\psi}_{ac}, \tilde{\psi}'_{ac}, \tilde{\Omega}_{ac} \in \tilde{\mathcal{H}}_{ac}$

$$
\tilde{\mu}_{\tilde{\psi}_{ac}, \tilde{\psi}'_{ac}, \tilde{\Omega}_{ac}}(\lambda) = \langle \tilde{\psi}_{ac} | E(\lambda) | \tilde{\psi}'_{ac}, \tilde{\Omega}_{ac} \rangle_{K, \Omega} = \langle \tilde{\psi}_{ac} | E(\lambda) | \tilde{\psi}'_{ac} \rangle_{ac} = \mu_{\tilde{\psi}, \tilde{\psi}', \tilde{\Omega}}(\lambda)
$$

where $\tilde{\psi}'_{ac} = E(\lambda)\tilde{\psi}'_{ac}, \tilde{\Omega}_{ac} = E(\delta)\tilde{\Omega}_{ac}$. Let us make the assumption that there exists a $\delta \in \mathbb{R}^+$, such that for any $\tilde{\psi}_{ac} \in \tilde{\mathcal{H}}_{ac}$, $\tilde{\psi}_{ac} \equiv E(\delta)\tilde{\psi}_{ac}$ belongs to all $\tilde{\mathcal{H}}_{ac}$'s. Then we can repeat the previous manipulations used for the simple case in the Hilbert subspace $\tilde{\mathcal{H}}_{ac}$. Thus, suppose Ψ_{ac}, Ψ_{ac} and Ω_{ac} are unit vectors in $\tilde{\mathcal{H}}_{ac}$. Given $\epsilon > 0$ we can find three unit vectors ψ_{ac}, ψ'_{ac} and Ω_{ac} in a dense domain $S_W \subset \mathcal{H}_{ac}$ such that $||\Psi_{ac} - \psi_{ac}||_ac, ||\Psi_{ac} - \psi'_{ac}||_ac, ||\Omega_{ac} - \Omega_{ac}||_ac < \epsilon$. Using again the Schwarz inequality we have e.g. $|\tilde{\mu}_{\psi_{ac} - \psi_{ac}, \psi'_{ac}}(\lambda)| \leq ||\psi_{ac} - \psi_{ac}||_ac < \epsilon$ and $|\tilde{\mu}_{\psi_{ac} - \psi_{ac}, \psi'_{ac}}(\lambda)| \leq ||\psi_{ac} - \psi_{ac}||_ac < \epsilon$ for all $\lambda \in (0, \delta)$ and all choices of W. Next, for given $\lambda \in (0, \delta)$, $\epsilon > 0$ and $\psi_{ac}, \psi_{ac}, \Omega_{ac}$ there exists a $W(\lambda, \epsilon, \psi, \psi', \Omega) \subset \mathcal{N}_0$ such that for all $W \supseteq W(\lambda, \epsilon, \psi, \psi', \Omega), ||E_W(\lambda) - E(\lambda)||_{\mathcal{H}_{ac}} < \epsilon$. It follows e.g. $||\psi_{ac} | E(\lambda) - E_W(\lambda) | \psi_{ac} ||_{\mathcal{H}_{ac}} < \epsilon$. Following the previous manipulations we did for the simple case, we can see that for any given $\tilde{\psi}_{ac}, \tilde{\psi}'_{ac}, \tilde{\Omega}_{ac}$ in a dense domain $S \subset \tilde{\mathcal{H}}_{ac}$ (for any $\tilde{\psi}_{ac}, \tilde{\psi}'_{ac} \in S$, $\langle \tilde{\psi}_{ac}(\lambda) | \tilde{\psi}'_{ac}(\lambda) \rangle_{ac}$ is right continuous at $\lambda = 0$), and for any $\epsilon > 0$, there exists a W and three vectors
\(\psi_{\text{W,ac}}, \psi'_{\text{W,ac}} \) and \(\Omega_{\text{W,ac}} \) in a dense domain \(S_W \subset H_{W}^{ac} \) such that

\[
\left\| E(\delta) \tilde{\psi}_{\text{ac}} - \psi_{\text{W,ac}} \right\|, \left\| E(\delta) \tilde{\psi}'_{\text{ac}} - \psi'_{\text{W,ac}} \right\|, \left\| E(\delta) \tilde{\Psi}_{\text{ac}} - \Omega_{\text{W,ac}} \right\| < \epsilon
\]

and

\[
\left| \frac{\tilde{\mu}_{\text{ac}}^\Psi_{\tilde{\psi}_{\text{ac}} \tilde{\psi}'_{\text{ac}}}(0)}{\tilde{\mu}_{\text{ac}}^\Psi_{\tilde{\psi}_{\text{ac}} \tilde{\psi}'_{\text{ac}}}(0)} - \frac{\tilde{\mu}_{\text{ac}}^\Psi_{\tilde{\psi}_{\text{ac}} \tilde{\psi}'_{\text{ac}}}(0)}{\tilde{\mu}_{\text{ac}}^\Psi_{\tilde{\psi}_{\text{ac}} \tilde{\psi}'_{\text{ac}}}(0)} \right| < \epsilon
\]

Moreover, we can choose a sequence of \(\{W_n\}_{n=1}^{\infty} \) and correspondingly three sequences of vectors \(\psi_{\text{W,ac}}, \psi'_{\text{W,ac}} \) and \(\Omega_{\text{W,ac}} \) such that for any given \(\tilde{\psi}_{\text{ac}}, \tilde{\psi}'_{\text{ac}}, \tilde{\Omega}_{\text{ac}} \) in a dense domain \(\tilde{S} \subset H_{W}^{ac} \) (defined by the condition that for any \(\tilde{\psi}_{\text{ac}}, \tilde{\psi}'_{\text{ac}} \in \tilde{S} \), we have that \(\langle \tilde{\psi}_{\text{ac}}(\lambda) \tilde{\psi}'_{\text{ac}}(\lambda) \rangle_{ac}^\Psi \) is right continuous at \(\lambda = 0 \)), and for any \(\epsilon > 0 \), there exists a \(N > 0 \) such that for all \(n > N \)

\[
\left\| E(\delta) \tilde{\psi}_{\text{ac}} - \psi_{\text{W,ac}} \right\|, \left\| E(\delta) \tilde{\psi}'_{\text{ac}} - \psi'_{\text{W,ac}} \right\|, \left\| E(\delta) \tilde{\Omega}_{\text{ac}} - \Omega_{\text{W,ac}} \right\| < \epsilon
\]

and

\[
\left| \frac{\tilde{\mu}_{\text{ac}}^\Psi_{\psi_{\text{W,ac}} \psi_{\text{W,ac}}}(0)}{\tilde{\mu}_{\text{ac}}^\Psi_{\psi_{\text{W,ac}} \psi_{\text{W,ac}}}(0)} - \frac{\tilde{\mu}_{\text{ac}}^\Psi_{\psi_{\text{W,ac}} \psi_{\text{W,ac}}}(0)}{\tilde{\mu}_{\text{ac}}^\Psi_{\psi_{\text{W,ac}} \psi_{\text{W,ac}}}(0)} \right| < \epsilon
\]

which means that

\[
\lim_{n \to \infty} \psi_{\text{W,ac}} = E(\delta) \tilde{\psi}_{\text{ac}}, \quad \lim_{n \to \infty} \psi'_{\text{W,ac}} = E(\delta) \tilde{\psi}'_{\text{ac}}, \quad \lim_{n \to \infty} \Omega_{\text{W,ac}} = E(\delta) \tilde{\Omega}_{\text{ac}}
\]

and

\[
\lim_{n \to \infty} \frac{\tilde{\mu}_{\text{ac}}^\Psi_{\psi_{\text{W,ac}} \psi_{\text{W,ac}}}(0)}{\tilde{\mu}_{\text{ac}}^\Psi_{\psi_{\text{W,ac}} \psi_{\text{W,ac}}}(0)} = \frac{\tilde{\mu}_{\text{ac}}^\Psi_{\psi_{\text{ac}} \psi_{\text{ac}}}(0)}{\tilde{\mu}_{\text{ac}}^\Psi_{\psi_{\text{ac}} \psi_{\text{ac}}}(0)} = \frac{\langle \psi_{\text{ac}}(0) \psi_{\text{ac}}(0) \rangle_{ac}^\Psi}{\langle \Omega_{\text{ac}}(0) \Omega_{\text{ac}}(0) \rangle_{ac}^\Psi} \quad (3.10)
\]

Note that for a given state \(\psi \in H_{Kin} \), we should first find its absolutely continuous component \(\psi_{ac} \in H_{ac} \) and then write

\[
\psi = E(\delta) \psi_{ac} + \psi_R \quad (3.11)
\]

The sequence of vectors converging to \(\psi \) is obtained by \(\psi_{\text{W,ac}} + \psi_R \) where \(\lim_{n \to \infty} \psi_{\text{W,ac}} = E(\delta) \tilde{\psi}_{\text{ac}} \). The remainder \(\psi_R \) is of the form \([1 - E(\lambda)] \psi_{ac} + \psi_{pp} + \psi_{cs} \) of which the first term is projected out by \(E(\lambda) \) in the formula (3.9) for the master constraint rigging map already for finite \(\lambda \leq \delta \) and \(\psi_{pp}, \psi_{cs} \) by the mechanism of the previous sections as we take the limit \(\lambda \to 0 \).

We summarize the above considerations as the main theorem of this section:

Theorem 3.3. Assumptions:

- The partial master constraint \(M_{W} \) converges to \(M \) in the strong resolvent sense as \(W \to \infty \);
- Each \(\tilde{C}_1 \) satisfies the condition in Theorem [3.1] and \(M \) satisfies the condition in Theorem [2.1];
- There exists a \(\delta \in \mathbb{R}^+ \), such that for any \(\psi_{ac} \in H_{ac}, \Psi_{ac} = E(\delta) \psi_{ac} \) belongs to all \(H_{ac} \)'s where \(H_{ac} = H_{ac} \) respectively denote the absolutely continuous sector of \(M \), \(M_{W} \) respectively.

Then for given states \(\psi, \phi, \Omega \) in a dense domain of \(H_{Kin} \), there exist three sequences \(\{\psi_n\}, \{\phi_n\}, \{\Omega_n\} \) such that

\[
\lim_{n \to \infty} \langle \psi_n, \phi_n, \Omega_n \rangle = \langle \psi, \phi, \Omega \rangle \quad \text{and} \quad \lim_{n \to \infty} \langle \eta_{\Omega_n W}(\phi_n) | \eta_{\Omega_n W}(\phi_n) \rangle = \langle \tilde{\eta}(\psi) | \tilde{\eta}(\psi) \rangle \quad (3.12)
\]

4 Conclusion and discussion

In [1] we have tried to sketch how different canonical quantisation methods, specifically reduced phase space-, operator constraint and Master constraint quantisation all give rise to the same path integral formulation. In the present paper we have carried out some of the formal steps outlined in [1] more carefully, that is, we established a tighter relation between DID and group averaging for a single master constraint on the one hand and a tighter link between group averaging of individual constraints and Master constraint respectively. Since group averaging of individual constraints more or less straightforwardly leads to a path integral formulation, we have therefore managed to establish a tighter link between DID for a single Master constraint and path integrals.

This link rests on assumptions. The mathematical assumptions that we have made are rather technical in nature and require rather detailed knowledge about the spectral properties of the Master constraints. They are therefore difficult to verify in concrete
situations, however, they at least caution us that formal manipulations are not granted to work out as one would naively expect. Whether they can be weakened remains to be seen. On the other hand, since the technical assumptions are fulfilled for the examples studied in [6,7] we see that they do not restrict us to an empty set of examples. Moreover, even if we cannot verify the validity of the assumptions, still it is a rather good Ansatz to assume that the DID physical inner product is equivalent to a suitable path integral formula.

The most important physical assumption is that we had to assume that the individual constraints form an Abelian algebra of self – adjoint operators. This is consistent with the classical theory because any set of first class constraints can be abelianized locally in phase space. However, that the constraints be represented without anomalies is a strong assumption. Without it, the constraints cannot be simultaneously diagonalised on the kinematical Hilbert space and then there does not exist a common p.v.m. for all constraints. In other words, the rigging map then does not produce solutions to all constraints. To be sure, it is not necessary that the constraint algebra be Abelian for group averaging to work. It is sufficient that it is a true Lie algebra (structure constants rather than structure functions) and that there exists a Haar measure on the corresponding gauge group.

However, in the case of GR this is not the case. The path integral for GR therefore cannot be derived by group averaging of Hamiltonian and spatial diffeomorphism constraint operators as envisaged in [25] which has already been pointed out in the second reference of [8], simply due to the structure functions. They cause the Hamiltonian constraint operators not to be self – adjoint which is why a priori they cannot be exponentiated and even if they can be defined on analytic vectors [19], they do not form a Lie algebra.

Thus, to derive a path integral formula for GR from the canonical theory, we must first Abelianize the constraints or one has to use the Master constraint programme. The general considerations in this paper and the companion paper [1] may be considered as a preparation for this.

The consequence of the Abelianisation is that the naive Lebesgue measure of a path integral formulation has to be modified by a local measure factor. The following sketch may clarify this: Suppose that we have a system with only first class constraints \(C_I \) and let \(\hat{C}_I \) be their local Abelianisation. Then there exists a non singular matrix \(M \) with \(C_I = M_{IJ} \hat{C}_J \). The rigging physical inner product can then be formally written as (using the usual skeletonisation techniques)

\[
\langle \eta[\psi'], \eta[\psi] \rangle_{\text{phys}} = \frac{\int \mathcal{D}q \mathcal{D}p \delta[\hat{C}] |\psi[q_+] \psi'[q_-] \rangle \exp(i \int dt p_\alpha \dot{q}_\alpha)}{\int \mathcal{D}q \mathcal{D}p \delta[\hat{C}] |\Omega[q_+] \Omega[q_-] \rangle \exp(i \int dt p_\alpha \dot{q}_\alpha)}
\]

\[
= \frac{\int \mathcal{D}q \mathcal{D}p \delta(C) |\det[M] \bar{\psi}[q_+] \bar{\psi}'[q_-] \rangle \exp(i \int dt p_\alpha \dot{q}_\alpha)}{\int \mathcal{D}q \mathcal{D}p \delta(C) |\det[M] \bar{\Omega}[q_+] \bar{\Omega}[q_-] \rangle \exp(i \int dt p_\alpha \dot{q}_\alpha)}
\]

(4.1)

where the kinematical states are evaluated at boundary configurations \(q_\pm \) in the infinite past and future respectively. The appearance of \(|\det(M)| \) multiplying the naive Lebesgue measure \(d\mu_L = \mathcal{D}q \mathcal{D}p \) is precisely correct and makes sure that the rigging inner product above agrees with the one coming from reduced phase space quantisation. To see this, notice that the above path integral is invariant under gauge transformations canonically generated by the \(\hat{C}_I \) which become the identity in the infinite past and future because this leaves \(q_\pm \) invariant, changes the symplectic potential \(\Theta_L = \int p_\alpha \dot{q}_\alpha dt \) by a total differential which vanishes at the boundaries, as a canonical transformation leaves the Liouville measure \(d\mu_L \) invariant and also the \(\hat{C} \) due to Abelianess. The \(\hat{C}_I \) are always of the form \(\pi_I + h_I(\phi^I, \dot{Q}^A, P_A) \) because one can split the canonical pairs \((q^a, p_a) \) into two groups \((\phi^I, \pi_I), (Q^A, P_A) \) and solve \(C_I(q^a, p_a) = 0 \) in terms of \(\pi_I \). The gauge transformation \(\alpha_\beta = \exp(\beta^I \hat{C}_I) \) acts on the gauge fixing condition \(G^I = \phi^I - \tau^I \), where \(\tau^I = \tau^I(t) \) is an arbitrary but fixed configuration, by the shift \(\alpha_\beta(G^I) = G^I + \beta^I \). We therefore trivially have

\[
1 = \int \mathcal{D}\beta \delta[\alpha_\beta(G)]
\]

(4.2)

5The exponential of a self – adjoint operator can be defined via the spectral theorem.

6It is often wrongly stated that the Hamiltonian constraint operators [11] commute. This is wrong. What one means is that the dual action of their commutators annihilates the solutions of the spatial diffeomorphism constraints (which are considered as distributions on the kinematical Hilbert space). On the kinematical Hilbert space they do not commute and they do not form a Lie algebra. One can define a Hilbert space of solutions to the spatial diffeomorphism constraints. But neither is the Hamiltonian constraint defined there (it cannot preserve this space) nor is it self – adjoint. See the second reference in [8] for a comprehensive discussion.
Thus we can formally run the Fadeev – Popov argument (we denote by m a point on the phase space)

$$\int d\mu_L(m) \delta(\tilde{C}(m)) \Omega(q_+(m)) \Omega(q_-(m)) e^{iS_L(m)}$$

$$= \int D\beta \int d\mu_L(m) \delta(\tilde{C}(m)) \delta(a_\beta G(m)) \Omega(q_+(m)) \Omega(q_-(m)) e^{iS_L(m)}$$

$$= \int D\beta \int d\mu_L(m) \delta(\tilde{C}(m)) \delta(\beta G(m)) \Omega(q_+(m)) \Omega(q_-(m)) e^{iS_L(m)}$$

$$= \int D\beta \int d\mu_L(m) \delta(\tilde{C}(m)) \delta(\beta G(m)) \Omega(q_+(m)) \Omega(q_-(m)) e^{iS_L(m)}$$

$$= \left(\int D\beta \right) \int d\mu_L(m) \delta(\tilde{C}(m)) \delta(\beta G(m)) \Omega(q_+(m)) \Omega(q_-(m)) e^{iS_L(m)}$$

(4.3)

where we have made use of the automorphism property of canonical transformations and the invariance properties of the integrand at intermediate steps. Thus the infinite gauge group volume $\int D\beta$ cancels in the fraction (4.1) which therefore may be written as

$$<\eta[\psi'], \eta[\psi]>_{\text{phys}} = \frac{\int Dq Dp \delta(C) \delta(G) | \det[M] | \omega[q_+ \psi'[q_-]] \exp(i \int dt p_\alpha \dot{q}^\alpha)}{\int Dq Dp \delta(C) \delta(G) | \det[M] | \omega[q_+ \psi'[q_-]] \exp(i \int dt p_\alpha \dot{q}^\alpha)}$$

$$= \frac{\int Dq Dp \delta(C) \delta(G) | \det(M,C,G) | \omega[q_+ \psi'[q_-]] \exp(i \int dt p_\alpha \dot{q}^\alpha)}{\int Dq Dp \delta(C) \delta(G) | \det(M,C,G) | \omega[q_+ \psi'[q_-]] \exp(i \int dt p_\alpha \dot{q}^\alpha)}$$

(4.4)

which is precisely the well known reduced phase space formula for the path integral [2] which also makes it manifest that the above formula is invariant under changes of the gauge fixing condition G at finite times.

It transpires that, had we not paid attention to the fact that we should use a form of the constraints such that they form a Lie algebra and such that the rigging map actually maps to kernel of the constraints, then we would have postulated the naive path integral in (4.1) without the measure factor $\det[M]$ which is necessary also in order to be consistent with other well established quantisation methods. Since spin foams did start from [25] where no attention to these subtleties was paid and since also current spin foam models based on the Plebanski or Holst action [10] do not pay attention to these local measure factors, one may worry whether spin foam models as currently defined actually define solutions to the Hamiltonian constraints. In order to investigate this question, we have computed in [24] the local measure factor for Holst gravity because the models in [10] are based on the Holst action [23]. The corresponding measure factor, which is actually more complicated to compute than in the simple situation (4.1) because Plebanski gravity also contains second class constraints, should then be incorporated into spin foam models which is ongoing work [26]. The measure factor destroys the manifest general covariance of the naive measure and one may ask whether the corrected measure is invariant at least under the gauge transformations generated by the non Abelianised constraints, that is, the Bergmann – Komar group [27]. This is the subject of the research conducted in [21].

The Abelianess featured crucially into the proofs of the current paper in order to establish a link between constraint group averaging and master constraint group averaging. However, the Master constraint needs not to be defined in terms of Abelianised constraints. Therefore one may wonder what happens if one tries to define a path integral for Master constraint group averaging for the concrete proposal for an LQG master constraint in [5] in terms of the original Hamiltonian constraints and with a phase space dependent matrix K. This analysis is carried out in [22].

Acknowledgments

We thank Jonathan Engle for many insightful discussions. M.H. gratefully acknowledges the support by International Max Planck Research School (IMPRS) and the partial support by NSFC Nos. 10675019 and 10975017, and thanks the Perimeter Institute for Theoretical Physics, where part of this research took place, for hospitality.
References

[gr-qc/0305080]

B. Dittrich and T. Thiemann, Class.Quant.Grav. 23 (2006) 1089-1120,
B. Dittrich and T. Thiemann, Class.Quant.Grav. 23 (2006) 1121-1142,

[arXiv:gr-qc/0509064].

A. Baratin, C. Flori and T. Thiemann. The Holst spin foam model via cubulations [arXiv:0812.4055] [gr-qc]

Thiemann T 2006 Quantum spin dynamics. VIII. The master constraint Class.Quant.Grav. 23 2249-2266 [gr-qc/0510011].

M. P. Reisenberger. Classical Euclidean general relativity from “left-handed area = righthanded area”, [arXiv:gr-qc/9804061]

[arXiv:0711.0119] [gr-qc]

[16] Solving the problem of time in general relativity and cosmology with phantoms and k-essence. [astro-ph/0607380]

