M id-Infrared diagnostics of metal-rich H II regions from VLT and Spitzer Spectroscopy of Young Massive Stars in W 31^2

J.P. Furness¹, P.A. Crowther³, P.W. Morris², C.L. Barbosa⁴, R.D. Blum⁴, P.S. Conti⁵, S.D. van Dyk⁶

¹Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK
²NASA Herschel Science Center/Caltech, 220-6, Pasaden 91125, USA
³IP & D, Universidade do Vale do Paraíba, A.V. Shikishima H. Lum 1, 2911 Sao Jose dos Campos 12244-000, SP, Brazil
⁴NOAO, 950 North Cherry Avenue, Tucson, AZ 85719, USA
⁵JILA, University of Colorado, Boulder, CO 80309-0440, USA
⁶Spitzer Science Center/Caltech, 220-6, Pasadena, CA 91125, USA

5 August 2013

ABSTRACT
We present near-IR VLT/ISAAC and mid-IR Spitzer/IRS spectroscopy of the young massive cluster in the W 31 star-forming region. H β band spectroscopy provides re ned classifications for four cluster members stars with respect to Blum et al. In addition, photospheric features are detected in the massive Young Stellar Object (m YSO) # 26. Spectroscopy permits estimates of stellar temperatures and masses, from which a cluster age of 0.6 My and distance of 3.3 kpc are obtained. In excellent agreement with Blum et al. IRS spectroscopy reveals mid-infrared ne structure lines of [Ne II] and [S II] for four O stars and five YSO's. In common with previous studies, stellar parameters of individual stars are severely underestimated from the observed ratios of ne-structure lines, despite the use of contemporary stellar atmosphere and photoionization models. We construct in principal temperature calibrations based upon the W 31 cluster stars of known spectral type, supplemented by two inner M Iky Way ultracompact (UC) H II regions whose ionizing star properties are established. Calibrations involving [Ne II] 15.5 \( \lambda \) [Ne II] 12.8 \( \lambda \), [S IV] 10.5 \( \lambda \) [Ne II] 12.8 \( \lambda \) or [Ar III] 9.0 \( \lambda \) /[Ne II] 12.8 \( \lambda \) have application in deducing the spectral types of early- to m O stars for other inner M Iky Way com pact and UC H II regions. Finally, evolutionary phases and time scales for the massive stellar content in W 31 are discussed, due to the presence of numerous young massive stars at different formation phases in a `coeval' cluster.

Keywords: (Galaxy:) open clusters and associations: individual: W 31 (G 10.2(0.3)) ([ ISM ]:) II regions ( Stars: early-type; ( Stars: fundamental parameters ([ Infrared: ISM ])

1 INTRODUCTION
The formation of high mass stars remains an unsolved astrophysical puzzle (Zinnecker & Yorke 2000, Clarke & Bonnell 2002). Unlike the situation for low mass stars, for which multi-wavelength observations are plentiful, very massive stars (M \( \geq \) 25 M☉) are born within compact, deeply embedded star-forming regions, severely restricting observations to either the far-infrared where heated dust dominates their appearance, or radio wavelengths where gas ionized by the central star(s) can be characterized. Either way, high mass stars themselves cannot be seen directly within these ultracompact (UC) II regions until the column density of dust along our line of sight falls below 2\( \times \) magnitudes in the K-band. To date, only a few such cases have been

7 Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 077.C-0550(A) and the Spitzer Space Telescope which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. y Paul.Crowther@sheffield.ac.uk
Figure 1. (a) $K$-band image of W 31 from Blum et al. (2001), showing the 4 slit positions for the near-IR ISAAC spectroscopy (dashed lines) and the 9 IRS apertures for the first nod position of the mid-IR spectroscopy. North is up, East to the left and the image is 12' × 12'. (b) 3.6 m ISAAC image of W 31 showing both IRS nod positions.}

---

... identifying (G 23.96+0.15, Hansen, Luhan & Rieke 2002, Crowther & Funes 2008), G 29.96+0.02 (Watson & Hansen 1997, Hansen et al. 2004), G 45.45+0.06 (Blum & Mc Gregor 2002), W 51d (Barbosa et al. 2003) with the stellar content of other UC H II regions reliant upon indirect far-IR or radio continuum techniques (Wood & Churchwell 1989, Kurz et al. 1994).

Fortunately, the advent of efficient mid-infrared imaging and spectroscopy from space with Infrared Space Observatory (ISO), Keckler et al. (1999) and Spitzer (Werner et al. 2004), plus ground-based 8-10m telescopes has opened up a further window to study such unbedded regions. Specifically, a number of new structure lines from ionized regions are seen in the mid-infrared, notably Ne ii-iii, S ii-iii, which, while indirect, provide information upon the hardness of the extreme ultraviolet (EUV) radiation from their constituent O stars. Such diagnostics, analogous to the optical forbidden lines of O ii-iii and S ii-iii, may allow the 'inverse problem' of determining properties of the ionizing stars of ultra-compact and compact H II regions (see O'Kane et al. 2002). Alternatively, indirect approaches based upon near-IR hydrogen and helium nebulae lines are also employed (e.g. Lum et al. 2003, Blum & Mc Gregor 2003).

To date, tests of photoionization and stellar atmosphere models using these mid-IR line diagnostics have been rather unsatisfactory. Firstly, this is because H II regions are usually ionized by multiple early-type stars in compact clusters, and secondly the strength of mid-IR lines structure lines is aected both by the energetic photons from OB stars and nebular properties. The most comprehensive study of a UC H II region attempt hitherto to date has been by O'Creevy et al. (2002) for G 29.96+0.02 whose results suggested a temperature of $T_\odot$ 35 3K for the ionizing star, in contrast to $T_\odot$ 41 2K from a non-LTE analysis of near-IR spectroscopy for the star (Hanson, Pul & Rieke 2002).

Photoionization models are typically used to infer the stellar properties of both unbedded H II regions (Searcider et al. 1993, Cohen et al. 2002, Simon-Diaz & Stasiak 2003, Perez-Montero & Vleeschouwer 2003) and entire galaxies from mid-IR lines structure lines (Lutz et al. 1995, Kirby & Rieke 2002). If the highly discrepant effective temperatures obtained for G 29.96+0.02 using indirect techniques were repeated for other, single, unbedded O stars, then previously published results from mid-IR diagnostics may be called into question, especially those at high metallicity (e.g. Thomes et al. 2004).

The focus of the present study is the Galactic Giant H II region (GHR) W 31, especially the young star cluster (10.2', 0.3', hereafter W 31) discussed by Blum, Damiet & Conti 2003. This cluster, for which Blum et al. (2001) established a distance of 3.4 kpc and extinction of $A_V = 1.7$ mags, hosts a minimum of four 'naked' O-type stars, as deduced from near-IR spectroscopy, plus a number of massive stars which are still embedded at near-IR wavelengths (hereafter massive YSOs) plus numerous UC H II regions (Gostan et al. 1981). As such, this cluster provides an excellent opportunity to study the different early evolutionary phases of massive star formation. In addition, it possesses an unusual morphology, in that the highest mass stars are located at the periphery of the cluster, in contrast to the mass segregated morphology of most other young clusters (de Grijs et al. 2003, Allison et al. 2003). We shall exploit this unusual geometry through spectroscopy of individual early-type stars in W 31 with the Infrared Spectrograph (IRS, Lick et al. 2004) aboard Spitzer, supplemented with $H$ and $K$ band VLT observations with the Infrared Spectrograph and Array Camera (ISAAC, Moorwood & Cuby 1998).
Near- and Mid-Infrared Spectroscopy of Young Massive Stars in W 31

2 OBSERVATIONS AND DATA REDUCTION

Two main observational datasets are used in the present study, obtained with the VLT ISAAC near-IR spectrograph and Spitzer IRS mid-IR spectrograph.

2.1 VLT ISAAC spectroscopy

Long-slit H- and K-band near-infrared spectroscopy of sources in W 31 were obtained using the ISAAC instrument mounted at the Very Large Telescope between 4th April to 17th June 2006 (Program No. 077.C-0550(A), P.Crowther). Four slit positions were used, as illustrated in Fig. 1(a). Each included two or more targets of interest, namely the naked O stars and massive YSO's from Blum et al. (2001).

The detector was the 1024 x 1024 Hawaii Rockwell array, while three medium resolution grating settings (0.775A/pixel) were obtained at 1.71, 2.09, and 2.20 μm. These observations were obtained at low airmass during variable seeing conditions using a 0.0 arcsec wide slit, and reduced using standard IRAF packages. We observed using ABBBA nod-cycles, a standard infrared A num ber of AB pairs were obtained for each grating setting with wavelength solutions achieved from com parison Xe arc lamp targets.

Telluric correction was achieved by spectroscopy of early-G dwarfs observed at similar airmass to W 31, corrected for their spectral features using high resolution observations of the Sun, adjusted for the radial velocity and spectral resolution of the ten plate stars. An extensive discussion of telluric correction for medium resolution near-IR spectroscopy of early-type stars is provided by Hanson et al. (2005). The 2.09 μm setup swung from low-level variable structure which was accentuated upon a 50 Hz pickup inherent to the instrument. Only the two other settings were at-4092. Consequently, the con-
2.2 Spitzer IRS spectroscopy

W 31 was observed with the mid-IR spectrograph IRS in GO 
# 3337 (W 31C LUST, P.L. Crowther) between 14-16 September 2005 using all four m odules, sampling the short wave-
length region at low and high resolution (SL and SH), plus the 
long wavelength region at low and high resolution (LL 
and LH). In addition, W 31 was imaged with the IRAC instru
tment (Ezio et al. 2004) at 3.6, 4.8, 5.8 and 8.0 m, 
using HDR m ode, with 12 s exposures in a 12 position, 
Reuleaux dither pattern. Unfortunately, the IRAC 5.8 and
8.0 m in aging and long wavelength IRS observations were 
heavily saturated, so our analysis largely focuses upon the 
SH, starting m ode (30 sec, 6 cycles) observation with IRS, 
obtained at two nod positions. The spectral range covered
was 9.9(19.6 m, at a resolution of R 600.

The individual 4.7-11.3 arcsec$^2$ (2.5 px) apertures 
from the rst nod position are superimposed upon a K-
band image of W 31 in the Fig.1(a).Fig.1(b) shows both
IRS nod positions together with the IRAC 3.6 m image of
W 31. A background subtraction was applied to these two 
dimensional IRS datasets (prior to extraction) using a dedi-
cated OFF position at 18h03m4. (2002000; J2000) from 
a second set of cluster positions which are not presented in 
this paper. This pointings give a correction for nebular emis-
sion in the extended He ii region, including the PAH’s. However,
it does not correct for emission from the dense m aterial close
to each of the targeted stars.

Observations have been performed at the standard IRS pipeline 
to basic calibrated data products (BCDs), using a version which is compatible with S162. Multiple exposures at the same position have been co-added at the BCD (2 dim ensional) level, and the OFF position has been used to correct rogue pixels and subtract the
extended background. Then the spectra were extracted with the o line S162 post-BCD pipeline. Spectra from the two 
staring-m ode nods were averaged, except for cases where a single kind was used to minimize contamination. Specifi-
cally, only nod 1 was used for #1 and # 26 and only nod 2
was used for #2 and #30. This is to avoid contaminination
from potentially overlapping sources during extraction of the spectra (recall Fig.1(b)). These sources are identi ed with in
the nods from any of the available in aging observations, in-
cluding unsaturated regions of the IRAC datasets.

Since the width of the full width at half maximum of the central airy pattern of the IRS point source function
is comparable to the size of the SH slit itself, the full slit
is extracted, so it is not possible to extract (or even easily identify) separate sources or the background.

Each of the echelle spectral orders were trim med at the red edges, corresponding to the lower part of the array where photon etric response sharply drops. Final spectra have been 
created by merging the orders into single spectra, with excel-
ent cross-order agreement when the point-source ux calibration is applied, with only m inor sets (well within the photon etric uncertainties of 15%), indicating that the dom-
inant source signal from each of the intended targets behave
more consistently as point sources than extended sources.

From ally, a1 absolute ux calibration of 10% was achieved, except for the raw 18.7 m [S ii] line which was saturated in a few cases. These were corrected by linearization and 
extrapolation, from which an additional 15% uncertainty re-
sulted.

Finally, we should note that these observations have been obtained when the SH array was relatively undam-
aged by the cumulative e fects of space weather, thus receive
good correction for rogue pixels with data at the OFF
position. Further more, these observations are not aected in
the calibrations or data quality by m ore recent versions of the
pipelines (through S18) which mainly bene t the IRS
peak up in aging AOT and data obtained with m ore aged
arrays.

3 PROPERTIES OF EARLY-TYPE STARS IN
W 31 FROM NEAR-IR SPECTROSCOPY

3.1 Near-IR classification of W 31 O stars

In Figure 2 we present our H- and K-band ISAAC spec-
troscopy of naked O stars in W 31, together with spectra of
ten plate O stars from the high resolution atlas of
Hanson et al. 2001). Crowther & Furness 2008) have re-
cently presented a method of determ ining O dwarf subtypes
from the ratio of the observed Hei1692 m to Hei1700 m
equivalent widths. These were measured from the emis-
sion line etting (ELF) suite of routines in the starlink spectro-
copic analysis program medipso and are presented in Table
1 together with inferred spectral types.

Stars #3, #4 and #5 all show clear Hei and Heii
absorption features, from which 0.5-0.8 V, 0.55 and 0.55 V
class cations are obtained, according to Fig. 3 of
Crowther (2008), in close agreement with
Blaauw et al. 2001). K-band spectroscopy reveals C IV, N III
emission features, plus Br and Hei2152 m absorption,
the core of the form ies led-in by nebular Br emission.
Figure 3. H-band and K-band spectroscopy of W 31 stars from non-LTE CMFGEN models using a distance of 3.3 kpc. Uncertainties in stellar temperatures are 1.5 K, with the exception of #2 for which an upper limit is 48 K. Current stellar masses are obtained from comparison with 2 Z theoretical isochrones from Lejeune & Schaerer (2003).

Table 3. Stellar properties of the W 31 O stars from non-LTE CMFGEN models using a distance of 3.3 kpc. Uncertainties in stellar temperatures are 1.5 K, with the exception of #2 for which an upper limit is 48 K. Current stellar masses are obtained from comparison with 2 Z theoretical isochrones from Lejeune & Schaerer (2003).

In the case of #2, negligible HeI 700 m is observed, from which an O 3 IV classification is inferred. If we had classified #2 on the basis of its K-band spectrum, the presence of significant C 2 emission would have suggested a spectral type of O 4 V or later (Hanson et al. 2009).

3.2 Distance and Age of W 31

Aimed at red spectral types, we now use the near-IR photometry from Blum et al. (2001) and observational absolute magnitude calibration of Martins & Plez (2004) to obtain a revised distance to W 31. This is presented in Table 5, in which observed colours of O stars provide a direct measurement of interstellar extinction from $A_K = 1.22K$ from Indebetouw et al. (2004). For #4 and #5 uncertainties in subtypes have little in common due to absolute magnitude uncertainties of up to 0.3 mag for #2 and #3. These are removed as they are greater than the typical spread of 0.5 mag in absolute magnitudes for individual spectral types.

Overall, we obtain a higher interstellar extinction of $A_K$ = 1.6 0.29 mag towards W 31 than Blum et al. (2001) on the basis of updated intrinsic colours, but this is largely cancelled out by the revised absolute magnitude calibration. As such, we obtain a very similar overall distance (3.3 ± 0.3 kpc) to the 3.4 kpc distance obtained by Blum et al. (2001).

For an adopted Galactic Centre distance of 8.0 kpc Reid (1993) for the Sun, our preferred distance to W 31 suggests that it lies 4.8 kpc from the Galactic Centre. The Galactic oxygen metallicity gradient is $\log (O/H) = -0.044 -0.010 \text{dex kpc}^{-1}$ from Esteban et al. (2004), from which we anticipate that W 31 is 40% more metal-rich than the Sun in the solar circle, i.e. $\log O/H + 12 = 8.81$, compared to 8.65 for the Orion Nebula at 8.4 kpc Esteban et al. (2004). We are unable to derive a neon or sulphur abundance for W 31 from the IRS spectroscopy since the nebular electron temperature is unknown.

Having established a slightly redder cluster distance, we now estimate stellar temperatures (and in turn luminosities) from spectroscopic to the near-IR photometry with the non-LTE CMFGEN code of Hillier & Miller (1998). CMFGEN solves the radiative transfer equation in the moving frame, under the additional constraint of statistical
equilibrium. Since CM FGEN does not solve the m on entum equation, a density or veloci ty structure is required. For the supersonic part, the velocity is param e terized with a classical type law, with an exponent of \(-1\) adopted. This is connected to a hydrostatic density structure at depth, such that the velocity and velocity gradient match at the interface. The subsonic velocity structure is set by a corresponding fully line-blanketed plane-parallel TLUSTY model (v.200, see Lanz & Hubeny 2007). The at omic model is similar to that adopted in Hillier et al. (2003), including ions from H, He, C, N, O, Ne, Si, S, Ar, Ca and Fe, with metal abundances increased by a factor of two relative to those of the Sun from A splund et al. (2004) for O, Ne and Ar, or Cox (2000) otherwise.

We have assumed a depth-independent Doppler profile for all lines when solving for the at mopheric structure in the co-moving frame, while in the calculation of the emergent spectrum in the observer’s frame, we have adopted a uniform turbulence of 50 km s\(^{-1}\). Incoherent electron scattering and Stark broadening for hydrogen and helium lines are adopted. Finally, we convolve our synthetic spectrum with a rotational broadening profile. In view of the quality of our observations, rotational velocities should be reliable to 50 km s\(^{-1}\).

For an adopted (uniform) terminal wind velocity of 2000 km s\(^{-1}\), surface gravity of \(\log g = 4\) and abundance ratio of He/H = 0.1 by number, we varied the stellar radius and (non-blanked) mass-loss rate until an acceptable match to the He i 1629 m, He i 1700 m, Br \(\alpha\) and He i 2189 m was achieved. For the case of \# 2 (O 3 \(\lambda 4549\)), for which negligible He i 1700 m absorption is detected, we favor a temperature of \(45\) kK since higher tem peratures produce too weak Br \(\alpha\) absorption. Spectroscopic fits are presented in Fig. 4 while resulting physical and wind properties are shown in Table 3. Fits to diagnostic lines are generally satisfactory with the exception of \# 3 for which He i 2189 m is seen from low S/N, such that we rely upon the weaker 1.692 m line in this instance. Note that prominent nebular emission features are seen in the hydrogen Brackett series, with the possible exception of \# 2.

Our spectroscopic analysis did not yield a precise measurement of surface gravities (and in turn masses), so having established tem peratures and luminosities, we over-plotted theoretical isochrones from Lejeune & Schaerer (2000) in Fig. 4, from which an age of \(0.6\) Myr was obtained, together with corresponding surface gravities and mass estimates (see Table 1). Three of the four O stars lie along a common isochrone of \(0.5\) Myr, although from Fig. 4 \# 5 suggests a greater age of \(1\) Myr. However, it is possible that this source is a close binary with equal mass components, whose absolute magnitudes would have M \((K) = 3.9\) mag for a distance of 3.3 kpc. In this case, individual components would have properties similar to those of \# 4 in Table 3, reducing the inferred cluster age to \(0.5\) Myr.

3.3 Near-IR spectroscopy of massive YSOs

In addition to the naked O stars, we have obtained ISAAC spectroscopy of four massive YSOs in W 31—high mass stars whose photometric features are veiled by cibular dust with IR excesses due to hot dust. We observed \# 1, \# 9, \# 26 and \# 30 from Blum et al. (2001) at both grating settings in the K-band spectra, but only \# 26 and \# 30 were observed in the \(H\)-band. These datasets are shown in Figure 3. In general, our observations confirm the lower quality datasets of Blum et al. (2001), with nebular Brackett emission lines, plus nebular He i 1700 m, 2058 m for \# 30. Uniquely among the massive YSOs, \# 26 shows clear photometric Br \(\alpha\) absorption in addition to weak nebular Br \(\alpha\) emission, plus He i 2189 m, 1629 m and He i 1700 m absorption. From the observed H-band classical diagnostics in the H-band we estimate an approximate trend spectral type of 0.6, since \(\log G\) (He i 1629)/H (He i 1700) (0.26). This star appears to be at the point of revealing its photosphere, despite the presence of a strong IR dust excess (H-K = 2.72 m mag from Blum et al. 2003).

In principle, we could estimate the physical properties of \# 26, by combining an estimate of its stellar tem perature (36 kK) with the H-band photometry from Blum et al. (2001), the mean H-band extinction for the naked O stars (A\(\text{H}\) = 3.4 m mag) and the adopted distance of 3.3 kpc. For this star the H-band is selected on the basis of signi cant dust emission in the K-band. Unfortunately, the resulting parameters for \# 26 are unphysical since \(\log L/L_{\odot} = 42\) would be
obtained, i.e. mass of only 4 M\(_{\odot}\) (!) for an assumed surface gravity of \(\log g = 4.0\). More plausibly, # 26 may possess a small dust excess, i.e. a large colour excess due to extreme extinction. Recall that this source lies close to the reddening line in the colour-magnitude diagram (Blum et al. 2001). If the (H-K) colour were to arise solely from line-of-sight extinction, \(A_K = 7.9\) mag, from which \(\log L/L_\odot = 6.2\) would be obtained. In reality, the physical properties of # 26 will lie between these two extreme cases. Regardless, this star warrants further study since it uniquely displays both stellar and circumstellar features among early-type stars in W 31.

4 INDIRECT PROPERTIES OF EARLY-TYPE STARS IN W 31 FROM IRS SPECTROSCOPY

4.1 Mid-IR ne structure line ratios

We present the Spitzer IRS short high medium resolution observations of the naked O stars and massive YSOs in Fig[eq]. Although these datasets are background subtracted, no allowance for extended nebular emission close to each source is made. Their continua are dominated by warm dust emission, while the solid state Polycyclic Aromatic Hydrocarbon (PAH) features at 11.3 \(\mu\)m, 13.6 \(\mu\)m and 16.5 \(\mu\)m (previously known as Unidentified Infrared (UIR) emission) are also seen (the 16.5 \(\mu\)m PAH feature is not detected in # 2). There is also a tentative detection of 15.2 \(\mu\)m absorption by icy CO\(_2\) mantles on the silicate dust grains (van Dishoeck 2004). Shallow prows with a soft blue wing starting near 14.9 \(\mu\)m are reminiscent of the W 33A massive YSO (Gibb et al. 2004), although we have no confirmation of the associated 4.3 \(\mu\)m CO\(_2\) absorption which is strong in massive protostars.

We have measured the observed fluxes of the ne structure lines in all IRS sources, using the ELF routine in DIPS, which are presented in Table [Table]. Other, weaker features are observed in the SH module, including H\(_\alpha\) (H i 7(6) at 12.37 \(\mu\)m), for which \(\log I(\text{H}\alpha)/I(\text{[N} \text{II} 12.8 \mu\text{m}) = 1.82 \times 0.04\). Where appropriate, we include de-reddened line intensities in Table [Table] obtained from mean K-band extinctions measured previously together with the mid-IR ex-

---

\footnotetext[1]{At the spectral resolution of IRS/SH the 12.37 \(\mu\)m feature is actually a blend of H \(i\) 7(6) and 11(8) for which \(I(11(8))/I(7(6)) = 0.123\) according to Case B recombination theory at \(T_e = 7,500\) K and \(10^4\) cm.}

\footnotetext[2]{Storey & Hummels 1993}
Table 4. Mid-IR fine structure line fluxes (Intensities in bold first), with units of $10^{14}$ $W$ m$^{-2}$, for the O stars and massive YSOs from Spitzer/IRS spectroscopy of W 31, together with archival ISO/SWS observations of selected UC H ii regions from Peeters et al. (2002).

<table>
<thead>
<tr>
<th>Object</th>
<th>A$_{K}$</th>
<th>[S IV]</th>
<th>[N II]</th>
<th>[N III]</th>
<th>[S III]</th>
<th>log [N III]</th>
<th>log [S IV]</th>
<th>log [O VI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 31 # 1</td>
<td>2.1</td>
<td>0.138</td>
<td>0.002</td>
<td>9.66</td>
<td>0.10</td>
<td>1.19</td>
<td>0.01</td>
<td>11.4</td>
</tr>
<tr>
<td>W 31 # 2</td>
<td>2.1</td>
<td>0.473</td>
<td>0.006</td>
<td>12.7</td>
<td>0.1</td>
<td>1.46</td>
<td>0.02</td>
<td>13.7</td>
</tr>
<tr>
<td>W 31 # 3</td>
<td>2.1</td>
<td>1.55</td>
<td>0.01</td>
<td>9.78</td>
<td>0.1</td>
<td>4.86</td>
<td>0.04</td>
<td>15.4</td>
</tr>
<tr>
<td>W 31 # 4</td>
<td>2.1</td>
<td>0.365</td>
<td>0.003</td>
<td>7.34</td>
<td>0.07</td>
<td>3.14</td>
<td>0.04</td>
<td>11.6</td>
</tr>
<tr>
<td>W 31 # 5</td>
<td>2.1</td>
<td>0.125</td>
<td>0.001</td>
<td>9.66</td>
<td>0.1</td>
<td>3.85</td>
<td>0.05</td>
<td>14.0</td>
</tr>
<tr>
<td>W 31 # 6</td>
<td>2.1</td>
<td>0.341</td>
<td>0.003</td>
<td>7.71</td>
<td>0.08</td>
<td>1.30</td>
<td>0.01</td>
<td>8.2</td>
</tr>
<tr>
<td>W 31 # 7</td>
<td>2.1</td>
<td>0.211</td>
<td>0.003</td>
<td>9.3</td>
<td>0.1</td>
<td>0.99</td>
<td>0.01</td>
<td>9.7</td>
</tr>
<tr>
<td>W 31 # 8</td>
<td>2.1</td>
<td>0.201</td>
<td>0.002</td>
<td>8.04</td>
<td>0.08</td>
<td>3.02</td>
<td>0.03</td>
<td>12.8</td>
</tr>
<tr>
<td>W 31 # 9</td>
<td>2.1</td>
<td>1.03</td>
<td>0.01</td>
<td>10.6</td>
<td>0.1</td>
<td>3.71</td>
<td>0.04</td>
<td>15.4</td>
</tr>
<tr>
<td>W 31 # 10</td>
<td>2.1</td>
<td>1.36</td>
<td>0.01</td>
<td>17.8</td>
<td>0.2</td>
<td>4.81</td>
<td>0.04</td>
<td>18.3</td>
</tr>
<tr>
<td>W 31 # 11</td>
<td>2.1</td>
<td>0.98</td>
<td>0.01</td>
<td>16.3</td>
<td>0.2</td>
<td>3.87</td>
<td>0.03</td>
<td>17.5</td>
</tr>
<tr>
<td>G 23.96+0.15</td>
<td>2.0</td>
<td>0.33</td>
<td>0.08</td>
<td>34</td>
<td>1</td>
<td>2.4</td>
<td>0.2</td>
<td>25.6</td>
</tr>
<tr>
<td>G 29.96</td>
<td>2.0</td>
<td>1.3</td>
<td>0.2</td>
<td>46</td>
<td>1</td>
<td>3.0</td>
<td>0.3</td>
<td>31.7</td>
</tr>
</tbody>
</table>

Figure 7. Fine structure lines of the O-type stars (black circles) and massive YSOs (open circles) in W 31, with several compact and ultracompact H ii regions discussed in this work included for comparison (open triangles). The dashed line is taken from Martín-Hernández et al. (2002), and represents the best fit to observational data sets spanning a wide range of environments (see text).

In Fig. 8 we compare the intensity ratios of [Ne iii]/[Ne ii] and [S iv]/[S iii] for the W 31 sources plus selected compact and UC H ii regions. The former lie close to the best fit of observed ratios in H ii regions in the Milky Way and the GC (Martín-Hernández et al. 2002a), based on observations presented by Peeters et al. (2002) and Verheijen et al. (2002). The compact and UC H ii regions are apparent outliers, but Fig. 1 from Martín-Hernández et al. (2002) reveals a typical scatter of 0.2 dex and they did not correct line ratios for interstellar extinction. Physically, these are probably the highest density (ionization parameter) H ii regions of the full sample.

The W 31 sources with the highest ionization are the naked O stars # 2 (O3 IV) and # 8 (O5.5 V) with massive YSOs # 1 and # 9 possessing the lowest ionization neb-
4.2 Photoionization M odelling

The primary aim of our study is to compare the direct near-IR stellar signatures of O stars in W 31 (and U CH II regions) with the indirect m-id-IR nebular lines through predictions from photoionization models. We use version 08.00 of the photoionization code cloudy, last described by Ferland et al. (1998). This solves the equations of them all and statistical equilibrium for a model nebula, represented by a sphere of gas with uniform density and ionizing factor with a small central cavity which is ionized and heated solely by the UV radiation of a single central star.

Nebular uxes are predicted, given input abundances, ionizing ux distributions and physical parameters, most important of which is the ionization parameter

\[ U = \frac{Q_0}{4 \pi R_0^2 n_c} \]

and \( Q_0 \) is the number of ionizing photons below the H Lyman edge at 912 A. Here, \( R_0 \) is the radius of the Stromgren sphere. Alternatively,

\[ U = \frac{1}{c} \left( \frac{n_0^2 Q_0}{36} \right)^{\frac{1}{3}} \]

where \( n_0 \) is the Case B recombination coefficient. For a given energy distribution of the ionizing radiation \( E_d \), any combination of param eters which keeps \( Q_0 n_0^2 e \) constant will result in an identical ionization structure of the gas (see Stasinska & Leitherer 1980).

Mcroset al. (2004) have compared a number of stellar atmospheric codes to m-id-IR observations of MWC 291 in W 31, concluding that the non-LTE codes CM FGEN and W MS-Basic Faulhaber et al. (2003), provide the best match to observations (see also Sim on-D az & Stashak 2003). We therefore utilize CM FGEN to provide the ionizing uv distributions, as discussed above.

Ideally, one would employ compact and ultra-compact CH II regions that were both spherical and ionized by a single dominant source for such a study. However, such cases are incredibly rare, due to the lack of accurate subtypes for the ionizing stars and scarcity of space bourn m-id-IR observations. G 29.96 (0.02) satisfies the ideal criteria relatively well, but G 23.96 + 0.15 is irregular (Wood & Churchwell 1989), and there is ionized gas throughout the W 31 cluster. Fortunately, the O stars within W 31 are relatively uniform in their ionizing output. In contrast to the ONC, where 1 Ori C dominates the extreme m-UV radiation \( E_d \), we assume that the ionized gas within IRS apertures centred upon individual O stars are dominated by these stars. In reality, the m-UV radiation \( E_d \) likely reflects a combination of the ionizing photons from multiple cluster members, a consideration which should be borne in mind in the following analysis.

4.2.1 Nebular densities

For the stars whose near-IR spectra enables a spectral type to be de termined, we can obtain m-pirical ionization parameters if the distance and electron density is known. Table provides ionizing parameters for the two U CH II regions whose ionizing stars have been determined from near-IR spectroscopy, G 29.96 (0.02) and G 23.96 + 0.15, implying \( \log U \) 1.5 in both cases.

Specifically, for G 29.96 (0.02), Hansen et al. (2005) estimated \( \log Q_0 = 49.6 \) for a kinematic distance of 7.4 kpc, which together with a radio-derived Stromgren radius of 3.50 (0.13 pc \( R_0 \) cod & Churchwell 1989) requires a high electron density of 20,000 cm^{-3}. This is typical of U CH II regions, but is significantly higher than the density of 817 cm^{-3} obtained from ISO observations using [N II] 88.52 m by Arti n et al. (2002a). For G 23.96 + 0.15, we adopt a kinematic distance of 4.7 kpc for which Crowther & Fleming (2008) obtained \( \log Q_0 = 49.4 \) and we adopt a Stromgren radius of 20 (0.025 pc) from 0 cod & Churchwell (1989), although this U CH II region has an irregular radio m-orphology. Again, the corresponding electron density of 70,000 cm^{-3} is much higher than the average density of 1543 cm^{-3} obtained by Arti n et al. (2002a), arising in part due to the large aperture of ISO/LW S.

It was our intention that the IRS/LH spectroscopy of W 31 would have enabled us to deduce electron densities. Unfortunately, due to severe saturation because of the bright dust continuum this was not possible (22). We therefore combined the radio-derived ionizing uv of \( Q_0 = 50.4 \) from Conti & Crowther (2004) with the 30.5 (0.5 pc) radius of the CH II region from diuse B star emission (recall Fig. 1) to estimate an electron density of 6,500 cm^{-3}. The ionization parameter in stressed in all cases is close to \( U = 1.5 \), albeit slightly lower than for the U CH II regions, with similar values anticipated for the m massive YSOs in W 31. For com parison, Hawk & Leitherer (1991) also derived \( \log U = 1.5 \) for the Orion Nebula Cluster (ONC).

4.2.2 Predicted m-id-IR ne structure line ratios

Table includes predicted m-id-IR ne structure line ratios for each case using cloudy. These were obtained with stellar m models for individual stars from either Hansen et al. (2003), Crowther & Fleming (2003) or the present study and were calculated with abundances scaled to 1.5 times the Solar value, with m-uted neglect. From a com parison between the observed line ratios in Table and predicted values in Table it is apparent that good agreement is very poor. For example, the [N II] 15.5 m/[N II] 12.8 m and [S IV] 10.5 m/[S III] 18.7 m ratios differ by 1.5 0.5 dex in all cases. This suggests either that the stellar or photoionization m models are at fault, or the problem arises from local background variations close to individual W 31 sources. The former would appear to be more plausible, since the latter explanation would not reconcile differences between ISO observations of U CH II regions and predictions.

Regardless of the origin for the discrepancy, we have calculated a grid of photoionization m models for three ionization parameters, \( \log U = 1,2 \) and 3 using stellar atmospheric m models appropriate for solar metallicity O dwarfs.
as listed in Table 5. These were obtained from the O star calibration from Conti et al. (2008) together with the Vink, de Koter & Lamers (2001) mass-loss prescription. A uniform rotational broadening of 200 km s\(^{-1}\) was applied to synthetic spectra. Dust was not included, but has little effect upon the predicted line intensities with Orion-like dust grain compositions for dust-to-gas mass ratios of 0.01. The observed case of M 106 is also an outlier, possibly as a result of a reduced density (ionization parameter).

As discussed by Morsink (2004), variations in U and T\(_{\text{e}}\) are broadly independent in a plot of \((\text{S} - \text{Ne})\) versus \(\log U\). In Fig. 8 we compare our cloudy predictions for Solar composition nebulae for \(\log U = (1, 2, 3)\) to the observed positions of W 31 stars and U CH\(_{2}\) regions, together with recent predictions from Simon-Diaz & Stasińska (2008) which are also based on cloudy CMFGEN models. The W 31 sources lie very close together in Fig. 8 with the marginal exception of the massive YSO #9. This source is also an outlier in Fig. 8 possibly as a result of a reduced density (ionization parameter).

G 29.96/0.02 lies close to the \((T_{\text{e}} \log U_{\text{w}}) = (40 \text{K}, 1, 2)\) photionization model from Simon-Diaz & Stasińska (2008), in reasonable agreement with the empirical properties of (41K, 1.5) from Table 8. In contrast, our results predict rather poor agreement for G 29.96/0.02 since it sits close to the (37K, 2) photionization model. The reason for this difference is that Simon-Diaz & Stasińska (2008) adopt a non-standard model dependent definition of ionization parameter, namely

\[ U_{\text{w}} = Q_{\odot} = (4 \ R_{\odot}^{3} \text{nc}) \]

which is based upon the inner radius of the model cloud, \(R_{\text{w}}\) for the photionization calculation rather than the
Figure 9. log (S-Ne) versus log [NeIII]/[NeII] ratio for 2 Solar metallicity grids for 2 GCs. The same meaning as in Fig. 8.

Figure 10. Comparison between the predicted [NeIII]/[NeII] intensity ratio and effective temperature for log U = -1.5 models at Solar and 2 Solar composition. Empirical data are naked O stars in W 31 (solid circle) and inner Milky Way UCH II regions (open triangles) together with a first order t to the empirical data sets (dotted line, see text).

Table 6. Stellar parameters for solar (white solar) O dwarfs used in photodissociation calculations, based upon calibrations presented in Conti et al. (2008) with mass-loss rates obtained from the Vink et al. (2001) prescriptions.

<table>
<thead>
<tr>
<th>Subtype</th>
<th>T_0 (kK)</th>
<th>log L/L_⊙</th>
<th>log Q_0</th>
<th>log v_1 (km s^{-1})</th>
<th>log M_⊙ yr^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3 V</td>
<td>45</td>
<td>5.88</td>
<td>74</td>
<td>49.65</td>
<td>3200 (5.41 (5.15)</td>
</tr>
<tr>
<td>0 4 V</td>
<td>43</td>
<td>5.77</td>
<td>64</td>
<td>49.5</td>
<td>3000 (5.55 (5.30)</td>
</tr>
<tr>
<td>0 5 V</td>
<td>41</td>
<td>5.75</td>
<td>51</td>
<td>49.25</td>
<td>2900 (5.86 (5.61)</td>
</tr>
<tr>
<td>0 6 V</td>
<td>41</td>
<td>5.79</td>
<td>41</td>
<td>49.5</td>
<td>2600 (6.12 (5.86)</td>
</tr>
<tr>
<td>0 7 V</td>
<td>37</td>
<td>5.25</td>
<td>36</td>
<td>48.8</td>
<td>2300 (6.33 (6.07)</td>
</tr>
<tr>
<td>0 8 V</td>
<td>35</td>
<td>5.10</td>
<td>31</td>
<td>48.55</td>
<td>1750 (6.49 (6.23)</td>
</tr>
<tr>
<td>0 9 V</td>
<td>33</td>
<td>4.91</td>
<td>25</td>
<td>48.2</td>
<td>1500 (6.79 (6.53)</td>
</tr>
<tr>
<td>0 9.5 V</td>
<td>31.5</td>
<td>4.78</td>
<td>23</td>
<td>48.0</td>
<td>1200 (6.97 (6.72)</td>
</tr>
</tbody>
</table>

Therefore, we have also calculated a set of super-solar (2 Z⊙) cloudy models, based upon O stars that are identical to the solar composition grid except that both metal abundances and mass-loss rates are increased (see Table 6 for the latter). Solely early O stars provide significant numbers of extreme UV photons capable of producing [NeIII] and [SIV] nebular emission while [NeII] and [SIII] emission is expected to cease beyond 0.95 V. Predictions from 22 photodissociation models are presented in Fig. 8. In general, a comparison with the Solar models, these yield slightly higher stellar temperatures and ionization parameters. G 29.96 (0.02) lies close to (T_0 ; log U) = (38kK , 2), representing a slight in provenent with respect to the empirical temperature. Similar comments apply for G 23.96 (0.15), although predicted temperatures remain too low, and ionization parameters are set by (1.0 to (1.5 dex for G 23.96 (0.15) and the O stars in W 31.

Near- and Mid-Infrared Spectroscopy of Young Massive Stars in W 31

4.3 [NeIII]/[NeII] calibrations

Let us now focus upon the predicted [NeIII]/[NeII] ratio versus stellar temperature, which is presented in Fig. 10 for the Solar and 2 Z⊙ metallicity grids at log U = -1.5. We have selected this value for the ionization parameters since this is characteristic of com pact and especially UCH II regions in our sample. Empirical results are also shown, which suggest temperatures drawn from Table 6 quantifying earlier discrepancies with respect to the predictions. An explanation for the disagreement is not readily apparent, although it may involve incomplete line blanketing in current non-planar models or the highest fundamental energies. Nevertheless, observations allow us to estimate the temperature of the ionizing O stars in other UCH II regions (for which log U = -1.5) within the inner Milky Way, to within 2kK (i.e., one spectral subtype) in principle. A first order t to
the empirical datasets using IDL's poly t routine reveals

\[ T_e = kK \left( \frac{T_s}{kK} \right) + 45 \pm 7 \]

+ 6.27 \times 10^6 \log(\text{I[N e III]} + \text{I[N e II]}):

O subtype may then be estimated from the recent \( T_e \) calibration of Martin, Schaerer & Hillier (2003). Of course, this approach is only practical for compact and U C ii regions ionized by early- and mid-O stars, in view of the weakness of [N e II] in 15.5 m for late-O types.

To illustrate its potential diagnostic role, in Table 4 we provide stellar tem peratures derived from extinction corrected [N e II]/[N e III] ratios for compact and ultra-com pact H ii regions from ISO/SWS observations [Peeters et al. 2002], plus the massive YSO's in W 31 from the present study. Extinctions taken from Art n-Hernandez et al. (2002a), or \( A_K = 1.6 \) m is adopted otherwise. We consider the compact H ii region G 93.5+1.47 (M 178) from this sample [Art n-Hernandez et al. 2008]. For the massive YSO's in W 31, Table 4 presents spectral types inferred from tem peratures obtained from the naked W 31 O stars.

In reality, higher extinction may be expected for these cases (recall Fig. 5). Fortunately, the use of a higher extinction does not a ect the resulting stellar tem perature/subtypes. For # 26, a subtype of O 4.5 V is obtained, versus an approximate subtype of O 6 V from its H-band ISAAC spectrum (\( \lambda \) 850).

Since our calibration has been established using only compact H ii regions within the inner M 15k Way - with super-solar elem ental abundances (one should consider separate ally the case of H ii regions close to, or exterior to, the Solar circle. Of course, metal content is very relevant to gas cooling and metal line blanketing of the extreme U V energy distributions of O stars. Unfortunately, the case of the compact H ii regions close to the Solar circle, very few possess both mid-IR spectroscopy and well-detem ined properties for the dominant ionizing star. The ONC (for which 1.0 \( \text{O} \) and 37022, O 6-7 V p) is the dominant source of ionizing radiation (one such case that it possesses both mid-IR spectroscopy [Simon et al. 1998] and a contemporary analysis of its stellar content by Simon-Diaz et al. 2003).

Other examples are generally presented by the presence of multiple ionizing stars of uncertain spectral type (e.g. NGC 7538) or mid-IR spectroscopy is lacking. The only other case for which mid-IR spectroscopy is available together with a well detem ined spectral type of the ionizing star is G 110.10+0.05 (IC 1470, Sh 2 156) for which Hunter & Massa (1993) derived 0.6 V for its ionizing star. Therefore, we refrain from attempting a solar metallicity calibration at this time. However, we are able to compare the ONC with the cloudy predictions, recalling that Bally et al. (1993) derived a value of \( \log \text{U} = 1.48 \) for the ONC. In contrast, the metal-rich H ii regions, the observed metal ratio for the ONC is in better agreement with the solar-metallicity predictions for \( T_e = 39 \) K for 1.0 \( \text{O} \) and C [Simon-Diaz et al. 2003].

4.4 [S iv]/[N e II] and [Ar iii]/[N e II] calibrations

Of course, neither [S iv] nor [N e II]/[N e III] are available from ground-based observations. In such cases, only [Ar iii] 8.9 m, [S iv] 10.5 m and [N e II] 12.8 m are accessible. In Figure 3, we compare the [S iv]/[N e II] ratio versus stellar tem perature for sources in W 31, G 29.96 (0.02) and G 23.5+0.15, plus cloudy predictions for 2 Solar stellar models.

The comparison between the predicted [S iv]/[N e II] ratio and empirical results is much poorer than for the [N e III]/[N e II] ratio. As such, one might conclude that no straightforward means of detem ining tem peratures exists from ground-based data alone. However, it has been estem ated that there is a reasonably tight correlation between the [S iv]/[N e II] and [N e III]/[N e II] ratios, as shown.
Figure 11. Effective temperature versus log \( [S\text{ iv}] / [N\text{ ii}] \) for our log \( U = 1.5 \) solar and 2 solar models together with inner Milky Way sources and resulting empirical calibration (dotted line).

Figure 12. (Upper panel) Correlation between \( I[S\text{ iv}] / I[N\text{ ii}] \) and \( I[N\text{ iii}] / I[N\text{ ii}] \) for H\,ii regions located in the inner (dotted squares) and outer (open squares) Milky Way using ISO/SH S Juxes from Peeters et al. (2002), dereddened as described in the text; (lower panel) As above except for correlation between \( I[A\text{ iii}] / I[N\text{ ii}] \) and \( I[N\text{ iii}] / I[N\text{ ii}] \).

Figure 13. Effective temperature versus log \( [A\text{ iii}] / [N\text{ iv}] \) for our log \( U = 1.5 \) solar and 2 solar models together with inner Milky Way sources and resulting empirical calibration (dotted line).
an extinction correction of
\[ A_{10} = 0.719A_K \]
and obtained a similar quality to that of [S iv]/[Ne iii] above (see Fig.12), namely
\[ \log I[N e III]/I[Ne II] = 2.06 \times 0.21(\log I[Ar III]/I[Ne II]) + 0.55 \]
allowing estimates of temperatures to be made from the [Ar iii]/[Ne ii] ratio. Unfortunately, this is relatively insensitive to temperature and so should only be considered if neither of the primary calibrations are available. Nevertheless, the comparison between empirical results for G 23.96+0.15 and G 29.96+0.02 and our metal-rich calibration, presented in Fig.13, is reasonable. For completeness, the super-solar calibration may be expressed as:
\[ T_e = -kK/2 = +48.82 \times 1.79 + 129.23 \times 4.74(\log I[Ar III]/I[Ne II]) \]

It should be re-emphasized that these calibrations are solely intended for compact and ultra-compact H ii regions for the inner Milky Way, and are liable to revision once additional empirical results become available. Nevertheless, it is apparent that the use of any mid-IR nebular diagnostics to establish properties of metal-rich O stars will lead to stellar temperatures that are too high, by as much as 5kK or 10%. However, mid-IR nebular line associations have application in external galaxies, ranging from metal-rich H ii regions in spiral galaxies (Rubin et al. 2007), starburst regions (Thornley et al. 2004; Veena et al. 2004; Brandl et al. 2006) and ultraluminous infrared galaxies (ULIRGs, Lutz et al. 1998).

Within this diverse sample, the mid-IR has the greatest diagnostic role for the highly obscured cases, either young, em bedded massive clusters with metal-poor starbursts such as NGC 5253 (Crawther et al. 1989), i.e. 2.10 (Varra et al. 2002), or metal-rich ULIRGs (Cen et al. 1993).

Of course, the aim of studies of starbursts is generally to obtain ages and/or stellar content (mass, initial mass function) yet such approaches to the present study are usually followed, involving photo-ionization models and ionizing uvx distributions from stellar-attmosephere models coupled to evolutionary predictions through population synthesis codes (e.g. Pindao et al. 2002).

5.2 Analysis of em bedded stellar populations from mid-IR ne structure lines.

Our study has focused upon compact and ultra-compact H ii regions within the inner Milky Way, where all mid-IR nebular diagnostics will lead to stellar temperatures that are too low, by as much as 5kK or 10%. However, mid-IR nebula structure lines also have application in external galaxies, ranging from metal-rich H ii regions in spiral galaxies (Rubin et al. 2007), starburst regions (Thornley et al. 2004; Veena et al. 2004; Brandl et al. 2006) and ultraluminous infrared galaxies (ULIRGs, Lutz et al. 1998).

Within this diverse sample, the mid-IR has the greatest diagnostic role for the highly obscured cases, either young, embedded massive clusters within metal-poor starbursts such as NGC 5253 (Crawther et al. 1989), i.e. 2.10 (Varra et al. 2002), or metal-rich ULIRGs (Cen et al. 1993).

Of course, the aim of studies of starbursts is generally to obtain ages and/or stellar content (mass, initial mass function) yet such approaches to the present study are usually followed, involving photo-ionization models and ionizing uvx distributions from stellar-attmosephere models coupled to evolutionary predictions through population synthesis codes (e.g. Pindao et al. 2002).

Problems highlighted here and elsewhere M. orset et al. 2004; M. and n-Hernandez et al. 2002; for H ii regions in the inner Milky Way probably have their origins in both (i) incomplete opacities for all relevant ions in stellar atmosphere models allowing for non-LTE e and stellar winds; (ii) 1D photoionization models. In principle, the second of these can be tested against 3D photoionization codes such as MOCASSIN (Ercolano, Barlow & Storey 2002). Until then, similar empirical calibrations of photo-ionization models across a range of metallicities may be the best approach. It may be signi cant that the discrepancy for the Orion Nebula Cluster is signi cantly less severe than for G 29.96+0.02 and G 23.96+0.15. A further test would be for an extensive sample of H ii regions in the outer Milky Way and the Magellanic Cloud, These could potentially include 30 Doradus (LMC) and/or NGC 346 (SMC). Beyond the Magellanic Clouds, spatial resolution prevents spectroscopy of individual stars within compact star clusters.
6 SUMMARY

We present near-IR (VLT/ISAAC) and mid-IR (Spitzer/IRS) spectroscopy of massive stars within the young Milky Way cluster G10.2-0.3 (W 31). Our main results may be summarised as follows:

(i) H- and K-band spectroscopy of naked O stars broadly confirm the subtypes from [Humphreys et al. 2002] from which a revised cluster distance (3.3 kpc) and age (0.6 Myr) are obtained.

(ii) W 31's one of the massive YSOs from [Kum et al. 2003] is shown to possess photophenic features, consistent with a subtype of O6V, in addition to near-IR circumstellar dust emission. This suggests it is in the process of clearing its immediate environment.

(iii) Mid-IR ne-structure line ratios of W 31 stars overlap with other Milky Way and Magellanic Cloud H II regions on a [N II]/[N II] to [S IV]/[S III] diagram.

(iv) Following [Orset et al. 2004], a comparison of the mid-IR radiation hardness parameter, (S-N) = (N III/Ne II)/(S IV/S III) versus [N II]/[N II] allows dependencies upon effective temperature and ionization parameters to be tested. Predicted solar metallicity stellar and nebular models differ greatly from empirical T_e and U, with small differences in both S 2 grids.

(v) Stellar studies are planned for metal-poor environments, which should establish whether the problem is most severe at high metallicity. Initial results for the ONC do show an improved agreement between predictions and observations, although larger sample sizes are required for statistically robust results. If the discrepancy were to disappear at lower metallicities it would suggest that either the extreme or UV metallicity blanket of early-type stars is incomplete, or there is a problem with photoionization models at high metallicity.

(vi) We show that an empirical correction to the predicted [N II]/[N II] ratio against T_e for log U = 1.5 and 2.2 provides a reasonably good stellar to stellar results for W 31 and two inner Milky Way UCH II regions. Estimating the O subtypes of the ionizing stars in other Galactic H II regions (R < 7 kpc) are obtained. This approach is only practical for early- and mid-O-type stars, in view of the weakness of [N II]15.5 m for late-O-type stars.

(vii) For ground-based datasets lacking [N II] observations, we have used a correlation between [N II]/[S II]and [S IV]/[S III] ([see also] Groves et al. 2003) to provide a calibration of [S IV]/[N II] against T_e for super-solar compact H II regions. Since only early- and mid-O stars provide significant [S IV] emission, we have obtained a similar relation for 9.0 m [N II] 12.8 m [N II] versus T_e, although this should only be applied when other diagnostics are unavailable, with both [N II] and [N II] expected to be weak in late-type O stars.

Finally, in view of the apparent discrepancy between stellar and nebular results at high metallicity compact HII regions, studies of more straightforward and template are sought, to enable the present calibration to be put on a more robust footing.

ACKNOWLEDGMENTS

JPF would like to acknowledge financial support from STFC, CLB acknowledges financial support from FAPESP and PSC thanks the NSF for continuous support. We wish to thank John Hillier and Gary Ferland for maintaining CMFGEN and CLOUDY. Specific support for this work was partly provided by NASA through an award issued by JPL/Caltech. We appreciate any useful suggestions from an anonymous referee.

REFERENCES


Springer
